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Abstract: Patients with previous sensitization events against anti-human leukocyte antigens (HLA)
often have circulating anti-HLA antibodies. Following organ transplantation, sensitized patients
have higher rates of antibody-mediated rejection (AMR) compared to those who are non-sensitized.
More stringent donor matching is required for these patients, which results in a reduced donor pool
and increased time on the waitlist. Current approaches for sensitized patients focus on reducing
preformed antibodies that preclude transplantation; however, this type of desensitization does not
modulate the primed immune response in sensitized patients. Thus, an optimized maintenance
immunosuppressive regimen is necessary for highly sensitized patients, which may be distinct from
non-sensitized patients. In this review, we will discuss the currently available therapeutic options for
induction, maintenance, and adjuvant immunosuppression for sensitized patients.
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1. Immunosuppression in Sensitized Patients

Advancements have led to increased availability and efficacy of immunosuppressive
agents, and current 1 year graft survival is 98% with living related donor and 94% for
deceased donor kidney transplantation [1]. However, patients with pretransplant positive
cytotoxic crossmatch and DSA have shown as high as 70% of graft failure with acute
AMR and approximately 50% of grafts loss by 1 year post-transplant [2]. Lefaucheur
et al. reported that the incidence of early AMR was 36.4% in patients with an interme-
diate (MFI 3-6000) level of DSA and 51.3% with a high level of DSA (MFI > 6000) [3].
Immunosuppressive strategies for sensitized patients are largely borrowed from those used
in non-sensitized patients. However, variability in outcomes reveals the insufficiency of
current immunosuppressive regimens in sensitized patients. Sensitized patients with a
negative crossmatch (no donor-specific antibody) showed comparable graft survival to non-
sensitized patients in the current organ allocation system [4] even though these patients
might have individual center-driven immunosuppressive regimens which are different
from non-sensitized patients (i.e., thymoglobulin with higher Tac trough level, etc.). How-
ever, immunologically high-risk transplants occurring in sensitized patients, particularly
for crossmatch positive, incompatible transplants, require enhanced immunosuppression.
Innovation in this field has largely focused on ‘desensitization’ prior to transplantation,
or early post-transplant therapies to reduce the risks of acute antibody-mediated rejection
(AMR) [5–14]; however, there has been little examination of the optimal maintenance regi-
men post-transplant. Furthermore, even with currently available desensitization therapies,
both acute AMR and acute cellular rejection (ACR) rates were significantly higher in sensi-
tized/desensitized patients compared to non-sensitized patients [15–17]. Recently, changes
in deceased donor allocation in the US in particular [18], as well as improvements to living
kidney donor sharing schemes [19], have demonstrated that fewer sensitized patients
require the need for cross-match positive living transplantation [20]. Nonetheless, patients
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with pretransplant or de novo donor-specific antibody (DSA) are at greater risk of graft
rejection. In this review, we will focus more on maintenance immunosuppression agents
in sensitized patients (with positive crossmatches) rather than desensitization strategies
even though some treatments can be applied to both indications. Consequently, antibody-
targeting strategies such as plasmapheresis (or plasma exchange/immunoadsorption),
IVIg, or IdeS (Imlifidase) will not be covered.

2. Choice of Induction Therapy in Sensitized Kidney Transplant Recipients

Induction therapy reduces rates of acute rejection, delayed graft function (DGF), and
death after kidney transplantation, and there is a wide variety of induction agents available
and used in clinical practice today [21]. Rabbit antithymocyte (rATG) polyclonal antibody
or interleukin-2 receptor monoclonal antibodies are the most common agents used for
induction in non-sensitized patients. Sensitized patients with preformed HLA antibodies
are at greater risk of cellular and humoral rejection, and outcomes can be optimized by
using polyclonal induction agents, such as ATG or alemtuzumab, that are associated
with a lower risk of rejection and better graft survival [22–25]. However, the impact of
different induction approaches on sensitized patients has not been fully elucidated and the
variability in induction therapy can be largely attributed to transplant center choice and
clinician preference rather than patient or donor characteristics [23–26].

2.1. Basiliximab

Basiliximab (Simulect) is a non-depleting chimeric anti-CD25 monoclonal antibody
against the interleukin-2 (IL-2) receptor on activated T lymphocytes [27]. It is comparable
to rATG in patients with low risk of acute rejection, though less effective in high-risk kidney
transplant patients, defined as being at risk of DGF or having panel reactive antibody (PRA)
> 20% [27–29]. Even though activated B cells express CD25 and IL-2 mediated signaling
has a critical role for its further differentiation into plasma cells [30], our data in a highly
sensitized nonhuman primate model demonstrated a clear limitation of basilliximab in
controlling robust memory T and B cell immune responses [31]. Additionally, basiliximab
was associated with a greater risk of biopsy-proven acute rejection (BPAR) than rATG
in sensitized (HLA class I and II mismatch) kidney transplant recipients without pre-
existing DSA [32]. In a study of class I and II HLA DSA-positive, complement-dependent
cytotoxicity crossmatch (CDC-XM) negative recipients treated with basiliximab induction
therapy, there was a higher incidence of BPAR and AMR [33]. Another study found that
DSA against class I and II HLA and high DSA levels, CDC-XM negative, is predictive of
early AMR in patients treated with basiliximab induction and triple therapy maintenance
immunosuppression [34]. The 5 year graft survival was lowest in patients with class I and
II DSA with high binding affinity [34]. Thus, the effectiveness of induction therapy with
basiliximab is limited in the sensitized, DSA positive, crossmatch negative patient.

2.2. Thymoglobulin

Thymoglobulin, or rATG, is a polyclonal gamma immunoglobulin and the preferred
choice in sensitized patients at high risk for acute rejection or delayed graft function [21,22].
rATG targets T cells via antibody dependent cytotoxicity (ADCC) and complement depen-
dent cytotoxicity (CDC), but it also depletes B cells and plasma cells since thymus also
contains these cell populations. In accordance with this, rATG induces apoptosis of B cells
and plasma cells [35]; however, its in vivo efficacy has not been clearly demonstrated [36].
A prospective, randomized, clinical trial showed a decreased incidence and severity of
acute rejection when treated with rATG compared to basiliximab at 1 year (16% vs. 26%,
p = 0.02) and 5 years (15% vs. 27%, p = 0.03) post-transplant, but similar incidences of
graft loss, DGF, and death [21,34,37]. In moderately sensitized patients (positive DSA and
negative flow crossmatch), induction with ATG resulted in reduced occurrence of de novo
DSA (dnDSA) and AMR compared to basiliximab [38]. In simultaneous heart and kidney
transplants, sensitized patients (with PRA > 10%) treated with rATG induction had lower
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mortality [39]. Another randomized trial found a significantly reduced incidence as well as
severity of acute rejection in high immunological risk patients, defined by Kidney Disease
Improving Global Outcomes (KDIGO) as high number of MHC mismatches, younger
recipient, older donor, PRA > 0%, presence of DSA, blood group incompatibility, DGF,
and cold ischemic time > 24 h, treated with rATG versus basiliximab with acute rejection
rates at 1 year (15% vs. 27%, p = 0.016) and 5 years (14% vs. 26%, p = 0.035) [37,40,41].
Historically, rATG was associated with an increased risk of infection and malignancy
compared to basiliximab induction; however, recent studies showed a low overall risk
with rATG [37,42–44]. A systematic review found a 45% acute rejection risk without ATG
induction in patients with calcineurin inhibitor (CI) treatment and 37% acute rejection risk
without ATG induction in patients without CI treatment [45].

2.3. Alemtuzumab

Alemtuzumab is a depleting anti-CD52 antibody that targets T and B cells resulting in
lymphocyte depletion and prolonged immunosuppression [46]. Low-dose alemtuzumab is
used as an induction agent in sensitized patients undergoing kidney transplantation and,
when combined with triple maintenance immunosuppression, is well tolerated and has
shown favorable patient and allograft outcomes (death-censored graft survival: 79.2%) [46].
A prospective, open-label, randomized controlled trial found that alemtuzumab induction
therapy in sensitized kidney transplant patients is effective and safe with similar rates of
acute rejection compared to those treated with rATG [47]. Of interest, an analysis studying
the efficacy and safety of induction therapy in non-broadly sensitized kidney transplant
recipients (cPRA < 80%) found that alemtuzumab was more effective in decreasing biopsy
proven acute rejection than IL-2 receptor antagonists; however, it was also associated with
a higher 5 year graft loss risk [48]. A single-center study in sensitized kidney recipients
(median PRA 43%, CDC-XM negative) found acceptable patient and graft survival fol-
lowing low-dose alemtuzumab induction [46]. In sensitized pediatric kidney transplant
recipients (PRA > 30%), there was equivalent graft and patient survival in those who
received intravenous immunoglobulin G (IVIG) and alemtuzumab induction therapy as
non-sensitized recipients treated with basiliximab [49]. A prospective study found that the
rate of biopsy-confirmed acute rejection in low-risk patients was lower with alemtuzumab
when compared with basiliximab, but among high-risk patients, there was no significant
difference between alemtuzumab and rATG [50]. However, alemtuzumab is associated
with prolonged lymphocyte depletion [46,51] and increased rates of infection [46,52].

2.4. Rituximab

Rituximab is an anti-CD20 monoclonal antibody that targets B cells, suppresses
preformed alloantibodies and reduces peripheral B lymphocytes prior to transplanta-
tion [53,54]. A retrospective study of highly sensitized kidney transplant recipients (XM-
positive or DSA positive) treated with IVIG and rituximab induction therapy found in-
creased rates of AMR in sensitized recipients compared to low-risk recipients, but similar
long-term patient or graft survival at 6 year follow-up [55]. A cohort of seven sensi-
tized patients (mean PRA class I and II were 31% and 51%, respectively) who received
rituximab induction therapy showed a reduced occurrence of postoperative humoral re-
jection [56]. Furthermore, the combination of rituximab with rATG induction therapy in
highly sensitized patients (mean class I PRA > 80%) showed superior graft survival at 5
years compared to rATG induction therapy alone (92.9% vs. 48.3%, p = 0.02) [24]. Intra-
venous immunoglobulin and rituximab combined induction therapy in highly sensitized
patients (mean PRA = 62%, ≥3 HLA-mismatch, positive FXM or positive pretransplant
DSA) was also effective in graft survival, graft function, and overall patient survival [57]. A
study of HLA-incompatible recipients (mean cPRA = 80%, repeat HLA mismatches (80%),
CDC positive, FCXM positive, or DSA positive) found that rituximab induction reduced
the incidence of HLA-antibody rebound (7% with DSA, 33% non-DSA) compared to those
transplanted without rituximab (32% DSA, 55% non-DSA), but demonstrated no effect
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on DSA elimination, AMR, or 5 year allograft survival [58]. Despite rituximab being an
acceptable induction therapy, it is not widely used due to safety concerns, such as suscep-
tibility to bacterial infections due to delayed immune reconstitution [59], post-transplant
lymphoproliferative disease (PTLD) [60], hypogammaglobulinemia, and progressive multi-
focal leukoencephalopathy (PML) [61]. Additionally, rituximab therapy can result in a false
positive B cell crossmatch when evaluating donor and recipient compatibility for kidney
transplant [62].

Although cytolytic induction promotes less graft failure, it should be considered that
cytolytic induction may lead to higher cancer risk in patients, such as has previously
reported with alemtuzumab for non-Hodgkin lymphoma and rATG for melanoma [42].
Similarly, we have shown significantly prolonged renal graft survival in a sensitized non-
human primate model when treating with depletional induction compared to basiliximab,
but animals receiving depletional induction showed higher levels of infectious complica-
tions [31,63,64]. It is also noteworthy that each induction therapy (whether cytolytic or
not) is administered according to a standardized dosing regimen that is largely based on
experience with non-sensitized patients. Additionally, ATG induction dosing and efficacy
was established based on randomized control trials using different maintenance to current
practice—either higher Tac trough levels or even cyclosporine based regimen [21,65]. Since
the degree of lymphocyte depletion influences later alloimmune responses as well as pro-
tective immunity, the dosing and timing of induction agents also requires optimization in
sensitized patients.

3. Choice of Maintenance Immunosuppression in Sensitized Patients
3.1. Triple Immunosuppression

Maintenance immunosuppressive therapy prevents acute rejection and increases
allograft survival following kidney transplantation. The standard maintenance regimen
varies by center or clinician preference, but the KDIGO Transplant Work Group guideline
recommendations include triple therapy immunosuppression consisting of a calcineurin-
inhibitor (CNI), such as tacrolimus, an antimetabolite, such as mycophenolate mofetil
(MMF), and a glucocorticoid, such as oral prednisone, in kidney transplant recipients [66].
Tacrolimus inhibits activation of T lymphocytes by binding to an intracellular protein,
FKBP-12, and inhibiting calcineurin while MMF inhibits T and B cell proliferation. It has
been shown that CNIs (cyclosporine and tacrolimus) inhibit antibody production in T and
B cell cultures but fail to inhibit immunoglobulin (Ig) production when B cells are cultured
with primed T cells [67]. According to the most recent Scientific Registry of Transplant
Recipients (SRTR) registry data, over 60% of patients are discharged from the hospital
on tacrolimus, MMF, and prednisone triple therapy due to its success as a maintenance
immunosuppressive regimen [1,68].

3.2. Limited Efficacy of Standard Maintenance Immunosuppression in Sensitized Patients

Triple therapy as maintenance immunosuppressive therapy in non-sensitized kidney
transplant patients has high efficacy [68]; however, optimal maintenance immunosuppres-
sion in sensitized kidney transplant patients is not well established. Pretransplant DSA
(DSA positive, CDC-XM negative) is associated with an increased risk for AMR and poor
graft survival [33,69–71]. Patients with DSA showed worse kidney allograft survival at 8
years than those without DSA (43 vs. 194 months, p = 0.03) and the incidence of AMR in
patients with DSA is ninefold higher than in patients without DSA (p < 0.001) [72]. AMR
is the leading cause of graft loss after kidney transplant, and preformed DSA in sensi-
tized patients can lead to hyperacute rejection, accelerated acute rejection, and early acute
AMR [73]. A retrospective single center study found that recipients with DSA, CDC-XM
negative had increased rates of acute rejection (54.2% vs. 27.6%), increased AMR (33.3% vs.
19.7%, p = 0.176), and increased rates of ACR (16.6% vs. 6.6%, p = 0.127) when compared
to the non-DSA group [70]. Graft function was similar between groups at 1 year follow-
up with no graft loss, and both groups were treated with thymoglobulin induction and
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standard maintenance triple therapy [70]. A study in which all patients were maintained
on standard triple therapy found an increased incidence of acute AMR in patients with
pretransplant DSA than those without (41.7% vs. 1.6%, p < 0.001) and that higher levels of
pretransplant DSA had a detrimental effect on 5 year graft survival [74]. These studies high-
light the limitations of standard triple maintenance immunosuppressive therapy and the
need for different therapeutic regimens in the sensitized, DSA positive, CDC-crossmatch
negative patient population, particularly in light of the experimental evidence highlighted
regarding the inability of CNI to prevent antibody production during cognate T–B cell
interactions [67].

3.3. Replacing Tacrolimus

The mammalian target of rapamycin (mTOR) controls the T cell response (activation
and proliferation) and is a valuable immunosuppressant in clinical transplantation. mTOR
inhibitors, such as rapamycin (sirolimus) and everolimus, promote the differentiation and
function of various helper T cells and suppress the differentiation of memory CD8+ T
cells [75]. Furthermore, unlike CNIs, mTOR inhibitors are able to prevent Ig production
from B cells when cultured with primed T cells, which suggests their direct impact on
B cells [67,76]. Rapamycin has also shown its superiority over tacrolimus with respect
to inhibiting B cell to plasma-cell differentiation [77]. In mice sensitized by prior skin
graft, preoperative rapamycin increased the expression of regulatory T cells, but did
not prolong the survival of mice after cardiac allotransplantation [78]. In donor skin-
sensitized mice, those with mTOR deletion in T cells had longer mean survival time
(MST 19.5 days) versus wild-type recipients (MST 5.4 days) [75]. Mice sensitized by skin
transplant and treated with rapamycin induction therapy were found to have altered
frequencies of splenic and intragraft neutrophils, macrophages, and natural killer (NK)
cells [79]. A study of rapamycin in sensitized rats found that pretransplant introduction
of rapamycin prevented accelerated rejection and prolonged cardiac allograft survival
by decreasing the expression of IL-2 mRNA, reducing IL-2 and IFN-gamma cytokine
proteins, and modulating the IgM response to prevent class switching and IgG alloantibody
production [80,81]. Everolimus treatment led to prolonged graft survival with reduced
cell infiltration and prevented tubular atrophy and interstitial fibrosis in sensitized rat
recipients; however, chronic allograft nephropathy could not be prevented by everolimus
alone in the sensitized recipient [82].

A single-center retrospective analysis of 71 sensitized recipients (cPRA > 50%) showed
that mTOR inhibitors (everolimus or sirolimus) had similar outcomes to tacrolimus-based
immunosuppressive therapy with MMF [83]. Everolimus was safe and effective in sensi-
tized recipients (PRA > 30%) [84]. Sirolimus and everolimus have been reported to reduce
the development of chronic allograft vasculopathy (CAV) most likely due to their antipro-
liferative and antimigratory effects [85–87] as well as by decreasing the de novo DSA [88].
Despite these demonstrated immunologic advantages, the clinical use of mTOR inhibitors
lags well behind the use of CNI in transplantation, largely due to unfavorable side-effects
of mTOR inhibitors.

4. Newly Available Agents for Sensitized Patients
4.1. Costimulation Blockade
4.1.1. Belatacept

Belatacept, a CTLA4-Ig fusion protein that binds to cluster of differentiation (CD) 80
and CD86 receptors on antigen presenting cells (APC), prevents binding to CD28 on T cells,
thereby reducing the T cell–dependent immune response [89]. Belatacept has been shown
to selectively reduce the humoral response in sensitized, maximally HLA-mismatched
non-human primates (NHPs) by suppressing the peripheral and germinal center follicular
helper T cell (Tfh) response [90]. Translational studies in highly sensitized NHPs found
that desensitization with belatacept in combination with bortezomib or carfilzomib therapy
led to significantly reduced AMR, DSA, and plasma cells leading to prolonged graft



J. Clin. Med. 2021, 10, 3656 6 of 18

survival, although it should be noted that these animals received tacrolimus-based triple
therapy as maintenance [64,91]. Preliminary studies in animals receiving belatacept in
addition to triple therapy indicate a further prolongation of survival, even in a highly
sensitized NHP model [92]. In our opinion, these translational studies demonstrate the
promising potential of costimulation blockade in sensitized kidney transplant recipients
and may be the future of optimal maintenance therapy. Belatacept is associated with
28% less chronic kidney scarring (total 3 studies, 1360 recipients) and better glomerular
filtration rate (GFR), blood pressure, and lipid profiles, and lower risk of new onset
diabetes compared to CI-treated recipients in the unsensitized recipients, and this was the
premise on which it was initially marketed for use. However, the risk of acute rejection,
graft loss, and death were comparable [93,94] and despite the similar risk of graft and
patient survival and less nephrotoxicity, widespread adoption of belatacept amongst
all transplant recipients has been limited by concerns regarding higher rates of acute
rejection and PTLD [95–97]. Subsequent to this, the understanding of the mechanisms of
costimulation blockade resistant rejection (CoBRR) has improved [98–101]. Additionally,
there is developing clinical evidence of significant dampening effects on humoral responses
induced by costimulation blockade [90,91,102].

In clinical practice, 163 highly sensitized (cPRA > 98%) kidney transplant patients
with pre- and post-transplant belatacept treatment showed a decrease in HLA class I
antibodies compared to those who did not receive belatacept, and a clinically significant
reduction of post-transplant cPRA, suggesting that belatacept can reduce HLA class I
antibody production in highly sensitized recipients [103]. In the BELACOR trial, belatacept
(with ATG induction and MMF/steroid maintenance immunosuppression) was given
to sensitized patients with preformed DSA (median cPRA = 46%) [104]. Patient and
graft survival was 100% and 95.4%, respectively, at 1 year post-transplant and no patient
exhibited acute AMR, though there was an increased incidence of acute T cell–mediated
rejection [104]. In an effort to reduce the incidence of early T cell mediated rejection, trials of
conversion from CNIs to belatacept as maintenance therapy in kidney transplant recipients
are associated with significantly improved renal function at 1- and 3 year follow-up, with
no increased risk of BPAR or DSA [105–108]. Similarly, a study of 108 HLA-sensitized
kidney transplant patients (PRA > 30% at transplant, history of prior transplant, or positive
DSA at time of transplant) converted from CNIs to belatacept showed no difference in
rejection-free, patient or graft survival in sensitized versus non-sensitized recipients at
5 years post-transplant. However, rejection-free survival was lower in the sensitized
compared to the non-sensitized recipients at 1 year post-transplant, and the average eGFR
was also decreased in the sensitized recipients [109].

4.1.2. Anti-CD40mAb

The CD40/CD154 pathway is important for activating T cell differentiation and
B cell isotype switching and was found to be important in both the humoral and cell-
mediated immunologic response pathways [110]. CD4+ helper T cells are mandatory
for generating both naïve and memory DSA responses [111]. Thus, targeting helper
T cells in maintenance therapy may lead to decreased AMR and prolonged allograft
survival in kidney transplant recipients. Much of the existing evidence is in large animal
models as clinical studies blocking the CD40/CD154 pathway have been halted due to
the development of thromboembolic complications and direct platelet activation [112,113].
Thromboembolic complications were found to be primarily due to blocking interactions
with CD154, which is important for thrombus stability [114]. However, similar events were
not observed in antibodies targeting CD40 [115–117], so this may be a more promising
therapeutic target. A novel blocking, non-depleting Fc-silent anti-CD40 mAb, iscalimab
(CFZ533), has been found to prolong renal allograft survival in NHP in the absence of B cell
depletion with no evidence of thromboembolic events [118]. Iscalimab blocks primary and
memory antibody responses and germinal center formation while preserving peripheral
B cells in NHP [119]. Currently, iscalimab is under review in phase II clinical trials in
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kidney transplantation in the unsensitized patient population. Another anti-CD40 mAb,
bleselumab (ASKP1240), is also under phase I/II clinical trial with acceptable outcomes
when combined with tacrolimus, as standard therapy [120]. Combination desensitization
therapy with anti-CD40 mAb, belatacept, and bortezomib in a sensitized, maximally
major histocompatibility complex (MHC)-mismatched, DSA positive, NHP model found
prolonged graft survival and decreased risk of graft loss due to AMR, but increased
cytomegalovirus (CMV) infections [64]. To date, no studies have looked at the specific
indication of anti-CD40mAb in sensitized patients; however, it may offer alternative
costimulation blockade with humoral suppressive benefit for sensitized patients.

4.1.3. Anti-CD154mAb

An initial study found that anti-CD154 monoclonal antibodies prevent acute renal
allograft rejection in non-sensitized NHPs [121]. A study in donor skin-graft-sensitized
mouse recipients of cardiac allografts found that naïve CD8+ T cells depend on CD154
signaling to differentiate into effector T cells, while primed/memory CD8+ T cells remain
intact [122]. A study exploring the effects of blocking B7/CD28 and CD40/CD154 costimu-
latory signals in sensitized mice for allogeneic bone marrow transplant found decreased B
cells when blocking B7/CD28 or CD40/CD154 (p < 0.01) with a synergistic effect when
both signals were blocked (p < 0.01), as well as decreased memory and effector T cells when
blocking B7/CD28 or CD40/CD154, also with a synergistic effect when both signals were
blocked (p < 0.01) [123]. This suggests that blocking B7/CD28 or CD40/CD154 costimula-
tory pathways can inhibit both cellular and humoral immune response with a synergistic
effect [123]. Letolizuman/BMS-986004, a novel anti-human CD154 domain antibody that
lacks crystallizable fragment (Fc) binding activity, was found to be safe and efficacious
with prolonged allograft survival (MST = 103 days) and no evidence of thromboembolism
in NHPs [124] and is currently under clinical trial (NCT03605927). A novel anti-CD154
antibody, RD-05, with a genetically modified human IgG4 Fc inhibits B cell activation
and antibody formation with no adverse effects of thromboembolism in mice, suggesting
clinical applications in AMR as well as antibody-mediated autoimmune diseases including
systemic lupus erythematosus (SLE) or idiopathic thrombocytopenic purpura (ITP) [125].

4.2. Adjuvant Therapies
4.2.1. Targeting IL-6 or IL-6R

Interleukin (IL)-6 is a pleiotropic cytokine involved in a variety of pathways regulating
immune responses, with an important role in the induction of follicular helper T cells which
stimulate B cells to differentiate into memory B cells and IgG-secreting plasma cells [126].
The IL-6 receptor (IL-6R) exists as a membrane-bound protein, expressed mostly on hepato-
cytes and immune cells, and a soluble protein that can bind IL-6 and transmembrane gp130,
termed trans-signaling, on nearly all cell types [127,128]. Interactions between IL-6 and IL-
6R lead to the activation of transmembrane protein gp130, eliciting signals to downstream
JAK and MAPK pathways and the subsequent activation of inflammatory genes [127]. IL-6
is a proinflammatory cytokine that plays a pathologic role in chronic immune disorders,
cancer, and transplant rejection [128]. IL-6 also promotes Th17 differentiation and inhibits
Treg differentiation, suggesting targeting IL-6/IL-6R may have clinical applications in
treating autoimmune disease and organ rejection [127,129].

In the sensitized recipient, Chen et al. found that IL-6 deficient mice, sensitized by
donor skin transplant, had decreased frequency of effector memory CD4+ and CD8+ T
cells after heterotopic cardiac transplant [130]. Mice also had a prolonged MST of 4.2 days
compared to WT mice. Shin et al. and Choi et al. studied tocilizumab, an anti-IL-6 receptor
monoclonal antibody, as rescue therapy for chronic AMR in HLA-sensitized renal recipients
who failed standard treatment [131]. Patients treated with tocilizumab had graft and pa-
tient survival rates of 80% and 91% at 6 years post-transplant, compared to graft survival of
50% 2 years post-transplant. Tocilizumab therapy also caused significant reductions in DSA
at 2 years post-transplant. Four patients experienced graft loss approximately 6 months
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after cessation of tocilizumab, suggesting IL-6/IL-6R pathway blockade may be important
in developing targeted rescue or maintenance immunosuppressive therapy. Tocilizumab
treatment decreased total IgG and IgG1-3 subclasses, suppressing immunoglobulin pro-
duction in B cells and treating chronic AMR in HLA-sensitized recipients [132]. Other
IL-6/IL-6R blockades that are FDA-approved or undergoing RCT for autoimmune diseases
include clazakizumab, siltuximab, sarilumab, olokizumab, sirukumab, and tofacitnib [127].
Presently, a phase II RCT studying clazakizumab, a genetically engineered humanized
monoclonal antibody against IL-6, in late AMR (NCT03444103) is underway, although
the indication is treatment of AMR occurring post-transplant, rather than maintenance or
preventative therapy in the sensitized recipient.

4.2.2. Anti-BAFF

B cell activating factor (BAFF, also known as BLyS) and a proliferating inducing ligand
(APRIL) are cytokines that belong to the tumor necrosis factor family whose primary
function is to enhance B cell survival and differentiation into plasma cells [133]. Both are
currently used in treating autoimmune diseases such as systemic lupus erythematosus
(SLE) and Sjogren’s, but several studies have found that high levels of serum BAFF are
associated with the formation of anti-HLA DSA, increased risk of AMR, and poor renal
graft survival [134–138]. BAFF is highly expressed in the membrane and renal tubule
epithelial cells of transplanted kidneys with acute rejection, and high pretransplant BAFF
has been found to predict risk of graft rejection [139].

Belimumab is a human antibody that binds soluble and membrane-bound BAFF, and is
FDA-approved for the treatment of SLE [140]. Stohl et al. found that belimumab decreased
IgG autoantibodies, naïve and activated B cells, and plasma cells, but did not reduce
memory B or T cells in patients with SLE [141]. Banham et al. conducted a phase II trial
studying belimumab infusions plus standard of care (basiliximab, mycophenolate mofetil,
tacrolimus, and prednisolone) immunosuppression therapy in adult kidney transplant
patients (NCT01536379) [142]. They found similar proportions of adverse events between
treatment and placebo groups, and no significant reduction in naïve B cells at 6 months post-
transplant. Secondary endpoints found that belimumab-treated patients had decreased
production of de novo non-HLA antibody, fewer memory B cells, and increased IL-10
versus IL-6 production. This suggests that belimumab may lead to a reduction in antibody-
forming cells and dampen the humoral response; however, it should be noted that the
patient cohort was not sensitized. Steines et al. studied the effects of anti-BAFF antibody
in a rat renal transplant model [143]. They injected anti-BAFF antibody after allogeneic
kidney transplantation and found that anti-BAFF treatment reduced the humoral response,
including reduced splenic IgG expression, naïve B cells, plasma cells, and expression of
IL-6, CD40 and inducible T cell costimulatory ligand.

In the sensitized recipient, translational pre-clinical studies of anti-BAFF agents have
shown promising effects as a potential post-transplant immunosuppressive therapy, al-
though this has not been examined in humans. Our group has studied atacicept, a recom-
binant fusion protein also known as TACI-Ig, in NHP kidney allotransplantation using
maximally MHC class I and II mismatched donors [144]. The results show a decreased
humoral response and prolonged graft survival. The atacicept-treated group had reduced
early de novo DSA production and reduced B cell repopulation, suggesting that atacicept
may play a role in reducing the germinal center or pre-germinal center B cell response.
Bath et al. studied an APRIL/BLyS blockade, TACI-Ig, as desensitization and maintenance
treatment in an MHC mismatched, sensitized rodent kidney transplant model [145]. They
found that TACI-Ig depleted plasma cells, IgG, and IgM secreting cells, as well as decreased
incidence of AMR, but did not decrease post-transplant DSA levels. Animals treated with
TACI-Ig alone as desensitization therapy experienced increased rates of AMR, noting that
the timing of B-lymphocyte depletion plays an important role in AMR. Additional studies
in a chronic rejection kidney transplant model showed that TACI-Ig significantly decreased
B lymphocytes, antibody production, and splenic germinal center formation in a sensitized



J. Clin. Med. 2021, 10, 3656 9 of 18

mouse model, but increased T lymphocytes, specifically effector T lymphocytes [146].
Other anti-BAFF antibodies undergoing clinical trials, tabalumab, blisibimod, and BR3-Fc,
have not been studied as maintenance immunosuppression therapies in kidney transplan-
tation, although attempts to desensitize using tabalumab alone pretransplant have not
demonstrated efficacy [147].

4.2.3. Targeting PC
Conventional PI

Bortezomib was the first proteasome inhibitor (PI) to be FDA-approved for the treat-
ment of malignant plasma cell diseases [148]. Proteasome inhibitors, including bortezomib,
carfilzomib, oprozomib (ONX 0912), and ONX 0914 (immunoproteasome inhibitor), re-
duce proliferating B cells and antibody production conceivably by inducing apoptosis of
activated B cells [149]. Bortezomib has been shown to be effective in preventing AMR and
ACR, as well as reducing DSA in kidney transplant recipients [150]. Since then, bortezomib
has been studied in combination therapy with plasmapheresis (PP) and IVIG with or with-
out rituximab or steroid as plasma cell–targeted therapy in sensitized kidney transplant
recipients, showing success in reducing DSA, treating acute or late AMR [151,152] as rescue
or primary treatment [153–155], and reducing plasma cell rich acute rejection [156,157].
Recently, six patients who developed acute AMR received bortezomib and belatacept com-
bination therapy, which led to the reversal of AMR and reduction in circulating DSA [158].
The response to PI therapy differs between early and late AMR, with optimal clinical
responses seen when bortezomib is used to treat early AMR [159], while a subsequent
clinical trial indicated a lack of efficacy of bortezomib in treating late AMR [160]. In the
sensitized setting, pretransplant desensitization with both costimulation blockade and
bortezomib significantly prolonged graft survival and reduced the risk of AMR in a NHP
model [64]. Additional desensitization studies utilizing bortezomib and costimulation
blockade (belatacept and anti-CD40 mAb) as dual targeting therapy of plasma cells and the
germinal center response led to prolonged graft survival despite significant CMV infection
and drug toxicity [64]. Most recently, carfilzomib, a second-generation PI, has been studied
for desensitization, showing reduction of preformed HLA antibodies (median reduction
of 72.8%) with a plasma cell reduction in bone marrow (69.2% reduction) and acceptable
drug safety and toxicity [161]. As described, PIs have been studied mostly in the setting
of desensitization therapy, but there is a growing interest in utilizing PI as maintenance
immunosuppression or treatment for AMR.

5. Possible Limitations of Combined B and T Cell Suppression

The current clinical practice for managing immunosuppressive agents in sensitized pa-
tients is largely based on conventional risk management of transplant patients. Sensitized
patients (considered high-risk patients) are mainly treated with a conventional strategy
using CI plus MMF, avoiding minimization. However, this patient population continues to
show worse graft survival than the unsensitized patient population. Although adjuvant
therapies such as costimulation blockade have potential positive benefits, it is hard to justify
that any single agent introduced with conventional immunosuppressive regimens can suc-
cessfully prevent rebound or de novo DSA production in sensitized patients. Considering
the high-risk immunological profile of sensitized patients, the combination of conventional
immunosuppression with adjuvant treatments could be a solution. Recent data regarding
combined tacrolimus or rapamycin with belatacept in non-sensitized patients displayed
promising results. The acute rejection (AR) rate at 3 months post-transplant was signif-
icantly reduced in basiliximab induction with belatacept and tacrolimus/MMF/steroid
(15%) compared to belatacept maintenance (38%). After tacrolimus/steroid discontinua-
tion, the 12-month AR rate was lower in the belatacept/tacrolimus group (33%) compared
to belatacept alone (50.5%) treatment group. However, the AR rate at 12 months was
significantly higher than the tacrolimus alone treatment group. Interestingly, the extended
tacrolimus treatment (up to 9 months and discontinuation at 11 months post-transplant)
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together with belatacept showed similar 12-month AR rates without risk of CMV or BK
virus reactivation compared to the tacrolimus alone treatment group [162]. Belatacept plus
rapamycin also exhibited a lower AR rate (4%) at 12 months compared to belatacept/MMF
(15%), and a comparable rejection rate to tacrolimus/MMF (3%) with rATG [163]. Fur-
thermore, belatacept/rapamycin maintenance immunosuppression in conjunction with
alemtuzumab induction therapy displayed 95% 5 year post-transplant graft survival with
100% patient survival [164]. However, optimizing the combination of these agents in
sensitized patients will require further and specific clinical trials to identify the best com-
binations to use in clinical practice. It is also important to not only confirm the mode of
action of the additional agents (i.e., suppression of DSA production) but also to identify
any unexpected or unwanted side effects (i.e., increased risk of infections, etc.). Combining
these agents may promote overimmunosuppression and increase the incidence of oppor-
tunistic infections or PTLD in these patients. Therefore, large animal models, such as the
use of sensitized NHPs, provide a useful platform to further evaluate the best combined
approach, the timing of treatment (or weaning) of additional agents, the durability (or
duration) of the treatment and the associated risks before translating results into clinical
practice. This also need to be accompanied by close surveillance with proper monitoring
tools which reflect recipient alloimmune status and protective immunity.

6. Concluding Remarks

Conventional maintenance immunosuppression with tacrolimus, MMF, and steroids
after lymphocytic depletion has been widely used for managing sensitized patients with in-
compatible organ transplants considered to be at increased immunological risk of rejection.
Despite the fact that these T cell centric approaches are effective in non-sensitized patients,
they fail to control the post-transplant humoral response of sensitized patients. Given the
known challenges of the primed immune system of the sensitized patient, targeting B cell
or T cell interactions with B cells should be considered as part of an optimal maintenance
immunosuppression for this patient population. Due to the rapid evolution of agents
targeting individual steps of humoral responses, as well as advances in our understanding
of AMR, it is possible to design a mechanistically rational approach for the sensitized
patient.
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