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As companion animals, felines play an important role in human’s family life, and their

healthcare has attracted great attention. Viruses such as feline calicivirus (FCV), feline

herpesvirus 1 (FHV-1), and feline parvovirus virus (FPV) are the most common pathogens

that cause severe infectious disease in baby cats. Thus, preclinical detection and

intervention of these three viruses is an effective means to prevent diseases and

minimize their danger condition. In this study, a triplex TaqMan quantitative real-time

polymerase chain reaction (qRT-PCR) assay was developed to detect these three viruses

simultaneously. The detection limit of FPV, FCV, and FHV-1 was 5 × 101 copies/assay,

which exhibited higher sensitivity (about 10- to100-fold) than conventional PCR. The

coefficients of variation (CVs) of the intra-assay variability were lower than 1.86%, and that

of inter-assay variability were lower than 3.19%, indicating the excellent repeatability and

reproducibility of the triplex assay. Additionally, the assay showed good specificity. Finally,

samples from 48 cats were analyzed using the established assay and commercial kits.

As a result, the total positive rates for these viruses were 70.83 or 62.5%, respectively,

which demonstrated that the developed qRT-PCR assay was more accurate than the

commercial kits and could be used in clinical diagnosis.

Keywords: triplex qRT-PCR, FCV, FPV, FHV-1, clinical detection

INTRODUCTION

As companion animals, cats play an important role in human’s life, and their health care has
attracted great attention. However, infectious disease caused by feline calicivirus (FCV), feline
herpesvirus 1 (FHV-1), and feline parvovirus virus (FPV) still pose a threat to cats’ health (1, 2).

FCV is an RNA virus belonging to Vesivirus of Caliciviridae. Studies show that FCV is the most
widespread feline virus, especially in multi-cat households and shelters, with overall prevalence
ranges from ∼15–31% (3). The morbidity of FCV can reach to 90% in some colonies (4, 5). More
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importantly, the clinically recovered felinesmay become the virus
carriers (5). FHV-1 is a double-stranded and enveloped DNA
virus belonging to α-herpesvirinae of Herpesviridae, which is
widely distribute in the world. FHV-1 mainly infects felidae,
especially the kittens aged 2–3 months. When the kittens are
infected with this virus, secondary infections are likely to occur
due to the poor immunity caused by FHV-1, and the final
mortality rate can reach to 70% (6, 7). Panleukopenia, caused
by FPV, is an acute, highly contagious, and, sometimes, fatal
feline viral disease, which distribute throughout the world (8).
FPV is a DNA virus belonging to Parvovirus of Parvoviridae.
The use of vaccines has greatly reduced the incidence of these
three viruses, but in some rural areas of developing countries,
the three viruses are still highly prevalent, and cases of mixed
infection are often reported (especially in multi-cat households
and stray catteries) (9). In the early stages of infections, similar
clinical symptoms of the three diseases, such as depression,
anorexia, sneezing, diarrhea, conjunctival congestion, eye–nose
secretion, and dyspnea (2, 10–13) make it difficult to identify
the virus with the naked eye, which could result in the missing
of proper treatment time. Moreover, when selecting cats as
experimental animals for scientific research, these three viruses
must be detected and excluded. Therefore, it is important to
establish a suitable method for the differential detection of
these three viruses. The current diagnostic methods for these
diseases include serological testing (14, 15), virus isolation,
and identification (16, 17), polymerase chain reaction (18–
20). As we know, the serological diagnosis could give false-
positive results in some time, and virus isolation have not
been widely used in clinical diagnosis because of high costs
and being time consuming. Therefore, establishment of a time-
saving, labor-saving, sensitive, and efficient detection method is
urgently needed.s

The PCR method has been widely used in the diagnosis
of various pathogens because of the specificity, sensitivity, and
efficiency. Compared with uniplex PCR, the multiplex PCR
greatly improves the detection efficiency by simultaneously
amplifying multiple templates in a single reaction (21, 22).
Nowadays, a second-generation PCR technology, quantitative
real-time PCR (qRT-PCR), has been widely used in the field
of scientific research and clinical detection due to its high
specificity, sensitivity, and time saving (23–26). Although several
PCR methods have been reported for the detection of these
three viruses (27–30), most of them have low sensitivity or
tedious operation, and no method can be used to detect all
three viruses quickly and efficiently at the same time. In this
study, a TaqMan triplex qRT-PCR assay (triplex assay) for
the simultaneous determination of FCV, FHV-1, and FPV was
developed. The method can differentiate these viruses with high
sensitivity, specificity, and reproducibility.

MATERIALS AND METHODS

Pathogen and Clinical Samples
FCV (attenuated vaccine strain F9), FHV-1 (attenuated vaccine
strain G2620A), and FPV (attenuated vaccine strain MW-1)
were purchased from Intervet International B.V. Wild strains of

these three viruses were isolated and stored by our laboratory,
and the virus titers were 108.0 TCID50/0.1ml for FCV, 107.0

TCID50/0.1ml for FPV, and 108.3 TCID50/0.1ml for FHV-1. The
nucleic acids of rabies virus (RV, attenuated vaccine strain Pasteur
RIV, purchased from Intervet International B.V.), pseudorabies
virus (PRV, attenuated vaccine strain HB-98, purchased from
Wuhan Keqian Biology), feline coronavirus (FCoV, positive
clinical samples), and feline immunodeficiency virus (FIV,
positive clinical samples) were used for specificity test. The
complete genome of feline leukemia virus (FeLV, AF052723) was
synthesized by Sangon Biotech (Shanghai, China) and used for
specificity test, too.

A number of 48 clinical samples (each sample was the mixture
of oral swab and rectal swab of one cat) from three animal
hospitals in Nanjing were collected from February 2019 to
December 2019. All samples were divided into two parts, one for
the triplex assay, and the other for commercial kits. At the same
time, 15 negative samples (each sample was the mixture of oral
swab and rectal swab of one cat), confirmed to be free of FCV,
FHV-1, and FPV (27, 31, 32), were used in the study. Methods
for sample collection and storage were as described (33).

Primers and Probes Design
The published VP2 gene of FPV, ORF2 gene of FCV, and
TK gene of FHV-1 were obtained from GenBank and aligned
by DNAMAN (LynnonBiosoft, USA) to find the conservative
regions. Six pairs of specific primers and three specific probes
were designed. The specificity of primers was confirmed using
BLAST in NCBI before use. Three pairs of longer fragments
were used to construct plasmids, and three pairs of shorter
fragments and probes (involved in longer fragments) were used
for fluorescence detection of three viruses. The three probes
were labeled with FAM/BHQ1 (FPV), VIC/BHQ1 (FCV), and
Texas Red /BHQ2 (FHV) at its 5′ and 3′ terminals, respectively.
The primers and probes were synthesized by Sangon Biotech
(Shanghai, China); the details of these oligos are shown in
Table 1.

Nucleic Acids Extraction and Standard
Plasmid Preparation
The RNA of FCV and the DNA of FHV-1 and FPV were
extracted using commercial kits (Sangon Biotech, China). The
reverse transcription reaction was performed to synthesize
the first-strand cDNA of FCV following the manufacturer’s
instructions (Thermo Scientific, USA). The concentration and
purity of the nucleic acid were determined by the measurement
of the absorbance at 260 and 280 nm with a NanoDrop2000
spectrophotometer (Thermo Scientific, USA). All products were
stored at−80◦C for use.

With the obtained DNA/cDNA as template, FPV, FHV-
1, and FCV gene fragments were amplified by PCR. The
PCR products were purified and retrieved using a DNA Gel
Extraction Kit (Axygen, China). Retrieved fragments were cloned
to pMD18T vector (TaKaRa, China) to construct three positive
plasmids named pMD18T-FCV, pMD18T-FHV, and pMD18T-
FPV, respectively. The positive plasmids were used to establish
standard curves. The concentration of plasmids was calculated
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TABLE 1 | Primers and probes.

Namea Sequence (5
′

-3
′

)b Target

genes

Amplicon

size (bp)

FPV-F CGGGGGTGGTGGTGGTT VP2 112 bp

FPV-R GCTTGAGTTTGCTGTGATTTCC

FPV-P FAM - CTGGGGGTGTGGGGATTTCTACG - BHQ1

FCV-F CGCCCTACACTGTGATGTG OFR2 165 bp

FCV-R GAGTTCTGGGTAGCAACACAT

FCV -P VIC - ATGTGCTCAACCTGCGCTAACGTGC - BHQ-1

FHV-1-F ATTTGCCGCACCATACCT TK 140 bp

FHV-1-R GCGAGTGGGAAACAGACC

FHV-1-P Texas Red - CTTTTACATTCCAGACTATCCACAATAACAGG - BHQ-2

aF, forward primer; R, reverse primer; P, TaqMan probe.
bFAM, 6-carboxy-fluorescein; VIC, 6-carboxy-rhodamine; BHQ, black hole quencher.

according to the absorbance measurement, and the way its
conversion to the copy number of the plasmid has been described
in the previous study (34).

Experimental Design and qRT-PCR
To obtain a more sensitive, stable, and easy-to-use PCR method,
the annealing temperature, primers concentration, and probes
concentration for each target gene were carefully optimized.
D-optimal design (MODDE 12.1 software) was carried out to
comprehensively analyze the influence of these factors (34). The
experimental conditions with the highest fluorescence signal and
the lowest cycle threshold (Ct) value were designated as the
optimal reaction conditions.

The triplex assay was carried out in a final volume of 20.0 µL
on LightCycler 96 system (Roche, Switzerland). The composition
of the reaction mixture included 10.0 µL of Hieff Unicon R©

qPCR TaqMan Probe Master Mix (Yeasen Biotech Co., Ltd.),
1.0 µL of template, 0.5µM of each primer, 0.1µM of the
FPV probe, 0.05µM of the FCV probe, 0.05µM of the FHV-
1 probe, and 3.6 µL of double-distilled water (ddH2O). The
thermocycling conditions included 95◦C for 2min, 40 cycles
of 95◦C for 10 s, and 54◦C for 30 s. The uniplex assays were
conducted with the thermocycling conditions same as the triplex
assay. The standard plasmid pMD18T-FCV, pMD18T-FHV, and
pMD18T-FPV served as the positive control while ddH2O as the
negative control.

Conventional PCR
Conventional PCR was performed with a standard program in
20.0µL reaction volume on a PCR cycler (Eppendorf, Germany).
The composition of the reaction mixture contained 10.0 µL of
2×HieffTM PCRMasterMix (Yeasen Biotech Co., Ltd.), 1.0µL of
template, 0.5µMof each primer, and 8µL of ddH2O. Cycle times
were as follows: 95◦C for 5min (initial denaturation), 40 cycles of
95◦C for 30 s (denaturation), 54◦C for 30 s (annealing), and 72◦C
for 20 s (extension), followed by a final step of 10min at 72◦C
(extension). The PCR products were detected by 1.5% agarose gel
electrophoresis. Three standard plasmids were used as positive
control, and ddH2O played the role of the negative control.

Validation of the qRT-PCR Assay
The specificity of the established qRT-PCR assay was confirmed
using RV, PRV, FCoV, FIV, and FeLV. To evaluate the sensitivity
of the method, the plasmids containing target genes were diluted
by 10 times gradient (from 5 × 107 copies/assay to 5 × 100

copies/assay) and subjected to the sensitivity of the triplex assay.
The amplification efficiency (AE) and correlation coefficient (R2)
were used as parameters to evaluate the sensitivity of the triplex
assay (35, 36). The repeatability of the method was tested using
plasmid as the templates at 5 × 107, 5 × 105, and 5 × 103

copies/assay. Each independent experiment was carried out in
triplicate for the intra-assay repeatability test, and triplicate runs
over 3 days were performed by different operators for the inter-
assay reproducibility test. The sensitivity and reproducibility tests
for the triplex assay were conducted again using nucleic acids
extracted from FCV, FPV, and FHV-1 wild strains.

A Pilot Study of the Triplex Assay
We conducted a co-infection experiment to assess the reliability
of the triplex assay. Different combinations and proportions of
three virus nucleic acids (DNA/cDNA) were mixed and used for
the triplex assay. The establishedmethod was also used to analyze
48 clinical samples, and the results were compared with that of
commercial kits (Mensall, China).

Statistical Analysis
Data generation and collection were carried out with LightCycler
SW 1.1. Data management, analysis, and graphics generation
were performed using Microsoft Excel 2007 (Microsoft, USA)
and MODDE 12.1 software (Umetrics, Sweden). Results are
presented as mean value ± standard deviation (SD). The intra-
and inter-assay variations were calculated from the mean Ct
values and expressed as coefficients of variation (CV).

RESULTS

Optimization and Establishment of the
Triplex Assay
The study adopted D-optimal design consisting of 16 runs to
explore the effects of different probe concentrations, primer
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FIGURE 1 | Response surface plots for FCV. (A) 3D response graphs based on different combinations of primer concentration, probe concentration, and annealing

temperature generated by computer-aided exchange procedure. (B) Response surface graphs of primer concentration and annealing temperature at different probe

concentrations.

concentrations, and annealing temperature on Ct values. Taking
FCV as example, the three-dimension response surface curves
are shown in Figure 1A (data in Supplementary Table S1). Red
areas represent lower Ct values, and blue areas represent higher
Ct values. The abscissa and ordinate of the lowest point are the
optimal conditions. The 4D plots further illustrate the interaction
between the three factors (Figure 1B). We find that when the
primer concentration is lower than 0.35µM, the Ct value remains
at a high level regardless the changes in probe concentration and

annealing temperature. However, when the primer concentration
is in the range of 0.4–0.6µM, the Ct value decreases with a lower
probe concentration and annealing temperature.

In addition, we optimized the fluorescence signal of
the method (Supplementary Figure S1). The results show
that the fluorescence intensities of FCV, FHV-1, and FPV
are at high level when the primer concentration is in the
range of 0.5–0.6µM (Supplementary Figures S1A–C).
For FPV (Supplementary Figure S1D), the fluorescence
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FIGURE 2 | Specificity of the triplex assay. FPV, FCV, FHV-1, and other animal

pathogens (including FIV, FeLV, FCoV, RV, and PRV) were selected and tested

using the triplex assay. Only FCV, FHV-1, and FPV detected positive.

intensities of high concentration probes (0.15 and 0.2µM)
is stronger than that of low concentration probes (0.05µM).
However, for FCV (Supplementary Figure S1E) and FHV-
1 (Supplementary Figure S1F), a low concentration probe
(0.05µM) can get a stronger fluorescence intensity. Annealing
temperature have an obvious effect on fluorescence intensity. As
the temperature decrease, the fluorescence intensity increases
(Supplementary Figures S1G–I). Finally, as a compromise, the
optimized experimental conditions are set as follows: primer
concentration at 0.5µM for each virus, probe concentration at
0.15µM for FPV, 0.05µM for FCV or FHV-1, and annealing
temperature at 54◦C. The cutoff for positivity is determined
based on the Ct values of the negative samples, which exceeded
36. Once the Ct value of the sample exceeds 36, it is treated as a
negative result.

Specificity Test
FPV, FCV, FHV-1, and other animal pathogens (including FIV,
FeLV, FCoV, RV, and PRV) were used for the specificity test.
The results show that only FCV, FHV-1, and FPV have specific
amplification curves, and the Ct values are all <30 (Figure 2).
The fluorescence intensities of other pathogens and negative

controls are stable at low levels without amplification curves,
indicating the high specificity of the triplex assay.

Sensitivity Test
The sensitivity test of qRT-PCR and conventional PCR was
performed with 10- fold serial dilution of plasmids (from 5× 107

to 5 × 101 copies/assay) and virus nucleic acids (from 10−1 to
10−10 dilution). The templates of the same dilution were mixed
in equal proportions. As shown in Table 2, the Ct value of qRT-
PCR remains positive and conforms to the linear trend at 5 ×

101 copies/assay for three viruses. However, the sensitivity of
conventional PCR is lower. As shown in Figure 3, when FPV
is diluted below 5 × 103 copies/assay and FCV and FHV-1 are
diluted below 5 × 102 copies/assay, the target fragments are not
clearly observed. The standard curves of the triplex assay for
these viruses are generated (Figure 4). As shown in the figure,
the triplex assay is linear over the range of 5 × 107-5 × 101

copies/assay with an R2 value above 0.9966 for all three viruses.
Besides, the AE is 90.37% for FPV, 93.88% for FCV, and 104.19%
for FHV-1.

The limit of detection (LOD) was determined by the serial
dilutions of the recombinant plasmids that corresponded to
the lowest copy number that gave a probability of at least
95% of detecting a PCR positive test result (37, 38). When the
plasmids are diluted below 5 × 101 copies/assay, apparently
and randomly distributed Ct values in the range of 36–38
are observed in the triplex assay (38, 39). Therefore, we
chose 5 × 101 copies/assay as the LOD of the developed
method. In the tests using virus nuclei acids as templates,
the detection limits of the triplex assay to FPV, FCV,
and FHV-1 viruses were 10−3, 100, and 100 TCID50/assay
(Supplementary Figure S3).

We used 5 × 101 copies/assay plasmids as templates for 30
repeated tests. The amplification curves of different viruses are
shown in Supplementary Figure S2. The fluorescence intensities
of most samples were lower than 0.06. Three samples had
amplification curves, and only one sample test FPV positive (Ct
value 26.25). Thus, the false positive rate of the triplex assay

TABLE 2 | Sensitivity of the real-time PCR.

Number of

DNA copies

(copies/assay)

Triplex real-time PCR Ct valuea

(mean ± SD)

Uniplex real-time PCR Ct valueb

(mean ± SD)

FPV FCV FHV-1 FPV FCV FHV-1

5 × 107 14.39 ± 0.25 14.44 ± 0.01 16.17 ± 0.11 14.32 ± 0.25 14.81 ± 0.15 16.11 ± 0.23

5 × 106 18.02 ± 0.45 18.46 ± 0.05 19.62 ± 0.22 18.32 ± 0.05 18.18 ± 0.25 19.69 ± 0.07

5 × 105 21.73 ± 0.16 21.53 ± 0.22 22.47 ± 0.36 21.93 ± 0.02 21.37 ± 0.03 22.82 ± 0.10

5 × 104 25.93 ± 0.06 25.30 ± 0.02 25.98 ± 0.01 25.50 ± 0.66 24.86 ± 0.03 26.28 ± 0.12

5 × 103 29.84 ± 0.13 28.42 ± 0.03 29.40 ± 0.06 27.62 ± 0.16 28.07 ± 0.52 29.95 ± 0.03

5 × 102 32.91 ± 0.21 31.94 ± 0.02 32.61 ± 0.03 31.76 ± 0.35 31.60 ± 0.42 32.98 ± 0.19

5 × 101 35.67 ± 0.83 35.62 ± 0.77 34.93 ± 0.53 34.08 ± 0.33 33.41 ± 0.08 35.25 ± 0.16

aThe result was considered positive if mean Ct value ≤36.
bEach reaction was performed in triplicate, and the results are shown as the mean ± SD.
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FIGURE 3 | Detection limit of conventional PCR. Templates of pMD18T-FPV

(A), pMD18T-FCV-1 (B), and pMD18T-FHV-1 (C) were diluted by 10 times

gradient to a dilution factor that could not be detected by conventional PCR.

The detection limit was 5 × 103 copies/assay for FPV and 5 × 102

copies/assay for FCV and FHV-1. Template amount for curves 2–8 lanes was

5 × 107-5 × 101 copies/assay. M, DL600 marker; NC, negative control.

in FCV and FHV tests was 0 (0/30) and that in FPV test was
3.3% (1/30).

Repeatability and Reproducibility of the
Triplex Assay
In this study, three different concentrations of plasmids
were used for the repeatability and reproducibility test
of the established qRT-PCR assay. As shown in Table 3,
the intra- and inter-assay CVs of Ct values are between
0.68–1.86% and 0.85–3.19%, respectively, indicating that
the triplex assay is highly reliable and accurate. The
results of the intra- and inter-assay CVs of Ct values
using virus nucleic acids as templates are shown in
Supplementary Table S2.

Co-infection Models and Clinical Sample
Detection
As shown in Table 4, the method could detect three viruses at the
combination of different concentrations, regardless of triplex or

duplex infections, indicating the potential ability of clinical use of
the triplex assay.

Finally, 48 clinical samples were examined using the
developed triplex assay (Table 5). The results demonstrated
that 34 cats were infected FPV, FCV, or FHV-1. The positive
rate for FPV, FCV, and FHV-1 were 29.17% (14/48), 50%
(24/48), and 33.33% (16/48), respectively. These samples
were also detected by three uniplex commercial kits for
comparison. The results show only 30 cats infect these
viruses, indicating a relatively lower positive rate of 41.67%
(20/48) for FCV and 29.17% (14/48) for FHV-1. It is worth
noting that all positive samples detected by commercial kits
tested positive by triplex assay. However, four cats were
detected FCV positive with the triplex assay, while they were
detected negative by the commercial kits. Thus, the established
triplex assay shows high accuracy than commercial kits in
clinical diagnosis.

DISCUSSION

In developed countries, the incidence of feline infectious
diseases can be controlled through vaccination and disinfection
procedures, while it remains at a higher lever in developing
countries. Among these diseases, FCV, FHV-1, and FPV are
widely distributed all over the world and greatly endanger
the health of felines. The purpose of this article was to
establish a triplex assay for the simultaneous detection of these
three viruses.

The design of primers and probes is the key step of triplex
qRT-PCR development. The interference between different
primer and probe pairs should be considered. In this study,
through several experiments, we finally screened out the
primer and probe pairs with similar melting temperature
and few dimers. As we know, the annealing temperature
can affect the specificity and amplification efficiency of PCR
(40). High annealing temperature will reduce the binding
efficiency of primers and templates, and low annealing
temperature will lead to a non-specific amplification in the
reaction system. In addition, the concentration of primers
and probes can also affect the PCR amplification efficiency,
while low concentration can lead to incomplete reaction,
and high concentration can inhibit the reaction. Therefore,
a D-optimal design was adopted in this study to explore
the impact of these three factors (annealing temperature and
concentration of primers and probes) on the triplex qRT-PCR.
As shown in the result, when the primer concentration is
lower than 0.35µM, the Ct value remained high regardless of
the change in probe concentration and annealing temperature,
which might be a result of incomplete reaction caused by
insufficient primers.

Theoretically, the amount of PCR products would double
after each cycle. But in fact, the AE of PCR cannot reach
100% due to the influences of different factors such as
enzymes, deoxyribonucleotide triphosphates (dNTPs), primers,
and templates. Therefore, we generated the standard curves
to observe the AE of the triplex assay. In general, the
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FIGURE 4 | Amplification and standard curves of the triplex assay. Serially diluted plasmids were mixed at equal concentration (from 5 × 107 copies/assay to 5 × 101

copies/assay) and used as template for RT-PCR. Amplification curves of the triplex assay for the detection of FPV (A), FCV (C), and FHV-1 (E). The standard curves of

FPV (B), FCV (D), and FHV-1 (F) were generated by plotting the Ct values (Y-axis) against the logarithm of copy numbers of plasmids (X-axis).

AE is acceptable between 90 and 110%, when high level
of AE indicates non-specific amplification or primer dimers
formation, and a low level maybe caused by improper
experimental conditions or reagent concentration. In our assay,
the AEs of the standard curves of the three plasmids are
all within this range and follow a good linear trend (R2

>

0.99), indicating that the experimental conditions are well
designed (41).

The lowest sensitivity of this triplex assay is 5 × 101

copies/assay for all three plasmids, which demonstrates a
10- to 100- fold increase than that of conventional PCR.

Specificity test shows that the method can detect each of
the three viruses and has no cross-reaction with other
selected pathogens. Viruses often infect felines in different
combinations and concentrations, especially in stray cats
in young age. Therefore, we constructed the co-infection
model in this study, and it showed satisfactory accuracy
and sensitivity when detecting different combinations of these
three viruses.

Finally, the clinical sample analysis showed that the positive
rate of FCV and FHV-1 detected by triplex assay was higher
than that of the commercial kits. The reason could be that we
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TABLE 3 | Intra- and inter-assay reproducibility of the triplex assay.

Name Number of DNA

copies

(copies/assay)

Intra-assaya Inter-assaya

Mean SD CV (%) Mean SD CV (%)

FPV 5 × 107 14.29 0.15 1.04 14.25 0.21 1.47

5 × 105 21.66 0.28 1.29 21.98 0.41 1.87

5 × 103 29.92 0.29 0.96 30.10 0.28 0.93

FCV 5 × 107 14.52 0.10 0.69 14.72 0.40 2.72

5 × 105 21.42 0.25 1.17 21.28 0.34 1.60

5 × 103 28.35 0.35 1.23 28.89 0.67 2.32

FHV-1 5 × 107 16.24 0.11 0.68 16.44 0.37 2.25

5 × 105 22.53 0.42 1.86 22.58 0.72 3.19

5 × 103 29.34 0.21 0.72 29.58 0.25 0.85

TABLE 4 | Detection of the co-infection models by triplex real-time PCR.

Co-infection proportiona Virus titer

(TCID50/assay)

Co-infection real-time PCR Ct value

(mean ± SD)

FPV FCV FHV-1 FPV FCV FHV-1

FPV:FCV:FHV-1 = 10:1:1 106 105 105 9.35 ± 0.11 33.72 ± 0.43 22.87 ± 0.37

FPV:FCV:FHV-1 = 1:10:1 105 106 105 14.09 ± 0.88 29.56 ± 0.52 22.88 ± 0.03

FPV:FCV:FHV-1 = 1:1:10 105 105 106 13.59 ± 0.71 33.88 ± 0.28 19.77 ± 0.56

FPV:FCV = 1:1 105 105 – 14.40 ± 0.47 33.10 ± 0.16 –

FPV:FCV = 10:1 106 105 – 9.69 ± 0.21 34.02 ± 0.12 –

FPV:FHV-1 = 1:1 105 – 105 13.97 ± 0.97 – 22.97 ± 0.16

FPV:FHV-1 = 10:1 106 – 105 9.46 ± 0.24 – 22.30 ± 0.82

FCV:FHV-1 = 1:1 – 105 105 – 33.49 ± 0.39 22.85 ± 0.65

FCV:FHV-1 = 10:1 – 106 105 – 29.52 ± 0.59 22.89 ± 1.06

aViruses of different titer were mixed in corresponding proportions and used as templates for real-time PCR.

TABLE 5 | Clinical samples detected by triplex assay and commercial kits.

Name Triplex assay Commercial kits

Positive Rate (%) Positive Rate (%)

FPV 6/48 12.50 6/48 12.50

FCV 8/48 16.67 6/48 12.50

FHV-1 2/48 4.17 2/48 4.17

FPV+FCV 4/48 8.33 4/48 8.33

FPV+FHV-1 2/48 4.17 2/48 4.17

FCV+FHV-1 10/48 20.83 8/48 16.67

FPV+FCV+FHV-1 2/48 4.17 2/48 4.17

Total 34/48 70.83 30/48 62.50

considered most of the epidemic strains in recent years when
designing primers for the assay, but the commercial kits had been
developed a few years ago, which might miss the prevalent virus.
These results also remind us to update the detection method
regularly. In this study, we found that the mixed infections of
these viruses were common. Among them, the incidence of FCV

and FHV-1 co-infection was the highest, with a ratio of 20.83%
(10/48). Most of the co-infection cases were stray cats or kittens
within 3 months. This phenomenon can be attributed to that
stray cats are usually non-vaccinated and more likely to carry the
viruses and spread them to domestic cats. Therefore, our research
highlights the great need for virus surveillance in stray cats.
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CONCLUSIONS

The TaqMan triplex assay established in this
study possesses high specificity, sensitivity, and
reproducibility for the detection, quantitation,
and differentiation of FPV, FCV, and FHV-
1 simultaneously.
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