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Abstract

The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range
of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect),
increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that
when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size
are more complex than previously thought. The model examines vector-borne disease in the presence of different host
species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the
pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population
size of host individuals (H), i.e. a value ĤH exists that maximises R0. Surprisingly, if HwĤH, a reduction in host population size
may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host
species can alter the value of ĤH, which may reverse the effect on pathogen prevalence of host population reduction. We
argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly
predicted using simple frequency-dependent epidemiological models.
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Introduction

Zoonotic diseases show complex dynamics that are influenced

by a wide range of ecological factors. Understanding these

influences is important for the design of disease control strategies,

because the outcome of ecological interventions may not always be

intuitive [1,2]. Much attention has been given to the effect of

biodiversity on zoonotic disease spread, and in particular to the

effect of alternative host species on the dynamics of vector-borne

diseases. The term ‘‘dilution effect’’ (sensu [3–5]) describes the

reduction in infection prevalence when a vector can feed on more

than one host species. Hosts vary in their competence as pathogen

reservoirs, generally with one or a few species being efficient

(competent hosts) and others being inefficient reservoirs (incom-

petent hosts) [6]. From the perspective of the pathogen, bites on

incompetent hosts are ‘‘wasted’’, in that they cannot result in

transmission. Therefore, presenting a vector with the opportunity

to feed on an additional host that is less competent at pathogen

transmission will result in less pathogen transmission. The

reduction in pathogen transmission in the presence of an

incompetent host species is a separate effect from the reduced

transmission observed in a single-host system when pathogen

prevalence is low, as the dilution effect alters the dynamic

equations of the host-pathogen system. Mathematical models

predict that the dilution effect would be expected to operate under

a wide range of conditions [4,7–10]. Some empirical studies have

supported these predictions (e.g. [11–13]), while other studies have

shown that increasing host species richness can have mixed effects

(e.g. [14]).

We develop a model in which vector biting is limited by a finite

number of feeding sites on each host. If the host is large, the vector

may never reach densities where feeding sites are limiting (e.g.

horses and horseflies, [15]). However, when the host is small and

has little exposed skin (e.g. snout and ear pinnae in mammals, or

conjunctiva in birds), or when the host can use effective grooming

behaviour over most of its body, the number of vector individuals

able to feed at the same time is limited [16]. A limited number of

feeding sites is probably the case, for example, with ticks (removed

from most parts of the body by grooming) and sandflies (small

proboscis and delicate body prevents penetration of thick hair)

[17,18]). Abundant observational evidence exists (e.g. [19]) for the

hypothesis that parasite feeding success is regulated by the number

of available feeding sites in certain species. Tyre et al [20] suggest

that limited feeding sites may explain density-dependent engorge-

ment success of the tick Aponomma hydrosauri on the sleepy lizard

Tiliqua rugosa. Figure 1 shows three examples of hosts where

parasite attachment is limited to specific body parts. The

photograph from Swei et al. [21] (Figure 1a) demonstrates the

restriction of western blacklegged ticks, Ixodes pacificus, to two scale-

free sites on the head of the western fence lizard, Sceloporus
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occidentalis. The photograph from Brinkerhoff et al. [22] (Figure 1b)

shows ticks attaching to the featherless areas of a gray catbird

(Dumetella carolinensis) and a hermit thrush (Catharus guttatus), around

the eyes and beak. The photograph from Svobodova et al. [23]

(Figure 1c) shows sandflies (Phlebotomus spp.) congregating on the

furless snout of the rock hyrax (Procavia capensis). Hawlena et al [24]

found a low variance in flea engorgement on rodents at high flea

density, implying parasite intraspecific competition for feeding site

acquisition. However, quantitative estimates of the effect of limited

feeding sites have not been made. Such conditions lead to a

complex functional response of host-vector mixing to host-vector

abundance, which must be modelled differently from traditional

epidemiological models.

After having defined our model, we will derive expressions for

the initial basic reproduction ratio (R0), which estimates the

average number of secondary infections in competent hosts

produced by a typical infected individual in a wholly susceptible

population [25]. The classical theory predicts that if R0.1, the

pathogen can invade and persist, but when R0,1 the pathogen

will die out. We examine the dependence of R0 on the relative

numbers of two different species of pathogen hosts. We ask under

what conditions of relative population sizes of both competent and

incompetent host species the disease would be expected to become

either enzootic or extinct. We then derive a specific implemen-

tation of this general model, and use the dynamic equations to

predict the relationship between R0 and the equilibrium preva-

lence.

Methods

We present two models. The first is based on a discontinuous

transition from feeding site saturation to excess feeding sites

(Simple Discontinuous Model). In this model, we assume that

vectors fill up feeding sites on the hosts whenever they are

available. In the second model, we relax this assumption and allow

feeding success probability to vary continuously with the number

of feeding sites available, making vector feeding success less likely

as more feeding sites become occupied (Vector Interference

Model).

We consider constant population sizes (competent hosts, H;

incompetent hosts, M; and vectors V), i.e. each individual that dies

is replaced by a new individual. We assume that vector population

size is not dependent on host population size. Although few

comprehensive reviews of this assumption exist [26], it is

supported by studies of specific species and is accepted by many

researchers because haematophagous arthropod reproduction

may be limited by the availability of breeding sites, rather than

by blood meals [26]. Preliminary investigations showed that our

results appear to be robust to relaxation of this assumption.

Regarding host population size, the detrimental effect of vector

Figure 1. Examples of ectoparasites restricted to limited
feeding sites on different species. Panel (a) shows western
blacklegged ticks, Ixodes pacificus (indicated with arrows), restricted
to two sites on the head of the western fence lizard, Sceloporus
occidentalis (from Swei et al. [21] Reproduced with the author’s
permission). Panel (b) shows ticks (indicated with arrows) restricted to
the featherless areas of a gray catbird Dumetella carolinensis, and a
hermit thrush Catharus guttatus (from Brinkerhoff et al. [22] Reproduced
with permission of the Ecological Society of America). Panel (c) shows
sandflies Phlebotomus spp. congregating on the furless snout of the
rock hyrax Procavia capensis (from Svobodova et al. [23] Courtesy of the
Centers for Disease Control and Prevention).
doi:10.1371/journal.pone.0036730.g001

Disease Dynamics with Limited Vector Feeding Sites

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36730



feeding on host fitness may not limit host reproduction [27,28].

For these reasons, we choose to consider both host and vector

populations as constant over time, ignoring any transient changes

in population size. By holding population sizes constant, we can

show that dilution/amplification can occur as the result of

biodiversity changes, independent of population size effects.

A further assumption is that a vector always finds a feeding site

on a host, if a site is available. Little data exist on vector mortality

while searching for hosts [29], but this may be a realistic

assumption in many systems. Spatial effects of non-uniformly

distributed individuals, non-overlapping populations, or spatially

limited searching are not considered.

We first analyse the system around the infection-free state in

order to derive expressions for R0 when the pathogen prevalence is

low. We then show that this can be extended to a dynamical model

without the assumption of infection rarity, and use this to predict

equilibrium prevalence.

Results

Simple Discontinuous Model
We consider that each host has a limited number of feeding

sites, which is on average, k. The probability of a host being fed

upon differs among species, since the two host types H and M have

a different average number of feeding sites available: kh and km

respectively. Therefore, from the perspective of the vector, there

are a total of N feeding sites available in the host population where:

N~HkhzMkm ð1Þ

Clearly, the system can operate in one of two modes: (a) where

there are insufficient feeding sites for all vector individuals, V.N,

and (b) where there are enough feeding sites for all vector

individuals, V,N. In mode (a) only some vector individuals feed,

and in mode (b), all vector individuals take a blood meal. Initially,

we take each of these cases separately, and deal independently

with these (a) saturated, and (b) unsaturated cases, so that the

model is discontinuous with respect to (V,N). Later, we relax this

assumption in the Vector Interference Model which uses a single

continuous equation for all (V,N). To determine R0 for this model,

reasonable parameter values were chosen, based on the assump-

tion of a large competent host and a smaller incompetent one, but

the qualitative predictions of the model apply in any case where

the number of feeding sites on each host type is different (e.g. hosts

of different sizes, thereby having different surface areas on which

vectors can feed). A description of all the symbols used in our

model is given in Table 1.

To derive the basic reproduction ratio R0, we calculate the

number of new infected hosts per initial infected host, over the

average infectivity time of that host in a fully susceptible host

population. However, in the model, we assume a time step of the

natural feeding cycle of the vector, and although it need not be

explicitly defined, it will be shorter for mosquitoes and sandflies, and

longer for ticks. We make no specific assumptions about the length

of the feeding cycle, although for the purpose of parameterisation,

we have chosen an arbitrary cycle length of one day. In calculating

the number of newly infected vectors per infected host, we consider

first the transmission from host to vector, and then from vector to

host. In the saturated case (a), all feeding sites on all hosts are

occupied and therefore each host is fed upon by on average kh

vectors. In the unsaturated feeding site case (b), the V vectors are

distributed among the N feeding sites. Each competent host has on

average kh feeding sites, and therefore on average, khV/N vectors. b
is the transmission rate, and suppose the host infectious lifespan is 1/

ch, where ch is the infected host removal rate by death or recovery.

We then have the following expressions (2) for the average number

of newly infected vectors (DVI) for each infected host (HI) over the

average host infectious lifespan.

DVI=HI~

b

ch

:kh if VwN

b

ch

:V

N
kh if VvN

8>>><
>>>:

ð2Þ

The expected number of new infected hosts per infected vector can

be similarly derived (4). In the saturated case, the probability of a

vector finding a host of any species to feed upon is Prfeeding = N/V,

and the probability of this being a competent host as opposed to an

incompetent one is PrH = Hkh/N. Therefore, the total probability of

a vector biting a competent host is the product of these two terms:

Hkh/V. Conversely, in the unsaturated case, the probability of

finding a feeding site is unity Prfeeding = 1, and therefore the

probability of biting a competent host is simply PrH = Hkh/N.

Prfeeding~
N

V

PrH~
Hkh

N

VwN að Þ

Prfeeding~1

PrH~
Hkh

N

VvN bð Þ

ð3Þ

Since we are considering the limiting case of the introduction of a

single infected host into a system with no infected vectors, we can

ignore the possibility that a susceptible host will be bitten by more

than one infected vector given the rarity of such an event. The

average number of new infected hosts (DHI) per infected vector (VI)

(4) is given in a similar way to Equation (2):

DHI=VI~

b

cv

:Hkh

V
if VwN

b

cv

:Hkh

N
if VvN

8>>><
>>>:

ð4Þ

Table 1. Parameters used in the simulations.

Parameter Meaning Value

b Probability of infection following contact 0.2

ch Clearance rate of host 0.4/day

cv Clearance rate of vector 0.5/day

kh Number of feeding sites on competent host 30

km Number of feeding sites on incompetent host 3

V Number of vectors 1000

Q Density dependent feeding interference e21

doi:10.1371/journal.pone.0036730.t001
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Here, cv is the vector removal rate. The basic reproduction ratio

R0 can be calculated using its definition as the number of new

cases per original case. The number of new infected hosts over the

lifetime of the original infected host (5) is the product of the terms

in (2) and (4).

R0~DHI=HI~
b2

chcv

kh
2

V

 !
H ifVwN að Þ

R0~DHI=HI~
b2

chcv

k2
hV

 !
H

HkhzMkmð Þ2
if VvN bð Þ

ð5Þ

This expression can be simplified by substituting:

Q~ max V ,Nf g ð6Þ

which yields:

R0~
b2

chcv

kh
2 HV

Q2
ð7Þ

The expression in (7) gives R0 for the general case of a system of

both competent and incompetent hosts. The expression represents

R0 as the number of newly infected hosts after a single cycle

involving two transmission steps: host to vector and vector to host.

This result is consistent with that obtained when R0 is derived as

the largest eigenvalue of the ‘‘next generation matrix’’ [30]. In this

case, we can derive the Jacobian matrices separately for the

appearance of new infections (F) and the loss of infective

individuals (V). R0 at the disease-free equilibrium is then given

by the largest eigenvalue of FV21. The Jacobian matrices F and V

at (VI,HI) = (0,0) are given by:

F~

0
b1kh

Q
V

b2kh

Q
H 0

0
BB@

1
CCA, V~

cH 0

0 cV

� �
ð8Þ

And the largest eigenvalue of FV21, and hence R0, is given by:

R0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

cH cV

k2
h

VH

Q2

s
ð9Þ

The square root that appears in Equation (9) is the result of the

different interpretation of generation time in this analysis.

Equation (9) expresses R0 as the number of new host infections

arising from a single host infection, after one generation of inter-

species transmission; i.e. host to vector. Our Equation (7) provides

a similar metric, but after one complete transmission cycle; host-

vector-host. We prefer the use of the expression arising from

Equation (7), without the square root, as it represents more

intuitively the processes taking place, and so we make use of this

expression in the analysis of equilibrium prevalence. Clearly,

choosing one or other does not affect the location of the

bifurcation where R0 = !R0 = 1.

Before considering the implications of this general system, we

consider the case of a single (competent) host species H and a

vector V. Without incompetent hosts (M = 0), the expression

reduces to:

R0~
b2

chcv

kh
2

V

 !
H if VwN að Þ

R0~
b2

chcv

V

 !
1

H
if VvN bð Þ

ð10Þ

The expressions in (10) yield a surprising result: R0 is

proportional to H in the low H regime, but proportional to 1/H

at high H. At the boundary V = N the gradient of R0 with respect to

H changes from positive to negative, representing a fundamental

shift in the response of the disease system to additional host

individuals. Equation (10) leads us to expect the functional form

shown in Figure 2.

Examination of Equation (1) shows that the maximum R0

occurs at ĤH~V=kh, when there are exactly enough feeding sites

for all the vector individuals. The non-monotonic dependence of

R0 on H could have critical importance for the control of disease

via the manipulation of host species populations. As long as

HvĤH, any reduction in H will lead to a reduction in R0 and

therefore potentially to a reduction in the disease prevalence. In

epidemiological systems, attack rates are proportional to R0 and

equilibrium prevalence is positively correlated with R0, which we

confirm for our system in a later section. However, if HwĤH,
management strategies that attempt to reduce prevalence by

reducing host numbers would have the undesired effect of

increasing R0 and therefore are likely to increase prevalence.

The unrealistic discontinuity of the gradient at ĤHresults from the

simplifications present in this model, which we address later with

the Vector Interference Model.

We now turn to the two host model, where M.0. From

Equation (1), the boundary Hb between the two regimes, V.N and

V,N is given by:

Figure 2. The response of R0 to varying population size of host
individuals (H) in a single-host system. Note that R0 approaches
zero for very small or very large values of H. The graph shows a
discontinuity at the maximum level of R0 at ĤH~V=kh:
doi:10.1371/journal.pone.0036730.g002
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Hb~
1

kh

V{Mkmð Þ ð11Þ

Since (5a) is independent of M, the dependence of R0 on H in

the saturated region remains identical to the single host species

scenario. This is to be expected, since biting of competent hosts by

vectors is at its maximum. There is no ‘‘waste’’ of bites that might

otherwise transmit the pathogen, no matter how many incompe-

tent hosts are present, because the feeding sites are saturated –

every host is bitten by its full complement of vectors. We see this

because N cancels when multiplying Prfeeding and PrH in Equation

(3). In the unsaturated regime, V,N, the expression for R0(H,M) is

more complex (5b), and the functional form is determined by the

relative values of kh and km when M is fixed and H varied. This

expression is, in general, non-monotonic, and may show a

maximum R0 for some value of H.Hb in the unsaturated V,N

regime. If the maximum of Equation (5b) occurs for H,Hb, then

R0 is monotonically declining in the V,N regime. In order to

determine which of these cases exists for particular values of

parameters, we take the derivative of Equation (5b) with respect to

H. The number of hosts H for which Equation (5b) is at a

maximum can be shown to be:

H~
km

kh

M ð12Þ

From (11) and (12), the condition for which this value of H gives

the largest value of R0, and therefore ĤH~H, is:

MkmwV=2 ð13Þ

That is, if the incompetent host can provide feeding sites for at

least half the vectors, then the maximum will occur in the

unsaturated regime V,N. If condition (13) is not met, the

maximum R0 will occur at ĤH~Hb: In summary:

ĤH~

1

kh

V{Mkmð Þ if MkmvV=2

km

kh

M otherwise

8>>><
>>>:

ð14Þ

If there was no saturation at all, and ĤH was determined solely by

Mkm/kh, then in the absence of incompetent hosts, ĤH M~0ð Þ~0;
i.e. there would be only monotonic behaviour of R0 in the single

host system. The contours of constant R0 are shown in Figure 3. It

is instructive to note that the single host case (when M = 0) can be

inspected in Figure 3 by examining the behaviour of R0 along the

vertical y-axis. Here the non-monotonic dependence of R0 on H

(Figure 2) can be seen as a specific case of the general behaviour in

H-M space. The non-monotonic behaviour of R0 (i.e. the presence

of a maximum of R0 for M = 0) exists because of the discontinuity

at V = N, which causes the locus of maximum R0 (thick line in

Figure 3) to intersect the H axis at H.0. In the absence of the

limiting effect of feeding sites, this locus would pass through M = 0,

H = 0, and the non-monotonic effect seen in Figure 2 would not be

observed.

Non-monotonic behaviour does exist at values of M.0, and

even in the unsaturated domain of H-M space, as shown in

Figure 4. Increasing the number of incompetent hosts may cross

the locus of maximum R0. In such a case, reducing host population

numbers may either increase R0 (Figure 4a) or decrease it

(Figure 4b), depending on the (typically unknown) number of

incompetent hosts present. In contrast to the example with a single

host species, in this case the non-monotonic response of R0(H) is

not the result of a saturated domain (V.N).

Dynamic Model
The model described above in Equations 1–12 is a general

abstract formulation for this form of vector-host system close to the

infection-free state. We now show that the predictions of R0 given

in the previous section are preserved in a fully specified dynamical

model. We use this to confirm the earlier prediction of the location

of the transition between pathogen extinction (R0,1) and stable

enzoonosis (R0.1), and to predict the equilibrium prevalence in

the latter case.

We consider a basic SI compartment model [31], where hosts

and vectors may be either Susceptible or Infected. Vectors do not

recover from infection, but since every infected vector is eventually

replaced by a susceptible vector individual (to satisfy the

assumption of constant population size), the dynamic equations

can be formulated as follows:

_VVI~
bkh

Q
HI VS{cV VI

_HHI~
bkh

Q
HSVI{cH HI

ð15Þ

where _VVI and _HHI are the derivatives of VI and HI with respect to

time. Q is the total number of vector bites: either Q = V or Q = N

(where N = Hkh+Mkm) depending on whether the system is in the

saturated or unsaturated regime (Equation 6). That is:

Q~ max V ,Nf g

Since we choose to keep vector and host populations constant,

the numbers of susceptible individuals are given by:

VS~V{VI

HS~H{HI

Which gives:

_VVI~
bkh

Q
HI V{VIð Þ{cV VI

_HHI~
bkh

Q
H{HIð ÞVI{cH HI

ð16Þ

Returning to Equation (16), we solve the differential equations for
_VVI~ _HHI~0, and find the fixed points (VI*,HI*), which represent

an equilibrium solution. At equilibrium, P* = HI*/H represents

the asymptotic disease prevalence – the proportion of hosts

infected with the pathogen. Two solutions exist, (VI*,HI*) = (0,0),

i.e. pathogen extinction, and a non-trivial enzootic solution:

Disease Dynamics with Limited Vector Feeding Sites
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Figure 3. Contours of R0 for varying population sizes of competent hosts (H) and incompetent hosts (M). The heavy line indicates the
locus of maximum R0 for any given M. Note that for a particular value of M (e.g. the dashed line) and low H, reducing the number of competent hosts
has the effect of reducing R0. However, at higher populations of competent hosts, reducing the number of competent hosts will actually increase R0.
Parameters used were as shown in Table 1.
doi:10.1371/journal.pone.0036730.g003

Figure 4. Non-monotonic response of R0 at two different levels of M. (a) At low M, the level of H (dashed line) may be above that which gives
the maximum R0. Therefore, decreasing H increases R0. (b) At higher M, when H is at or below the level that gives maximum R0, decreasing H
decreases R0.
doi:10.1371/journal.pone.0036730.g004
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H�I ~
b2k2

hVH{cV cH Q2

bkh bkhVzcH Qð Þ ð17Þ

The transition from R0,1 to R0.1 represents a transcritical

bifurcation where the fixed point at (0,0) loses stability, and the

enzootic fixed point becomes stable. The bifurcation can be

located by examining the stability of the (0,0) fixed point, by

linearising the system at the disease free equilibrium [32]. We

calculate the Jacobian matrix of the system shown in Equation (16)

for (VI*,HI*) = (0,0).

L _VVI

LVI

L _VVI

LHI

L _HHI

LVI

L _HHI

LHI

0
BBB@

1
CCCA~

{
bkh

Q
HI{cV

bkh

Q
V{VIð Þ

bkh

Q
H{HIð Þ {

bkh

Q
VI{cH

0
BB@

1
CCA~A ð18Þ

given VI = 0, HI = 0

A~

{cV

bkh

Q
V

bkh

Q
H {cH

0
BB@

1
CCA ð19Þ

Since the trace of this matrix, as shown by Equation (20), is always

negative, the stability of the fixed point is determined by the

determinant |A|.

t~{ cV zcHð Þ ð20Þ

If |A|.0, the fixed point (VI*,HI*) = (0,0) is stable and the

pathogen becomes extinct. If |A|,0, then (0,0) is unstable and

the enzootic solution shown in Equation (17) becomes stable. The

transcritical bifurcation occurs at |A| = 0, hence:

Aj j~cV cH{
bkh

Q

� �2

VH~0 ð21Þ

and solving for H, we find an expression for HR0 = 1 which

represents the locus of R0 = 1 for varying M. Recall that Q = V or

Q = N depending on whether the system is in the saturated or

unsaturated regime, so we obtain two alternative expressions for

HR0 = 1

HR0~1~
cV cHV

b2kh
2

if VwN að Þ ð22Þ

HR0~1~
b2Vkh{2MkmcV cH+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4V2k2

h{4b2VkhMkmcV cH

q
2cV cH kh

if VvN bð Þ

When R0 = 1, i.e. at the transcritical bifurcation, Equation (7)

reduces to Equation (21) both for V.N (Q = V) and for V,N

(Q = N). This is confirmation that the expression for R0 derived in

(7) is a reliable predictor of the ability of the pathogen to invade a

disease-free system and become enzootic.

We can illustrate the dependence of equilibrium prevalence on

R0 in the region of R0.1, by numerical evaluation of Equations (7)

and (17), given that the equilibrium prevalence P* = HI*/H

(Figure 5). This corroborates our previous claim that prevalence

increases with increasing R0. Equilibrium prevalence follows a

similar form to the response of R0 across H and M parameter

space, as can be seen in Figure 6a,b. Although for fixed H

equilibrium prevalence declines with increasing M (Figure 6c), for

fixed M prevalence shows a peak at some value of H, with a

positive slope with respect to H at low values of H, but a negative

slope at high values of H (Figure 6d); in a similar way to the

response of R0 shown in Figure 4.

Vector Interference Model
Our characterisation of the system with a discontinuity at V = N

is convenient, but probably unrealistic. Now we relax the

assumption of vectors simply filling up available feeding sites on

hosts. In reality, vectors will compete for feeding sites, and the

probability of successful feeding will be reduced at higher vector

densities through intraspecific competition [24]. In addition, host

grooming and anti-parasite behaviour increases at higher vector

loads [15,33,34], further decreasing the probability of an

individual vector receiving a blood meal. We now incorporate a

simplified representation of these effects into our model, and show

that the essence of the dynamics is unchanged.

We assume that the probability of a vector receiving a blood

meal is inversely related to the number of vectors per feeding site,

according to the following relationship:

Pr feeding~ e{wV=N ð23Þ

where Q represents a measure of intraspecific feeding interference.

Recalling from Equation (2) that the number of vectors attempting

to feed from a host is Vkh/N, the number of vectors successfully

feeding from a host is:

Figure 5. Equilibrium prevalence P* = HI*/H plotted against R0,
as calculated for an arbitrary value of H = 32.
doi:10.1371/journal.pone.0036730.g005
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Vkh

N
e{wV=N ð24Þ

It is convenient to set Q so that the maximum number of successful

blood meals will be equal to kh, the number of feeding sites

available. The maximum number of successful blood meals occurs

when the number of vectors is given by

d

dV

Vkh

N
e{wV=N

� �
~0

[V~
N

w

ð25Þ

Since we have set the maximum number of successful blood

meals to be kh, then:

N=wkh

N
e{wN=w=N ~

1

w
kh e{1 ~kh ð26Þ

Therefore, we set Q= e21.

We rewrite Equation (7) as follows, for all V, remembering that

at least two successful blood meals are required (one from host to

vector and the other from vector to host) to transmit the pathogen,

hence QR2 Q:

R0~
b2

chcv

k2
hV

 !
H

HkhzMkmð Þ2
e{2wV= HkhzMkmð Þ ð27Þ

The functional form of the response of R0 to H in the single host

model is shown in Figure 7; the discontinuity at ĤH seen in Figure 2

has been replaced by a smooth transition from saturation to

feeding site availability.

Figure 6. The response of equilibrium prevalence to varying H and M. Panel (a) shows contour lines of equal R0 for varying H and M, as in
Figure 3, and Panel (b) shows contour lines of equal equilibrium prevalence across the same parameter space. Dashed lines are shown for H = 32 and
M = 250; Panel (c) shows the response of equilibrium prevalence as M is varied for H = 32 (dashed line indicates M = 250), and (d) shows equilibrium
prevalence as H is varied for M = 250 (dashed line indicates H = 32).
doi:10.1371/journal.pone.0036730.g006
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We find the locus of maximum R0 as before (Equation 14) by

taking the derivative with respect to H, and the positive solution is

given by:

ĤH~
wVz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wVð Þ2z Mkmð Þ2

q
kh

ð28Þ

The results are shown in Figure 8, which gives the contours of

R0 on axes of varying population sizes of competent (H) and

incompetent (M) hosts. Comparing this with our original result for

the one-host system, the peak of R0 for M = 0 occurs at a value of

H lower by a factor of 2 Q than the value predicted by the

discontinuous model. For �w~e{1:

ĤH~
2wV

kh

&0:736
V

kh

ð29Þ

In H-M space, the vector interference model shows a similar

form (Figure 8) to that of Figure 3, but without the saturated

region at low N being demarcated by a discontinuity. The locus of

maximum R0 does not pass through the origin, despite the absence

of a discontinuous saturated region.

Discussion

We have examined a model showing dilution or amplification

effects when the number of feeding sites on the host animals is

limited. Our analysis shows how the presence of additional,

reservoir-incompetent, host animals can affect the basic repro-

duction ratio R0 both by dilution and amplification. Surprisingly,

R0 varies non-monotonically under a wide range of conditions.

First, we considered a system with only a single host, and no

incompetent alternatives for the vectors to feed upon. In this

system, R0 peaks at the boundary between saturated feeding sites

(more vectors than sites) and excess feeding sites (more sites than

vectors). This has important and counter-intuitive applications for

the popular, but not always successful, pest control methods of

reducing the number of disease host animals (e.g. [35]). This

strategy can reduce R0 only if the initial host population is below

this boundary level. However, if the number of host animals is

higher than this boundary level, reducing their numbers is likely to

Figure 7. The response of R0 to varying population of host
animals (H) in a single host system, using the vector-
interference model. Compare this response to the discontinuous
model in Figure 2.
doi:10.1371/journal.pone.0036730.g007

Figure 8. Predicted R0 in the model with intraspecific feeding interference. Note that although there is no fully saturated region as there is
in Figure 3, the locus of maximum R0 (heavy line) does not pass through the origin.
doi:10.1371/journal.pone.0036730.g008
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increase the risk of disease invasion and outbreak. While this result

may at first seem counterintuitive, the explanation is straightfor-

ward; at high host population levels, vector loads are small, and so

an infected individual will pass on the infection only to a small

number of vectors. If feeding sites are saturated, the same infected

individual will pass the infection to the maximum possible number

of vectors each feeding session. This difference in the number of

vectors infected by a host will be translated directly into a change

in R0.

If such a non-monotonic response of R0 to host numbers exists,

it will be a significant challenge to address such an issue in the

field. If it is impractical to estimate ĤH accurately, it is not possible

to know whether reducing host numbers is an effective strategy for

disease control. An indication of whether or not HwĤH may be

obtained in certain circumstances by estimating the occupancy of

feeding sites on hosts; if the feeding sites on observed host animals

are full, it may be reasonable to assume that V,Hkh, or V,Hkh/2

Q and therefore that HvĤH:
Turning to a two-host system, we show that M-H parameter

space is divided into the same two regions of saturated and

unsaturated feeding sites. Within the saturated region, R0 is

independent of the number of incompetent hosts and neither

dilution nor amplification would be expected. The locus of the

maximum R0 tends to the origin, but is deflected to higher H

values by the saturated region, confirming that if feeding sites were

not limiting, we would observe a monotonic response of R0 in the

one host system. However, in the two host system, the non-

monotonic response of R0 is observed also in regions of parameter

space far from the saturated region (Figure 3). This has two

implications. Firstly, similar to the one host system, reducing the

number of competent hosts will under certain circumstances

increase R0. Secondly, altering the number of incompetent hosts

could cross the maximum R0 locus and cause a reversal of the

effect of reducing host numbers. In other words, if at high levels of

incompetent hosts (M), reducing the population of competent hosts

(H) is an effective control strategy, at lower levels of incompetents,

reducing competent hosts may increase disease prevalence.

These two opposite results of reducing H exist because the slope

of the R0 contours with respect to M can be either positive or

negative (the contours ‘‘turn back’’ towards the origin for small H).

This effect is seen also in other models of disease dynamics without

the assumption of limited feeding sites. For instance, the model of

[1] predicts R0 from equations for the population dynamics of host

and vector species. The R0 isoclines he derives for the density-

dependent transmission model show a concave response of R0(H),

but this too is modified by the presence of a second species. The

implications of this are that other systems also may show this

reversal of the response to control efforts.

Our model is specific in the consideration of the limiting nature

of vector feeding sites. Previous works have concentrated on

population dynamic effects (e.g. [36]), and in fact specifically

exclude them to show that both dilution and amplification can

exist without dynamic changes in population sizes – we compare

only stable populations with a different ratio of competent to

incompetent hosts. A further simplification of our model is that we

assume perfect vector searching for feeding sites, although our

vector interference model introduces an element of probability of

feeding failure. In addition, host grooming may in practice

produce quite different results from the case where feeding sites

are physically limited, as partial blood meals may still be sufficient

for disease transmission. Like many mathematical models in

ecology, quantitative results are dependent on accurate estimation

of model parameters. However, we take a different approach,

demonstrating the qualitative and general characteristics of such a

system [37]. Despite this, our parameter estimates, appropriate for

a system involving a medium sized competent host and a smaller

incompetent one, indicate that the observed non-monotonic

behaviour of R0 is likely to be present in real world systems.

The role of the dilution effect in disease systems has been the

subject of some controversy. Keesing et al [38] reviewed the

various mechanisms by which biodiversity could affect disease

prevalence both positively and negatively. It is clear from their

analysis is that no one treatment of all multihost disease systems

can determine what the effect of increased biodiversity will be.

Our model gives a specific demonstration of such a conclusion,

since the particular biting regime that we describe does not

generate results consistent with more general syntheses of multi-

host systems (e.g. [1]). Using the terminology of [38], our model

shows a form of ‘‘encounter reduction’’, i.e. reduced biting with

increased numbers, although the effect is strongly non-linear.

Other authors have examined the effect of incompetent hosts on

a vector-transmitted disease. Dobson [1] derived expressions for

R0 in a general system of multiple species capable of inter- and

intra-specific infection. He concluded that in a density-dependent

case, host diversity will always lead to increased values of R0, but

frequency-dependent transmission will yield contours of R0 similar

to those that we have observed. Dobson [1] also derived

expressions for the force of infection, and argued that control

efforts should be directed against the species for which this

expression is significantly larger. In our model, the incompetent

host has a force of infection of zero but despite that, the presence

of this species can determine whether or not controlling the

competent host is an effective strategy. Gilbert et al [39] examined

models of louping ill virus transmission in a three species system

(grouse-hare-deer) with tick borne transmission. Their system

emphasised the effect of host numbers (particularly deer) on tick

populations, and they conclude that virus prevalence will increase

with increasing deer numbers, but drop as the number of deer

continue to increase and the dilution effect becomes dominant.

The modelling of the rescue effect observed by adding deer to a

hare-grouse system incapable of maintaining the virus could

benefit from an examination of feeding site saturation, since sites

are likely to become saturated on the hare and grouse, but less

likely to be limiting on the deer.

The results we have shown here demonstrate the importance of

incorporating specific details of disease ecology into predictive

models. Vector transmission is far from the approximation of mass

action [40] and predictions made on the basis of more simplistic

models may be misleading. In particular, we predict a potential

detrimental effect of naı̈ve host-control techniques at certain levels

of host abundance. Specific predictions of when host-control will

produce the desired reductions in disease risk, and validation of

those predictions, will be major challenges.
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