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INTRODUCTION

The demand for organ transplants continues to grow, 
with the number of active patients on the waiting list 
for a solid organ transplant in the United States reaching 
80,000 in 2015 [1]. In addition to the increasing demand for 
transplants, the disparity between the number of patients 
awaiting organ transplantation and the number of avail-
able donated organs has dramatically widened, with organ 
shortage causing numerous patient deaths and increased 
social burden [2,3]. Tissue engineering technologies com-
bining chemicals, biocompatible materials, and cells have 

made continuing progress to address this issue. However, 
the most common challenge for the clinical translation of 
three-dimensional (3D) tissue-engineered constructs is their 
requirement for vascularization. In general, living cells must 
be within 200 μm of a blood supply to acquire sufficient 
oxygen and nutrients and to remove waste, ensuring long-
term survival and functionality [4-6]. Due to the oxygen 
diffusion limit from the periphery, most 3D constructs at 
a physiologically relevant scale require vascularization in 
order to deliver oxygen and nutrients throughout the engi-
neered tissue. Therefore, achieving adequate vascularization 
is the main therapeutic goal when designing 3D constructs 
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in vitro to prevent hypoxia and cellular necrosis. There have 
been many efforts to create vascular networks or promote 
vascularization within 3D engineered tissue constructs [7]. 
Robust, efficient, and reproducible vascularization strate-
gies could be developed based on the physiological process 
in vivo, with successful translation depending on the ability 
of the vascularization strategies to replicate in vivo phe-
nomena. Therefore, it is crucial to thoroughly understand 
vascular network development in vivo. This review will 
highlight our current understanding of the physiological 
development of human vasculature and the most promising 
vascularization strategies in the field of tissue engineering.

PHYSIOLOGICAL DEVELOPMENT  
OF HUMAN VASCULATURE

The following two mechanisms are generally involved in 
the generation of a vasculature in vivo: vasculogenesis and 
angiogenesis [8]. Vasculogenesis is the process that initi-
ates blood vessel formation, primarily at the embryo stage. 
Endothelial precursor cells (EPCs) (“angioblasts” in embryos 
and “endothelial progenitor cells” in adults) migrate, differ-
entiate, and assemble to form a primary vascular labyrinth 
[9]. EPCs migrate in response to chemo-attractants such as 
vascular endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF), and placental growth factor [10,11]. 
Further blood vessel development occurs by extending 
the pre-existing vascular network through the process of 
sprouting or intussusception, also known as angiogenesis 
[12,13]. During sprouting, the tip cells of existing blood 
vessels are extended by multiple filopodia guided by angio-
genic stimuli such as VEGF, FGF, and EGF via Notch signal-
ing; thus, the vascular network is extended [12]. Growth 
factor gradients guide endothelial cell (EC) migration by 
signaling via receptors on the filopodia such as VEGFR-2. 
The sprouts can extend to neighboring microvessels and 
integrate with them via a process called inosculation. Vas-
cular networks can be further extended by splitting or 
intussusception, in which the intussusceptive pillar is ex-
tended by duplicating existing vessels [14]. The recruitment 
of pericytes and vascular smooth muscle cells by platelet-
derived growth factor (PDGF)-BB and angiopoietin-1 (ANG-
1), and the generation of an extracellular matrix (ECM) 
mature and stabilize the nascent vasculature and regulate 
vessel function (arteriogenesis) [15,16]. In addition to this 
soluble signaling pathway, angiogenesis is also highly influ-
enced and regulated by cell-ECM and cell-cell interactions. 
The ECM provides guidance cues for the proliferation, 
migration, and differentiation of mural cells and ECs. Cell-
ECM and cell-cell interactions have been reviewed in detail 
elsewhere [17-19]. The arterial or venous fate of ECs is regu-

lated via specific molecular identities; for instance, activa-
tion of the Notch signaling pathway by VEGF binding to its 
receptors, such as Flk1 and neuropilin 1, promotes arterial 
specification, whereas repressing Notch signaling through 
the orphan receptor COUP-TFII promotes venous specifica-
tion [20,21]. The regulation of vessel specialization has been 
reviewed in depth elsewhere [22]. Considering the physi-
ological process of vascular network generation in vivo, we 
will highlight state-of-the-art approaches to vascularization 
in tissue engineering.

VASCULARIZATION APPROACHES FOR 
TISSUE-ENGINEERED 3D CONSTRUCTS

In thin or avascular tissues such as skin and cartilage, 
implanted cells can acquire oxygen and nutrients through 
diffusion to maintain their survival [23]; however, slow or 
insufficient vascularization has remained a critical chal-
lenge in thicker constructs with a physiologically relevant 
size. As host vessel ingrowth proceeds slowly, at a rate of 
less than several tenths of a micrometer per day, compli-
cations can arise including avascular necrosis in the core 
region and eventual failure to engraft; therefore, achieving 
a well-distributed and interconnected 3D vascular network 
is necessary to maintain cell viability in tissue-engineered 
constructs at a clinically-relevant size [24-26]. The cur-
rent strategies for achieving functional vascularization in 
3D tissue-engineered constructs can be categorized as 
cell-based, angiogenic factor-based, or scaffold-based ap-
proaches. Scaffold-based approaches include the construc-
tion of tissues with decellularized grafts, sacrificial scaf-
folds, spatial micropatterning, biomimetic scaffolds using 
vascular corrosion casting, and 3D printing techniques. 

1) Cell-based vascularization approaches 

① Vascularization by vascular cell co-cultures
Many early studies have shown that co-culturing cells 

of endothelial origin can create a vascular network [27-29]; 
consequently, this technique has been used for a long time 
as a starting point for vascularization in a variety of tissues. 
Co-culturing with ECs in vitro has enabled the formation 
of stable vascular network that maintained its stability and 
anastomosed with host vasculature when implanted in vivo 
[24,30]. Fibroblasts, which provide structural support to 
blood vessels by synthesizing ECM proteins, were initially 
used in this co-culturing system. ECs co-cultured with 
fibroblasts in a collagen gel became spindle shaped and 
reorganized into capillary-like structures in 3 to 5 days [31]. 
Another study co-cultivated human umbilical vein endothe-
lial cells (HUVECs) with fibroblasts to engineer well-formed 
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capillaries in a fibrin gel which anastomosed with the host 
vasculature within 4 to 5 days of implantation in immu-
nodeficient mice [30]. Several different cells of endothelial 
origin have also been used in the co-culturing system. The 
ability of endothelial progenitor cells, outgrowth ECs (also 
termed endothelial colony-forming cells), and outgrowth 
endothelial progenitor cells to form capillary-like structures 
have been investigated and were found to accelerate vas-
culature formation [32-38]. In the co-cultivation system, 
cells which provide vascular wall structures, including fi-
broblasts, keratinocytes, pericytes, and vascular smooth 
muscle cells, have been used to enhance EC differentiation 
and promote vascular network formation [39-42]. Recently, 
mesenchymal stem cells (MSCs), which are well known po-
tent producers of VEGF-A [43], have been shown to improve 
vessel formation in 2D and 3D in vitro culture systems as 
well as when implanted in vivo [44]. When co-cultured with 
MSCs, ECs exhibited increased endothelial specific ANG-1 
expression and decreased ANG-2 expression, which mediate 
vascular maturation via EC stabilization by increasing the 
binding of ANG-1 to the Tie 2 receptor. Consequently, co-
culturing MSCs and ECs increased the density of mature 
vasculature in vitro and in vivo [45,46]. Despite the promis-
ing results of co-culture techniques and the resulting de 
novo vascularization, the inability to control the geometry 
of the vascular network is a major limitation for achieving 
3D vascularization in the engineered organ. Furthermore, 
culturing cells in vitro is expensive and time consuming.

② Cell sheet vascularization
Another promising technology is cell sheet engineering 

(CSE), developed by Yang et al. [47], which allows prevas-
cularized networks to be fabricated without the need of a 
scaffold. The basic principle of CSE is a monolayer cell cul-
ture on a temperature-responsive culture dish coated with 
poly(N-isopropylacrylamide) (PIPAAm) [48] which promotes 
the attachment and proliferation of cells at 37°C. Lowering 
the temperature to <32°C causes the PIPAAm to become 
highly hydrophilic, making the surface anti-adhesive due to 
the rapid hydration and swelling of PIPAAm. Consequently, 
the monolayer of cultivated cells detaches from the surface 

as a confluent cell sheet with intact cell-to-cell junctions 
and deposited ECM (Fig. 1) [49]. 

ECs in a single layer cell sheet are known to sponta-
neously form a vascular network. Co-cultivating tissue-
specific cells and ECs as a confluent cell sheet with multiple 
layers generates a thicker prevascularized tissue construct 
[50-52]. Sekine et al. [53] created triple-layer cardiac cell 
sheets produced from neonatal rat cardiac cells cocultured 
with ECs overlaid on the vascular bed. After 3 days of cul-
ture in a bioreactor with added FGF-2, the co-cultured con-
structs were thoroughly perfused and many tubular blood 
vessels had been formed [54]. Thicker tissue constructs 
have been successfully made by stacking twelve cell sheets, 
with the preformed vascular network effectively connecting 
to host capillaries and surviving after transplantation [55]. 
Overall, CSE is a very promising approach for fabricating 
thin vascularized tissue; however, it has limitations when 
constructing viable thick tissue and fabricating well-orga-
nized vascular networks suitable for organs at a clinically 
translatable scale. 

③ Promoting vascularization by progressive layering
Despite recent advances in engineering transplantable 

tissues, reconstructing highly vascularized volumetric tis-
sues and organs on a large scale (>mm to cm) remains 
challenging. To address this issue, the progressive layer-
ing technique has been developed. Kim et al. [56] injected 
muscle cells into the tibialis anterior muscle defect site ev-
ery week for 4 weeks in a progressive manner. Large-scale 
(>mm) muscle tissue was successfully reconstructed and 
host vasculature and neurons were integrated well. More-
over, the technique enhanced muscle volume and improved 
functional recovery compared with single cell injections of 
the same volume. The idea of ‘multiple and progressive lay-
ering’ has also been applied to engineered cell sheets and 
has facilitated the construction of thicker 3D tissues. Shi-
mizu et al. [57] transplanted three-layer cell sheets derived 
from neonatal rat cardiomyocytes into the dorsum of nude 
rats. The repeated transplantation of triple-layer sheets at 
the same site resulted in well-synchronized grafts and ~1 
mm thick cardiac tissue with a well-organized microvascu-

37 20
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Fig. 1. Generating confluent 
cell sheets using temperature-
responsive culture dishes.
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lar network, permitting whole myocardial survival without 
necrosis. In vivo vascularization with ‘multiple and progres-
sive layering’ utilizes the natural host regeneration process 
to its advantage; however, multiple cell injections or poly-
surgery is time consuming and requires multiple patient 
interventions which would not be clinically acceptable. 

2) Angiogenesis with growth factors 

① Angiogenic effect of growth factors
Functionalized biomaterial matrices or scaffolds with an-

giogenic growth factors have been widely used to promote 
vascularization. Up to twenty angiogenic growth factors 
such as VEGF, PDGF-BB, bFGF, hepatocyte growth factor 
(HGF), insulin like growth factor (IGF), and transforming 
growth factor-β (TGF-β) have been widely used to promote 
vascularization in a variety of ECM proteins and disease 
models [58-60]. 

All key angiogenic growth factors (VEGF, FGF-2, IGF, 
HGF, PDGF-BB, and TGF-β1) have the ability to bind spe-
cific sites in the ECM; once bound, their release kinetics 
are dependent on their binding affinity and the action of 
proteases which cleave the ECM itself or the ECM-binding 
domain of the growth factors [61]. It has been demon-
strated that insufficient exposure to angiogenic growth 
factors inhibits appropriate angiogenesis [62-64]. Growth 
factor overexpression may also lead to immature and un-
stable vessels by inhibiting the function of vascular smooth 
muscle cells and pericytes, and even vascular tumors 
[65,66]. Consequently, for therapeutic purposes the dose 
and duration of growth factor release must be carefully 
controlled. Tremendous efforts have been made to enable 
the controlled release of growth factors from different bio-
degradable materials. Heparin or heparan sulfate-mimetic 
molecules can be covalently crosslinked with the collagen 
type I scaffold via 1-ethyl-3-dimethyl aminopropyl carbodi-
imide (EDC) and N-hydroxysuccinimide (NHS) to control 
the release of heparin-binding growth factors, resulting in 
enhanced angiogenesis [67]. In addition, combining VEGF 
and FGF with a heparin-immobilized scaffold increased 
angiogenesis compared with a single growth factor [68,69]. 
Biomaterial scaffolds have also been functionalized by sur-
face modifications [70] or incorporating the growth factor- 
or heparin-binding ECM domain [61,71,72]. For example, a 
fibrin matrix covalently crosslinked with multifunctional 
recombinant fibronectin (FN) fragments including both its 
12th and 14th type III repeats (FN III12-14) and FN III9-10 
allowed multiple growth factors (VEGF-A165, PDGF-BB, 
and BMP-2) to be sequestered and enhanced the angio-
genic effects of the growth factors in a mouse model of 
chronic wounds [61]. Angiogenic growth factors themselves 

can also be modified to enhance their binding affinity to 
biomaterials instead of engineering the biomaterials to 
increase their affinity with growth factors [73-76]. Sacchi 
et al. [74] showed that fibrin hydrogels covalently cross-
linked with VEGF164 fused to a sequence derived from α2-
plasmin inhibitor (α2-PI1-8) could release growth factors 
by enzymatic cleavage. This allowed the VEGF dose and 
delivery duration to be precisely controlled by the α2-PI1-8-
fused variant of the fibrinolysis inhibitor aprotinin, which 
efficiently induced stable and functional angiogenesis. Mit-
termayr et al. [75] used the specific binding technology TG-
hook and showed that PDGF-AB modified with a TG-hook 
enables growth factors to be retained within the fibrin 
matrix, subsequently increasing functional angiogenesis. 
Another approach for increasing the binding affinity of 
growth factors to biomaterials is engineering ‘super-affinity’ 
growth factors [77]. A domain in placenta growth factor-2 
(PIGF-2123-144) which has an exceptionally strong binding af-
finity to ECM proteins was fused to VEGF-A and PDGF-BB. 
These super-affinity growth factors significantly increased 
angiogenesis in vivo at low doses compared to their wild-
type forms. A variety of strategies have been developed to 
control the local delivery of angiogenic growth factors in 
order to facilitate and promote angiogenesis; however, their 
inherent inability to control the geometric architecture of 
vascular network has limited their applications in 3D tissue 
construction.

② Bioactive motif immobilization to promote angiogenesis
Incorporating short bioactive peptides onto 3D hydro-

gels for tissue engineering has been an effective method 
for enhancing vascularization [78]. Recent studies have 
demonstrated the effects of the immobilized bioactive pep-
tides on vascularization. The binding of integrin to short 
peptide adhesive sequences derived from ECM proteins 
such as collagen (Arg-Gly-Asp [RGD]), laminin (e.g., Tyr-Ile-
Gly-Ser-Arg [YIGSR] and Ser-Ile-Lys-Val-Ala-Val [SIKVAV]), 
and FN (e.g., RGD and Arg-Glu-Asp-Val [REDV]) enhanced 
EC attachment and migration, and thus angiogenesis [79-
83]. Short peptide-functionalized hydrogels exhibit BM-
like activities, such as directing cell attachment, spreading, 
invading, and differentiation. Hydrogel bioactivation by in-
cluding functional RGD and REDV sequences in an elastin-
Like recombinamer-based hydrogel enhanced EC adhesion 
and improved in vivo angiogenic potential at the earliest 
time point via general cell adhesion (RGD) and specific en-
dothelial cell adhesion (REDV) [84]. 

Despite the promise of growth factor- or bioactive 
peptide-guided vascular network formation, this approach 
is limited by the lack of ability to control network geometry 
which inhibits the generation of a spatially-controllable 3D 
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vascular network. Furthermore, the uncontrolled delivery 
of angiogenic growth factors inhibits ECs from forming 
mature vasculature, leading to a leaky and disorganized 
vascular network. For this reason, tissue engineering has 
attempted to fabricate precisely-controllable, mature 3D 
vasculature using scaffolds; some promising techniques are 
described below. 

3) Scaffold-based approaches

① Decellularized tissues
The decellularization of a vascularized organ or tissue 

to make a 3D structure of a vascular network has been ex-
tensively investigated [85,86]. Naturally-derived 3D vascu-
lature can be obtained by decellularizing native tissues or 
whole organs (Fig. 2) to form an acellular matrix, which of-
ten preserves tissue-specific vascular structures, cell-matrix 
interaction, and functional molecules that regulate cellular 
functions, phenotype, and signaling [87]. This approach 
can eliminate the need to design 3D vascular networks in 
vitro and can be followed by repopulation with desirable 
human primary cells to build perfusable constructs with 
native 3D vasculature. 

Removing all cellular remnants, the biocompatibility of 
the preserved tissue matrices, and scaffold reproducibility 
are crucial to the success of the decellularization approach. 
There are numerous decellularization protocols which typi-
cally use physical, chemical, and biological agents. The 
perfusion of ionic (e.g., sodium dodecyl sulfate [SDS] and 
sodium deoxycholate) or non-ionic (e.g., Triton X-100) de-
tergents and enzymes (e.g., DNase) through the vasculature 
of an organ is an efficient method for removing its cellular 
contents [87-89]. These chemical or biological agents are 
routinely combined with physical methods such as whole 
organ perfusion and shear stress. Regardless of the pro-
tocol, a decellularized scaffold should fulfill the following 
current pre-set criteria for clinical use: 1) complete or near 
complete removal of native cellular materials (DNA content 
less than 50 ng/mg dry tissues); 2) preservation of the na-
tive vascular structure, and 3) preservation of native extra-

cellular components and ultrastructure [88,90-92].
Repopulating the decellularized organ matrix with 

organ-specific cells (recellularization) is required to build a 
functional implantable organ. Current decellularization/re-
celluarization techniques have enabled less complex tissue 
matrices such as heart valves, small intestinal submucosa 
for the femoral artery, and dermal matrices to be used clini-
cally [93-95]. These achievements provide proof-of-concept 
that a new functional bioengineered organ could be built 
from a native organ via decellularization/recellularization. A 
number of whole organs including hearts, lungs, livers, and 
kidneys have been successfully bioengineered in vitro using 
current decellularization/recellularization techniques, with 
preclinical in vivo studies underway using small and large 
animal models [96-100]. Song et al. [96] decellularized rat 
kidneys using renal artery perfusion with 1% SDS and re-
populated the acellular matrix with HUVECs via renal artery 
perfusion and with rat neonatal kidney cells via the ureter. 
After culturing the perfused organ in the bioreactor for 3 to 
5 days, the bioengineered kidney was able to generate con-
centrated urine in vitro, and the graft integrated with the 
host circulation and produced urine when transplanted into 
a rat.  

Despite the successes of decellularization/recellulariza-
tion techniques in generating transplantable organs, a ma-
jor hurdle for long-term in vivo success is vascular patency. 
Without complete endothelial reseeding of the vascular tree, 
the implanted graft experiences vascular thrombosis which 
inevitably leads to the failure of the recellularized graft. Ko 
et al. [97,98] improved re-endothelization by conjugating 
anti-CD31 antibodies with the vasculature of the acellular 
matrix, promoting EC coverage and resulting in homog-
enous endothelium formation in acellular porcine livers and 
kidneys. When transplanted into healthy Yorkshire pigs, the 
endothelia of the Ab-conjugated constructs effectively pre-
vented platelet adhesion and were able to maintain blood 
flow for 24 hours.

Since the decellularized organ and tissue matrices closely 
mimic the vascular network of an organ, the decellulariza-
tion/recellularization technique is the most clinically trans-

0 hour 6 hours 12 hours 24 hours 36 hours H&E stain

Fig. 2. Time lapse images of pig kidney decellularization using 0.5% sodium dodecyl sulfate and a representative H&E im-
age (arrows indicate preserved glomerular structure). Scale bar=50 μm. Part of figure reproduced with permission [87].
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latable approach for building vasculature in bioengineered 
tissue and organ constructs. However, long-term vascular 
patency should be addressed by uniformly and homoge-
nously re-endothelizing onto the vascular tree and reducing 
residual antigenicity before widespread clinical application 
[101]. 

② ‌�Sacrificial template for vascular channel/network  
formation

Sacrificial materials have been used to create desired 
geometric vascular channels/networks by molding a non-
sacrificial material around a sacrificial component, and 
then removing the sacrificial material. Hollow channels are 
then lined by ECs to form predesigned vascular networks 
within the constructs. Sacrificial template methods were 
initially used to form microvascular tubes in vitro. Chrobak 
et al. [102] made a 120 μm diameter channel in collagen hy-
drogel using a 120 μm diameter stainless steel needle, then 
removed the needle after gelation of the collagen. Seeding 
human ECs and perivascular cells into the hollow channels 
yielded an EC tube that mimicked a constantly perfusable 
microvessel. Although non-sacrificial materials (stainless 
steel needles) can define the geometry of a channel, the de-
struction of constructs during the removal of spacers and 
the un-branched pattern produced are drawbacks of the 
method. To reduce the possibility of destroying the integ-
rity of the constructs during manual or mechanical spacer 
removal, thermoresponsive or glucose-sensitive materials 
have been investigated as sacrificial components [103]. To 
fabricate a patterned vascular network, Miller et al. [104] 
printed carbohydrate-glass lattices (channel diameter of 
150-750 μm) as the sacrificial element and encapsulated 
them with ECM along with a suspension of living cells. Af-
ter ECM crosslinking, carbohydrates were dissolved in the 
culture medium to yield an open, interconnected, and per-
fusable channel in the gel. 

Strategies using sacrificial materials to construct vascu-
lar networks have successfully fabricated a functional, in-
terconnected, vascular channel inside a hydrogel; however, 
no studies have yet demonstrated how to build a complex 
vascular network within thick 3D-engineered tissue con-
structs to create a clinically translatable tissue or organ. 
In addition, the sacrificial material must be completely re-
moved since remnants could be cytotoxic or harmful to the 
recipient.

 
③ Spatial micropatterning 
The spatial micropatterning approach to vascular net-

work formation has attracted attention since it has a spatial 
resolution of less than 10 μm. The detailed methods of EC 
micropatterning have been reviewed in detail elsewhere 

[105]. This approach generally involves microfabrication 
technologies, such as soft lithography and photopolymer-
ization, to engineer spatially organized EC positioning. 
Both technologies depend on the following four major 
steps which are essentially based on printing, molding, and 
embossing: 1) pattern design; 2) photomask and master 
fabrication; 3) polydimethylsiloxane (PDMS) stamp fabrica-
tion; and 4) micro- and nano-structure fabrication using 
the stamp [106]. Raghavan et al. [107] used soft lithogra-
phy techniques on microfabricated PDMS templates with 
intended geometries. Introducing a suspension of ECs in 
collagen gel into the channel and stimulation with VEGF 
and bFGF resulted in the formation of spatially arranged 
endothelial cords. Baranski et al. [108] implanted the mi-
cropatterned EC cords with human hepatocytes into nude 
mice and found that the implanted cords acted as a guide 
for a rapid vascularization response, leading the cords to 
anastomose with the host vasculature. Laser guided direct 
writing (LGDW) is another method for depositing cells on 
matrices with micrometer accuracy [109], which was de-
veloped based on methods for optically trapping cells. Like 
optical tweezers, cells are forced into a position using laser 
beams; however, in LGDW the laser beam is weakly focused 
on a spot, allowing cells to be pushed along the beam axis 
onto an arbitrary surface. Using LGDW, Nahmias et al. [110] 
created an endothelial vascular structure and showed that it 
could recruit primary mature hepatocytes in a HGF-depen-
dent manner to form liver sinusoid-like structures in vitro. 

The high spatial resolution and simplicity of the mi-
cropatterning approach make this strategy a very powerful 
tool for fabricating vascular structures at a micro- or nano-
scale. Despite its many advantages, this technology has not 
yet been used to create 3D structures with other cell types 
through stacking or rolling. In addition, the complexity of 
the vascular structure and the size of the micropatterned 
substrates are currently limited. 

④ Biomimetic scaffolds using vascular corrosion casts
Vascular corrosion casting is a well-established method-

ology for creating a complete replica of the vascular lumen 
of an organ and has provided detailed morphologies of the 
vascular luminal structures of the kidney, pancreas, uterus, 
liver, lung, and placenta [111-116].

We created rat kidney vascular casts by perfusing 10 % 
polycaprolactone (PCL) dissolved in acetone (Fig. 3). Most 
of the renal vasculature and glomerular capillaries were pre-
served after digesting the native tissue with 20% sodium 
hydroxide. The PCL casts were then used as a template to 
create biomimetic vascular scaffolds by coating the casts 
with type I collagen solution, cross-linking, and removing 
the PCL with acetone. The resultant vascular scaffolds had 



https://doi.org/10.5758/vsi.2019.35.2.77

Vascularization of 3D-Engineered Organ

83

a similar 3D branching architecture when observed by scan-
ning electron microscopy. EC-seeded scaffolds were embed-
ded in the collagen hydrogel to produce a consistent vessel-
like structure formed by the EC-covered vascular scaffold 
[117]. 

Fabricating vascular scaffolds using vascular corrosion 
casting techniques could be a powerful tool for creating 
truly biomimetic and tissue-specific 3D vascular scaffolds. 
This technique is also simple and cost effective [118]; how-
ever, the endothelialization of the fabricated scaffold must 
be precisely tuned and the strategy must be scaled up to 
enable clinically translatable constructs to be fabricated.

⑤ Three-dimensional bioprinting
Three-dimensional bioprinting is a multidisciplinary 

process that spatially patterns living cells and other biolog-
ics by stacking them using a computer-aided layer-by-layer 
deposition approach to fabricate 3D organs and tissue con-
structs [119]. Recently, 3D bioprinting has been increasingly 
used to fabricate vascularized 3D constructs as it enables 
geometrically-complex, anatomically-precise structures to 
be created and has shown promising results when creating 
complex composite tissue constructs. Bioprinting utilizes 

two manufacturing concepts to fabricate constructs: direct 
and indirect printing. Direct printing involves actively bio-
printing bioink (cell-laden hydrogels) into desired vascular 
structures, whereas indirect printing involves bioprinting 
cell-laden hydrogel layers onto a cell-free mold or sacrificial 
component (Fig. 4). 

The most commonly used bioprinting approaches nowa-
days are based on jetting, extrusion, and lasers. In jetting 
methods, the print-head is positioned over the printing 
bed and bioink droplets made by thermal, electrostatic, 
or piezoelectric inkjet bioprinters [120-122] are released 
to yield a 3D tissue construct [123]. Jetting methods have 
the ability to produce picoliter scale drops and have a high 
printing resolution of ~30 to 60 μm [124]. Using modified 
thermal inkjet printers, Cui and Boland [125] printed human 
microvascular ECs simultaneously alongside fibrin to fabri-
cate microvasculature. The printed ECs proliferated to form 
a tubular structure inside the fibrin scaffold after 21 days 
of culture; however, since the hydrogel concentration is 
low, the thickness of constructs printed using jetting meth-
ods may be limited by low levels of structural support [126]. 
Bioprinting using extrusion-based bioprinters is one of the 
most commonly utilized techniques, wherein bioink is de-
posited layer-by-layer using a syringe and piston system to 
dispense material through microscale nozzles [127]. Extru-
sion-based methods use high concentrations of hydrogels 
such as alginate and Pluronic F-127 to produce more stable 
3D cell-laden structures [128,129]. Gao et al. [130] recently 
developed a coaxial extrusion nozzle to allow an interior 
flow of calcium solution alongside an exterior flow of algi-
nate solution. Using this coaxial extrusion bioprinting, they 
were able to create hollow calcium alginate filaments which 
were high strength, cell-laden, 3D hydrogel structures with 
perfusable endogenous microchannels. Unfortunately, due 
to inadequate mechanical stability and structural integrity, 
it is difficult to print clinically scalable tissue structures. Re-
cently, our group demonstrated the ability of the integrated 
tissue-organ printer (ITOP), one of the most sophisticated 
3D bioprinters, to fabricate stable, human-scale tissue con-
structs in any shape [131]. The ITOP patterns multiple cell-
laden composite hydrogels consisting of gelatin, fibrinogen, 
hyaluronic acid, and glycerol while delivering a supporting 
PCL polymer and a sacrificial Pluronic F-127 hydrogel to 

Cell-free mold or sacrificial component

Indirect

Cell-laden bioink

Direct Combination

Fig. 4. Manufacturing concepts 
for printing constructs. Indirect 
printing involves printing a 
mold or sacrificial component 
for subsequent direct printing 
with cell-loaded bioink. 

Fig. 3. Renal vascular corrosion cast made using polycapro-
lactone perfusion.
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achieve mechanical stability. The ability of ITOP to fabri-
cate a human-scale mandible, calvarial bone, cartilage, and 
skeletal muscle was demonstrated, with evaluation of these 
tissues in vivo showing tissue maturation and large blood 
vessel formation within the implanted tissues. The ITOP 
is perhaps the most advanced 3D bioprinter allowing the 
clinical application of 3D bioprinting techniques to date. 

Lastly, laser-assisted bioprinters are an alternative meth-
od for bioprinting a precise microvasculature, although few 
studies have been published. Wu and Ringeisen [132] fabri-
cated branch/stem structures with HUVECs using biological 
laser printing and deposited human umbilical vein smooth 
muscle cells on top and around the printed HUVEC struc-
tures after 1 day. The resulting microvasculature had two 
stems and the branches that connect the stems had stable 
lumina and closely mimicked native vascular network in 
size.

Although 3D bioprinting technology has led to enormous 
advances in the fabrication of vascular structures, building 
clinically relevant vascularized tissue and organs remains 
a significant challenge. Three-dimensional bioprinting has 
the advantages of precision, reproducibility, and relatively 
low operational cost, while innovations in hardware, bioink 
formulation, and printing strategy are rapid and will facili-
tate vascularized thick tissues to be 3D bioprinted at clini-
cally relevant volumes in the near future. 

CONCLUSION AND FUTURE  
PERSPECTIVES

Vascularization is one of the most pressing scientific and 
technical challenges facing the engineering of 3D tissue 
and organs. Successful vascularization has paved the way 
for implantable 3D constructs at a clinically-relevant scale. 
Although significant progress has been made during the 
last decade in the area of vascularized tissue engineering, 
building scaffolds with vascular networks that mimic the 

complexity, ultrastructure, geometry, biochemical cues, and 
cellular density and distribution of organs remains a chal-
lenge. Furthermore, the appropriate and timely vasculariza-
tion of the implanted 3D constructs has yet to be achieved. 
Although the direct anastomosis of preformed microvas-
cular networks with host microvasculature is the most 
rapid reperfusion process for implanted 3D constructs, it is 
almost impossible. Therefore, newer approaches for faster 
vascularization are required. The rapid, external inoscula-
tion of preformed vascular networks with host vessels may 
ensure adequate angiogenesis and survival of the implanted 
cells [133], which is thought to be promoted by cultivating 
prevascularized tissue constructs in an angiogenic ECM 
[134].

No single vascularization approach discussed in this ar-
ticle can produce a functional, stable, and scalable vascular 
structure by itself, although each has fabricated thin, simple 
vascular networks successfully. A better approach consist-
ing of a tailored, synergistic combination of multiple meth-
ods is required to engineer improved vascular networks and 
promote external inosculation. Improving our understand-
ing of normal angiogenesis could allow the growth and de-
velopment of vessels in clinically translatable 3D constructs 
to be optimized. 
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