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Simple Summary: Given the significant impact on both human and animal health of mosquito-
borne flaviviruses, a better understanding of their transmission cycles, viewed as a complex multi
pathogen-vector-host system is urgently required. Here, we use a spatial datamining framework,
based on co-occurrence data that includes biotic niche variables to create models for Dengue, Yellow
fever, West Nile Virus and St. Louis encephalitis in Mexico that predict: (i) which mosquito species
are likely to be the most important vectors for a given pathogen; (ii) which species are most likely
to be important from a multi-pathogenic viewpoint; and (iii) which mosquito and/or mammal
assemblages are most likely to play an important role in the transmission cycles. Our predictions are
consistent with known information about the dynamics of these mosquito-borne flaviviruses and
predict new potential vectors. Our approach can improve disease surveillance efforts and generate
useful information regarding public health and biodiversity conservation.

Abstract: Given the significant impact of mosquito-borne flaviviruses (MBFVs) on both human
and animal health, predicting their dynamics and understanding their transmission cycle is of the
utmost importance. Usually, predictions about the distribution of priority pathogens, such as Dengue,
Yellow fever, West Nile Virus and St. Louis encephalitis, relate abiotic elements to simple biotic
components, such as a single causal agent. Furthermore, focusing on single pathogens neglects
the possibility of interactions and the existence of common elements in the transmission cycles of
multiple pathogens. A necessary, but not sufficient, condition that a mosquito be a vector of a MBFV
is that it co-occurs with hosts of the pathogen. We therefore use a recently developed modeling
framework, based on co-occurrence data, to infer potential biotic interactions between those mosquito
and mammal species which have previously been identified as vectors or confirmed positives of at
least one of the considered MBFVs. We thus create models for predicting the relative importance
of mosquito species as potential vectors for each pathogen, and also for all pathogens together,
using the known vectors to validate the models. We infer that various mosquito species are likely to
be significant vectors, even though they have not currently been identified as such, and are likely
to harbor multiple pathogens, again validating the predictions with known results. Besides the
above “niche-based” viewpoint we also consider an assemblage-based analysis, wherein we use a
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community-identification algorithm to identify those mosquito and/or mammal species that form
assemblages by dint of their significant degree of co-occurrence. The most cohesive assemblage
includes important primary vectors, such as A. aegypti, A. albopictus, C. quinquefasciatus, C. pipiens and
mammals with abundant populations that are well-adapted to human environments, such as the
white-tailed deer (Odocoileus virginianus), peccary (Tayassu pecari), opossum (Didelphis marsupialis) and
bats (Artibeus lituratus and Sturnira lilium). Our results suggest that this assemblage has an important
role in the transmission dynamics of this viral group viewed as a complex multi-pathogen-vector-host
system. By including biotic risk factors our approach also modifies the geographical risk profiles of
the spatial distribution of MBFVs in Mexico relative to a consideration of only abiotic niche variables.

Keywords: vector-borne diseases; disease transmission cycles; vector-host system; multi-pathogen
model; Dengue virus; Yellow fever virus; St. Louis encephalitis virus; West Nile virus; spatial
distribution models; complex networks

1. Introduction

Predicting the emergence of zoonotic pathogens is a very significant challenge [1].
Usually, predictions about the distribution of priority pathogens relate abiotic elements,
such as temperature and precipitation, to simple biotic components, such as a single causal
agent (a virus or protozoa) and/or a unique host population (e.g., humans or the Yellow
fever mosquito Aedes aegypti). For example, most epidemiological studies of the Dengue
(DENV) and Zika (ZIKV) viruses have focused only on incidence data in humans, the dis-
tribution of the Yellow fever mosquito A. aegypti and relationships with abiotic factors [2,3].
Additionally, for mosquito-borne flaviviruses (MBFVs, genus Flavivirus; family Flaviviri-
dae), the role of wildlife species has traditionally been neglected in epidemiological studies.
This bias in research and monitoring efforts limits our knowledge about arboviral trans-
mission dynamics, and, therefore, the possibility of predicting the potential distribution of
pathogens and the next epidemic and epizootic events.

MBFVs are highly mutable RNA viruses that can readily adapt to new hosts (inver-
tebrates or vertebrates), whose biological characteristics can maintain or alter, in turn,
the dynamics of endemic and epizootic transmission cycles [4]. They are a particularly
relevant group, as many of them are of importance for human and animal health, impacting
welfare, the economy, biodiversity, and ecosystem function and services. For example, the
four serotypes of DENV, ZIKV, Yellow fever virus (YFV) and West Nile virus (WNV) affect
millions of people [5], while WNV and YFV are known to affect wildlife populations [6,7].

In Mexico, and globally, most surveillance and research efforts on MBFVs have tradi-
tionally been focused on single-cause cycles. For instance, for DENV (and, more recently,
ZIKV), research has mainly focused on A. aegypti, or A. albopictus, as vectors, and on hu-
mans as primary host [8–10]. However, due to the impact of global environmental changes,
such as human and animal mobilization, habitat fragmentation, climate change, and wild
animal trade [11], we might expect to see more outbreaks of MBFVs, such as WNV and
ZIKV, as well as a wider set of ecological risk factors. For instance, although humans
may be the primary host for several MBFVs, it is worth remembering that a diverse set of
MBFVs have been reported in a diverse set of mammals in Mexico, for instance, DENV,
St. Louis encephalitis virus (SLEV), WNV and YFV [12–17]. The corresponding information
for potential avian hosts in Mexico is much sparser, with some number of positives for
WNV [18–21] and very few for SLEV [22,23] having been analyzed. In addition, although
there exist other flavivirus of importance, such as ZIKV and Chikungunya (CHIKV), little
is known about their sylvatic hosts. For these reasons, given that our analysis will be based
on using information of those potential host species that have tested positive for a given
MBFV, we will restrict attention in this paper to mammalian species and to DENV, SLEV,
WNV and YFV.
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Although, the conclusive detection of MBFVs in wildlife species, using molecu-
lar sequencing and viral isolation, is scarce in Mexico and, indeed, elsewhere, there
have been reports of DENV in bats, rodents and marsupials from French Guiana and
Mexico [12,13,17,24]. Similarly, molecular sequences of YFV and ZIKV have also been
identified in primates from South America [25,26], while SLEV isolates were detected
in bats (Tadarida brasiliensis) from Texas and in armadillos (Dasypus novemcinctus) from
Brazil [27,28]. Unfortunately, reliable data about the role of mammal hosts in the transmis-
sion of MBFVs are difficult to obtain empirically and/or experimentally [29,30]. Several
studies of DENV have used bats as study models, but experimentally infected individu-
als did not replicate or produce antibodies against DENV [31,32]. Elsewhere, other less
abundant species, such as armadillos, have been experimentally proposed as potential
competent hosts of ZIKV [29].

Given that neither the current distributions of mosquito species, or vertebrate hosts,
nor their interactions, are well known, novel theoretical approaches are needed in order
to assess the potential role of wildlife in the maintenance and/or spread of MBFVs and
to improve our understanding of the dynamics of mosquito-borne diseases. Complex
inference networks have emerged as important tool for the study of zoonosis, allowing us
to build predictive models of potential vector-host interactions, as well as geographic risk
models of pathogen distribution based on species co-distributions [3,33]. This analytical
tool has allowed us to redefine the geographic risk profile and host range characterization
for vector-borne diseases, such as Leishmaniasis and ZIKV disease [33,34].

2. Materials and Methods
2.1. Species Data

We searched for information on those mosquito species positive to DENV, YFV, SLEV
and WNV in open access data sets [35–40]. We also searched reports of mammals that are
positive to the same MBFVs in the ISI Web of Knowledge, using “Dengue virus,” “Yellow
fever virus,” “St. Louis encephalitis virus,” “West Nile virus,” and “mammal” as key-
words [38]. We then built a geographic dataset of point collection data for the 60 mosquito
species and 34 wild mammal species that have been confirmed as positive for an MBFV
(by serological, molecular or viral isolation tests) and that occur in Mexico using the National
Biodiversity Information System (SNIB for its initials in Spanish) [39]. The final dataset
contained 40,585 and 92,688 collection points of mosquitos and mammals respectively.

2.2. Data Analyses

We adopted a nonparametric spatial data mining framework, which allows us to infer
potential biotic interactions based on the degree of geographic co-occurrence between
species (in our case, mosquito-mammal) [33]. Firstly, we determined the occurrence of
species in our study area (continental region of Mexico). In order to obtain a spatial
representation of the species distributions, we partitioned our study area with a regular
grid that divided the space into regular spatial cells, Xα, of area 15 km by 15 km, and then
counted co-occurrences of different taxonomic groups (e.g., mosquito and mammal) within
each cell Xα considering Bi(X∝) = present/not present as a measure of the presence of the
mosquito/mammal i in the cell X∝. Our primary objective was to calculate P(Bi(X∝)|I(X∝)),
that is, the probability that the distribution measure Bi(X∝) takes a particular value in
the spatial cell X∝, conditioned on I(X∝), where I(X∝) represents the presence or no
presence of one or more other species I. For example, I could represent the presence of
mammals reported as positive to the chosen MBFVs. To quantify the relationships between
mosquitoes and mammals, we used the probability P(Bi|I′) = NBi∩I ′/NI ′ , where NBi∩I ′

is the number of spatial cells with co-occurrences of mosquito species Bi and mammal
species I′, and NI ′ is the number of cells where the chosen mammals occurred. To evaluate
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the degree to which co-occurrences are non-random we use the following exact binomial
statistical test:

ε(Bi|Ik) =
NIk (P(Bi|Ik)− P(Bi))(

NIk ∗ P(Bi) ∗ (1− P(Bi))
)1/2

(1)

which measures the statistical dependence of Bi on Ik, now representing a particular species,
Ik ∈ I, relative to the null hypothesis that the distribution of Bi is independent of Ik and
randomly distributed over the grid. That is:

P(Bi) = NBi /N (2)

where NBi is the number of grid cells with point collections of species Bi, and N is the total
number of cells in the grid. The sampling distribution of the null hypothesis is a binomial
distribution, where, in this case, every cell has a probability P(Bi) of containing a collection
point of Bi. The numerator of Equation (1) is the difference between the actual number of
co-occurrences of Bi and Ik, relative to the expected number if the distribution of collection
points was obtained from a binomial distribution with sampling probability P(Bi). As the
underlying null hypothesis is that of a binomial distribution, it is natural to measure the
numerator in standard deviations of this distribution, and this forms the denominator of
Equation (1). We interpret the quantitative values of ε(Bi|Ik) in the conventional sense of
hypothesis testing, by considering the associated P-value as the probability that |ε(Bi|Ik)|
is at least as large as the observed one, and then comparing this P-value with a required
significance level. In the case where NIk is sufficiently large, using the normal distribution
as a reasonable approximation to the binomial distribution should be adequate, in which
case ε(Bi|Ik) = 1.96 would represent the standard 95% confidence interval.

2.3. Community Detection and Network Analysis

To build complex inference networks that reflect the inferred associations between
mosquitoes, viruses and mammals, we constructed two weighted adjacency matrices with
links weighted by ε values > 1.96. The first array has 60 rows, representing those mosquito
species that are known vectors of a MBFV, and four columns that represent the considered
viruses. Individual values of this matrix represent the weighted mean of those ε values
associated to the mosquito species in the row i and those mammals reported as positive to
the considered MBFVs (see Table 1). For example, to estimate the relationship between A.
aegypti and YFV, we extract the average of the ε values of A. aegypti and those mammals
reported as positive to YFV (Tayassu pecari and Eira Barbara, [40]). In this sense, the weighted
mean (WE) is calculated as shown in Equation (3), where Epsvirus represents the mean
ε value expressed in columns 2–5 of Table 1 and #Mamvirus represents the number of
mammal species which have been reported as positive to any MBFV (#MamDENV = 14,
#MamYFV = 2, #MamSLEV = 13 and #MamWNV = 14). In the case of Ae. aegypti, the WE is
calculated as:

WE = (EpsDENV ∗ 14 + EpsYFV ∗ 2 + EpsSLEV ∗ 13 + EpsWNV ∗ 14)/43,

where EpsDENV , EpsYFV , EpsSLEV and EpsWNV are the values of ε between A. aegypti and
each pathogen as proxied by its mammal hosts. The second matrix was constructed using
the ε values of each mosquito (row) and mammal (column) pair. So, values (i, k) of this
matrix represent directly the ε(Bi|Ik) values. We then selected only those values of ε(Bi|Ik)
> 1.96 corresponding to the standard 95% confidence interval.

WE =
∑i=virus Epsi ∗ (#Mami)

∑i=virus #Mami
(3)
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Table 1. List of known vectors for the four mosquito-borne flaviviruses (MBFVs) considered and their weighted ε values calculated from the co-occurring positive mammal species for
each MBFV and for all together.

Ranking Species Epsilon DENV Epsilon YFV Epsilon SLEV Epsilon WNV Weighted Mean Sample Area Proportion # of Confirmed Pathogens

1 Aedes aegypti * 11.148 * 2.969 * 10.568 * 7.038 9.254 0.0697 3
2 Culex coronator 11.132 5.773 * 9.632 * 4.978 8.426 0.0307 2
3 Culex quinquefasciatus 7.217 2.898 * 8.028 * 6.161 6.917 0.0517 2
4 Culex nigripalpus 9.670 7.122 * 6.573 * 2.853 6.396 0.0094 2
5 Haemagogus mesodentatus 9.864 * 4.910 6.535 2.500 6.230 0.0027 1
6 Aedes albopictus * 7.300 1.296 6.566 * 4.772 5.976 0.014 2
7 Sabethes chloropterus 10.121 * 9.354 * 5.361 1.643 5.886 0.0021 2
8 Culex erraticus 7.003 6.018 6.258 * 3.401 5.559 0.0067 1
9 Psorophora howardii 7.112 2.919 6.204 * 3.704 5.533 0.0012 1
10 Aedes scapularis 6.887 8.498 * 5.05 2.389 4.942 0.0053 1
11 Aedes taeniorhynchus 7.537 3.808 5.361 * 1.847 4.853 0.0072 1
12 Anopheles crucians 6.565 6.230 * 4.653 2.005 4.487 0.0033 1
13 Psorophora ferox 6.641 3.917 * 3.947 * 1.953 4.174 0.0039 2
14 Mansonia titillans 6.262 3.735 4.037 * 1.368 3.878 0.0028 1
15 Deinocerites pseudes 5.277 −0.399 * 5.040 1.746 3.791 0.0021 1
16 Culex thriambus 3.019 −0.025 4.546 * 3.719 3.567 0.0065 1
17 Culex pipiens 3.025 4.068 * 3.379 * 3.255 3.256 0.0024 2
18 Deinocerites cancer 3.887 3.692 3.632 * 1.918 3.160 0.0008 1
19 Aedes condolescens 5.169 −0.028 2.954 *0.946 2.883 0.0001 1
20 Culex stigmatosoma 1.569 −0.688 3.597 * 3.767 2.793 0.0319 1
21 Uranotaenia lowii 3.669 2.637 3.663 * 1.117 2.788 0.0029 1
22 Aedes infirmatus 4.305 5.954 2.691 * 0.608 2.690 0.0007 1
23 Aedes sollicitans 2.985 1.205 3.100 * 2.061 2.636 0.004 1
24 Uranotaenia sapphirina 3.693 0.884 3.045 * 0.941 2.470 0.0019 1
25 Anopheles punctipennis 0.649 −0.690 2.656 * 4.327 2.391 0.0059 1
26 Culex salinarius 2.239 1.657 2.604 * 2.248 2.325 0.0027 1
27 Culex tarsalis −0.109 −0.243 * 2.681 * 4.454 2.214 0.0086 2
28 Culex taeniopus 2.738 3.256 * 2.682 0.910 2.150 0.001 1
29 Aedes trivittatus 2.077 −0.426 2.568 * 2.001 2.084 0.0023 1
30 Aedes triseriatus 0.793 3.256 1.868 * 2.724 1.861 0.001 1
31 Anopheles atropos 2.463 5.839 1.552 * 0.889 1.832 0.0001 1
32 Culiseta inornata 0.245 −0.426 1.942 *3.545 1.801 0.0023 1
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Table 1. Cont.

Ranking Species Epsilon DENV Epsilon YFV Epsilon SLEV Epsilon WNV Weighted Mean Sample Area Proportion # of Confirmed Pathogens

33 Culex bahamensis 2.075 5.693 1.67 * 1.067 1.793 0.0004 1
34 Aedes fulvus 2.75 5.056 1.125 * 0.859 1.750 0.0004 1
35 Culiseta particeps 0.38 −0.496 1.995 * 2.934 1.659 0.0123 1
36 Culex restuans 0.844 0.459 1.995 * 2.261 1.635 0.0033 1
37 Aedes atlanticus 3.016 5.732 1.195 * −0.093 1.579 0.0001 1
38 Culex habilitator 3.016 5.732 1.195 * −0.093 1.579 0.0001 1
39 Anopheles bradleyi 1.281 3.442 1.876 * 0.962 1.457 0.0009 1
40 Culex apicalis 1.25 −0.238 1.772 * 1.334 1.366 0.0008 1
41 Culex peus 0.283 −0.28 *1.525 2.465 1.343 0.0011 1
42 Aedes squamiger 1.16 5.732 1.305 * 0.925 1.340 0.0001 1
43 Anopheles quadrimaculatus 0.358 −0.380 1.644 * 1.592 1.114 0.0019 1
44 Anopheles barberi −0.109 −0.028 1.019 * 2.533 1.096 0.0001 1
45 Aedes dupreei 0.188 −0.080 0.764 * 2.084 0.967 0.0002 1
46 Coquillettidia perturbans 0.963 −0.142 1.261 * 0.412 0.822 0.0004 1
47 Culex erythrothorax −0.094 −0.166 0.715 * 1.944 0.811 0.0004 1
48 Anopheles franciscanus 0.455 −0.328 1.037 * 0.997 0.771 0.0014 1
49 Culex territans 0.322 −0.115 0.913 * 1.198 0.766 0.0003 1
50 Aedes melanimon 0.135 −0.080 1.302 * 0.549 0.612 0.0002 1
51 Culiseta incidens −0.529 −0.267 0.596 * 1.722 0.556 0.001 1
52 Culiseta melanura −0.193 −0.080 0.686 * 1.036 0.478 0.0002 1
53 Anopheles freeborni −0.252 −0.115 0.379 * 1.288 0.446 0.0003 1
54 Aedes vexans −0.458 −0.328 0.453 * 1.388 0.425 0.0014 1
55 Aedes dorsalis −0.109 −0.028 * 0.207 * 0.889 0.315 0.0001 2
56 Psorophora columbiae −0.476 −0.305 0.516 * 0.958 0.299 0.0013 1
57 Psorophora signipennis −0.554 −0.280 0.663 * 0.556 0.188 0.0011 1
58 Orthopodomyia alba −0.109 −0.028 0.267 * 0.294 0.140 0.0001 1
59 Culiseta impatiens 0.500 −0.115 0.159 * −0.234 0.129 0.0003 1
60 Aedes nigromaculis −0.109 −0.028 −0.151 * −0.093 −0.113 0.0001 1

* Indicates that the mosquito species has been reported as positive for the associated MBFV.
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We then performed a community detection analysis of both networks, using the
Louvain algorithm for the detection of communities in large networks [41]. The method
consists of recurrently merging communities that optimize the degree of modularity as an
objective function with which to optimize the network. In the case of weighted networks,
it is defined in [41] as:

Q =
1

2m ∑i,k

[
Ai,k −

Vi Hj

2m

]
δ(ci, ck) (4)

where Ai,k represents the weight of the edge (ε value) between mosquito i and mammal
k; Vi = ∑k Ai,k is the sum of the weights of the edges attached to the mosquito species i;
Hk = ∑i Ai,k is the sum of the weights of edges attached to the mammal species k; ci is
the community to which mosquito i is assigned; the δ function δ(υ, ν) is 1 if υ = ν and
0 otherwise; and m = 1

2 ∑i,k Ai,k. Thus, the Louvain algorithm identifies those mosquito
communities that better represent the modularity of the underlying ecological network.

A hierarchical analysis of the species assemblages was performed by using structural
cohesive and embeddedness methods [42]. Structural cohesion is defined as the minimum
number of nodes which, if removed from a group, would disconnect the group. In this
regard, a collection of nodes is structurally cohesive to the extent that the relations of its
members hold it together. The identification of communities by their structural cohesion
is a process of cohesive blocking. Identification of the cohesive blocks involves a recur-
sive process: One first identifies the k-connectivity and the path connectivity of an input
graph, then removes the k-cutset(s) that hold(s) the network together. One then repeats
this procedure on the resulting subgraphs, until no further cutting can be completed. As
such, any (k + l)-connected set embedded within the network will be identified. More-
over, each procedure’s iteration takes us deeper into the network, as weakly connected
nodes are removed first, leaving stronger connected nodes and stronger connected sets.
As a consequence, it uncovers the nested structure of cohesion in a network. Lastly, the
implementation of this analysis was performed using the algorithm described by [42].

2.4. Predictive Models and Risk Maps

There are different ways in which predictive models may be generated from co-
occurrence data. Firstly, we generated predictive models to infer which mosquito species
are most likely to be vectors of a given MBFV, as well as those species most likely to be
vectors of multiple MBFVs. The intuition here is that those mosquito species with the most
statistically significant degree of co-occurrence with those mammal species which have
been confirmed positive for the MBFV are most likely to be vectors.

Although co-occurrence between a mosquito and infected mammals is a necessary
condition that the mosquito become infected, it is not sufficient. For instance, the mammal
may not be a competent host, or the mosquito may not preferentially feed on that mammal.
However, such co-occurrence models serve as a base model which can then be compared
to known results. We may thus determine if the known vector species are associated
with particularly high values of ε. A suitable null hypothesis for testing the predictive
performance of such a model is that known mosquito species are randomly distributed
in the list of mosquito species ranked by ε. Thus, if a regression of the number of positive
mosquito species against ε yields a significant regression coefficient then we determine that
this is not consistent with the null hypothesis and therefore ε is a predictor of the likelihood
that a given mosquito species is a vector of multiple pathogens or not. Explicitly, we divide
the ranked list of mosquito species into deciles and regress the percentage of known vector
species in each group against the average value of ε for those species in the decile.

Similarly, a simple predictive model for those mosquito species most likely to be associ-
ated with multiple MBFVs considers the weighted sum of ε values, as seen in Equation (3),
as this is a measure of the degree of co-occurrence between a mosquito species and all mam-
mal species identified as confirmed positives of any of the MBFVs. In this case, as with an
individual MBFV, we may divide the list of mosquito species into deciles and then regress,
for example, the number of known MBFVs associated with a given mosquito species as a
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function of the average value of the weighted mean of ε values for the mosquitos in that
decile. A statistically significant regression coefficient then implies that the weighted mean
of ε values is a predictor of the number of MBFVs associated with a given mosquito species.

It is worth pointing out here that another simple predictive model could be based
on the notion that those mosquitos most likely to be vectors of a given pathogen, or of
multiple pathogens, are those with the widest geographic distribution. The intuition here
is that if hosts were randomly distributed with respect to the mosquito distributions, then
one would expect to have a higher probability of infection for those mosquitos with the
widest distribution. If this is not the case, it is circumstantial evidence that the associations
between those mammals confirmed as positive and their potential vectors is non-random.

A next step is to identify those geographic regions with suitable ecological conditions
for MBFV presence. A risk map for a particular pathogen should consider the presence
of each biotic agent that is potentially involved in its transmission cycle, i.e., each vector-
confirmed positive interaction. In order to determine those spatial regions with a higher
risk for exhibiting mosquito-mammal interactions, we modelled the potential distribution
of each mosquito species based on the presence data for each co-occurring mammal using
the Score function, S(Bi|I), proposed in [43]; where S(Bi|I) is a measure of the probability
to find a presence of the variable Bi (i.e., a mosquito species) when the mammal profile is I.
As this score function can be calculated for each spatial cell, X∝, this approach allows us to
find those cells where vector and potential mammal hosts are most likely to co-occur and,
therefore, potentially interact.

To build a predictive model for a particular MBFV, each individual mosquito species
distribution model was used as a classifier, where score values > 0 are classified as corre-
sponding to potential mosquito presence, and on the contrary if the score is < 0. Finally,
individual maps were combined considering mosquito assemblages identified for each
MBFV in the network analysis.

3. Results

We identified in the literature 60 mosquito and 34 wild mammal species reported
as positive to the considered MBFVs (Supplementary Materials S1). We ranked those
mosquito species that could potentially harbor known MBFVs in Mexico (Table 1) based on
their co-occurrence with mammals that have been confirmed as positive for each MBFV
as proxied using ε. As mentioned, the intuition here is that—all else being equal—those
mosquitoes with the highest degree of co-occurrence with infected mammals will be those
most likely to be infected by taking blood meals from those mammals and therefore the
most likely to be infected when tested. We emphasize here the “all else being equal” caveat.
There are of course, other reasons why mosquitoes and mammals may co-occur and so
the identification of a mosquito-mammal interaction may be confounded. Among these
are shared fundamental niches, though, physiologically, a mammal and a mosquito are
so different, the confounding is not likely to be great. A more relevant confounder would
be the presence of avian hosts, whereby the co-occurrence relation between mammal and
mosquito was indirect or represented a spillover. We have stated why in the present study
we have not included birds. However, this subject deserves to be studied in the near future.

In this way, each column in Table 1, when ordered from highest to lowest ε values,
is a prediction model for those mosquito species that are most likely to be vectors of the
considered pathogens. Similarly, using the grouped adjacency matrix, by calculating the
weighted mean of ε values for each mosquito species, we may order by this weighted mean
and use this ordered list as a prediction model for those mosquitos most likely to be vectors
of multiple MBFVs.

In terms of the weighted mean of ε, at the top of the ranked list, we observed those
mosquito species that are widely distributed throughout Mexico, and which therefore,
by dint of their sample geographical distribution, allow for a significant potential inter-
action with the confirmed mammal hosts of the different MBFVs. Conversely, at the
bottom of the list, we find those mosquito species with reduced geographical distributions
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that therefore limit potential spatial interactions with the known mammals confirmed as
positive. Moreover, at the top of the ranked list, we also observed that the majority of
mosquitoes were confirmed as being positive to two or more pathogens (see Figure 1).
However, the fact that the most widely distributed mosquitos are highly ranked does not
mean that a model based on ranking according to distributional area is as predictive as our
model based on ranking according to ε. To illustrate this, we estimate the proportion of
the sample distribution area for each mosquito (Table 1, column 7), and then determine
the Pearson correlation between the two model types for each MBFV (Table 1, columns
3–7). The correlation coefficients for the two models for each MBFV are: ρDENV = 0.485,
ρYFV = 0.078, ρSLEV = 0.692, ρWNV = 0.760 and ρWeightdMean = 0.651. This indicates
that the models are quite distinct and that the pattern of positive mosquito species for
each MBFV is not determined by the pure random co-occurrence between mosquitos and
mammals, as proxied by their relative distributional areas. This is particularly the case for
DENV and YFV where the correlation coefficients are lower than the others.

Figure 1. List of vectors ranked by weighted mean ε. X-axis: Weighted mean ε. Y-axis: Number of confirmed pathogens
per mosquito.

Testing each prediction model using a regression analysis, we assessed the hypothesis
that confirmed vectors are in the top deciles of our ranked lists for each MBFV, and therefore,
that those mosquitoes in the top deciles are the most likely potential candidates to harbor
the corresponding virus. Table 2 shows the regression coefficient and corresponding t
and p-values for each model. For DENV, YFV and SLEV we note that the proportion
of confirmed vector species significantly increases towards the higher deciles and, thus,
is a predictor of which mosquito species are most likely to be vectors. The number of
previously confirmed vectors for these MBFVs were 2 (DENV), 3 (YFV) and 13 (SLEV),
respectively. However, our results indicate that for these MBFVs this number is most
probably an underestimate. Conversely, for WNV there is no significant relation between
the proportion of confirmed vectors and higher ε values. However, this result is to be
expected, given that 53 of the 60 mosquitoes assessed here are positive to WNV and,
consequently, the proportion of confirmed mosquito species must be similar throughout
the deciles of the ranked list.

Finally, we tested if the weighted sum of ε values and the size of distribution area are
able to predict which species are the most likely to be associated with multiple MBFVs.
For these multi-pathogen models, we expect that those mosquitos associated with more
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than one virus should be in the top deciles of the lists ranked by weighted ε or by the size
of the mosquitos’ ranges. In distinction to previous studies, where statistical differences
based on ε values and species size ranges have been noted in the case of single-pathogen
models [43], here we found in both cases a significant linear relationship (Table 2), therefore
showing that both higher ε values and range sizes are significant predictors of those vector
species which harbor multiple MBFVs. This result highlights the fact that, in a multi-
pathogen model, those vector species with wide geographic distributions are more likely
to be in contact with different pathogens.

Table 2. Regression coefficient and corresponding t- and p-values for each model.

Model R2 F p t p

DENV 0.71 19.63 0.002 4.43 0.002
YFV 0.46 6.81 0.031 2.61 0.031

SLEV 0.72 20.58 0.002 4.54 0.002
WNV 0.0003 0.00 0.962 −0.05 0.962

Weighted epsilon 0.64 14.49 0.005 3.81 0.005
Sample area 0.91 82.04 0.0002 9.06 0.0002

Community analysis identified four mosquito communities based on their spatial
proximity to those mammals confirmed as positive to each MBFV. The community associ-
ated with DENV and SLEV (formerly named DENV/SLEV) is composed of 16 mosquito
species. Nine of these are significantly linked with mosquito communities that are as-
sociated with another three MBFVs (Figure 2, red nodes). In this regard, Aedes aegypti,
Culex quinquefasciatus, C nigripalpus, C coronator, C erraticus, Psorophora howardii and Haema-
gogus mesodentatus are also linked with the YFV and WNV communities, A taeniorhynchus,
Psorophora ferox, Mansonia titillans and Uranotaenia lowii maintain links to the YFV commu-
nity and A trivitatus and A albopictus are related to WNV. The YFV mosquito community
contains 13 mosquito species (Figure 2, blue nodes). Anopheles crucians and Aedes scapu-
laris are also connected with both DENV/SLEV and WNV communities. Nine of these
mosquitos are also members of the DENV/SLEV community (Deinocerites cancer, C taenio-
pus, C bahamensis, C habilitator, A infirmatus, A atropos, Sabethes chloropterus, A fulvus and
A atlanticus). The WNV community contains 14 mosquito species (Figure 2, green nodes).
Three Culex spp. are linked to both DENV/SLEV and YFV communities (C pipiens, C quin-
quefasciatus and C salinarius), seven species are related to the DENV/SLEV community
(A punctipennis, C thriambus, C tarsalis, C stigmatosoma, C restuans and C particeps), and only
A triseriatus is related to the YFV community. Lastly, the “not linked” mosquito species
form a group that does not co-occur in any significant way with those hosts confirmed as
positive for any of the considered MBFVs. These nodes are not presented in Figure 2.

Next, the cohesion analysis applied to each subnetwork (as described above) allows
us to identify the most connected community for each MBFV. In this regard, the DENV,
SLEV and WNV subnetworks have the same species community, with the most significant
degree of cohesiveness consisting of 41 members (20 and 21 mosquito and mammal species,
respectively; see Figure 3a,c,d, red nodes). The YFV subnetwork has a cohesive community
(Figure 3b) with the same number of members (41 nodes represented by 20 and 21 mosquito
and mammal species, respectively). The difference between the cohesive blocks of the
two communities are just two nodes: A Condolescens, which appears in the DENV, SLEV
and WNV cohesive communities, but not in the YFV community, and D Cancer, which
belongs to the YFV community, but not the others. Finally, using the common nodes of
the four cohesive communities (most cohesive block), we identified the number of MBFVs
confirmed for each mosquito and mammal species (Figure 4). There, we observed that
37.5% of the 40 species are positive for two or more MBFVs.
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Figure 2. Louvain community detection by grouping mammals per pathogen.

Figure 3. Cohesion analysis by path detection. STATUS: represents the confirmation and path relationship between nodes
(Positive: Nodes reported as positive to MBFV, Linked N/C: Nodes linked to a positive node but not confirmed, not
linked: Nodes without an Edge to any positive node). COHESION: Cohesion value (greater value implies more cohesion).
GROUP: type of node (circle: mammals, triangle: vectors). (A): Dengue (DENV), (B): Yellow fever virus (YFV), (C): St. Louis
encephalitis virus (SLEV) and (D): West Nile virus (WNV).
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Figure 4. Cohesive block: Common member of the most cohesive blocks of the four pathogens. X-axis: Mosquitoes and
mammal species. Y-axis: Number of confirmed pathogens per species.

Regarding our distribution maps, we considered the spatial distribution of the 34 con-
firmed mammals. Then, we observed that the first four mosquito species at the top of our
ranked list have quite similar spatial distributions (see Figure 5). As mentioned above,
these mosquito species are spatially connected with several MBFV nodes (see Figure 2).
We then overlapped the prediction maps of each mosquito species for the three mosquito
communities associated with the MBFVs´ nodes, described in Figure 2 (DENV/SLEV,
WNV and YFV; Figure 6a–c). In this way, we observed that the spatial distribution of
mosquito species richness is similar for the three communities associated with the MBFVs.
Using a standardized scale, we notice that the higher risk zones are located at both Mexican
coasts (Atlantic and Pacific) and in Central Mexico. Finally, we observed that the spatial
distribution of risk for the different MBFVs, associated with their corresponding mosquito
communities, is similar. The validation of these predicted distributions requires data asso-
ciated with the spatial distribution of cases of these MBFVs in Mexico. Unfortunately, for
YFV there have been no published cases and limited data are available for SLEV and WNV.
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Figure 6. Predicted richness map distributions. (a): Dengue virus and St. Louis encephalitis virus
community. (b): Yellow fever virus community. (c): West Nile virus community.

4. Discussion

Active surveillance and current research on mosquito vectors of MBFVs is mostly
focused on the most abundant species in urban settings, A aegypti and C quinquefiasciatus,
and on humans as hosts [8,44,45]. However, we should not underestimate the importance
in viral transmission of other vector and host species, as well as the communities that
they form [46]. It is essential to improve mosquito management strategies, as well as
predict, prevent and control diseases caused by MBFVs. An important task is to predict
which mosquito species are potentially the most important vectors, both for a particular
pathogen as well as for multiple pathogens. In this case, Table 1 describes six different
prediction models, four single-pathogen models (Columns 3–6), one multi-pathogen model
(Column 7) and one model based only on mosquito distribution area (Column 8).
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The predictive single-pathogen models classify mosquitoes based on the estimation
of the potential risk area of each pathogen given the known information about MBFV-
confirmed positive mammals. In this sense, this classification is associated with the number
of confirmed MBFV-confirmed positive mammals and their distribution area. Thus, one
might expect that those mosquitoes with a larger distributional area would be those most
likely to be infected. However, we clearly see that this is not the case, and is particularly so
for YFV and DENV. For example, for the YFV model, using only the two known confirmed
positive mammals, the ranked list by ε is completely different to the list ranked by mosquito
species distributional area. We therefore infer that the non-random co-occurrence between
vector and host is due to some underlying interaction, such as the fact that the mosquito
feeds on these mammal species, or that there is some underlying abiotic factor that links the
vector and these mammal species. The correlation between the ε-based and distributional
area-based models for DENV also exhibits relatively little correlation (0.485), in spite of the
fact that there are 14 identified hosts, the same as WNV where, in the latter, the correlation
coefficient between the two models is 0.760. We interpret this difference as evidence that
DENV is more specialized in its transmission cycle to particular mosquito-mammal pairs,
whereas WNV is more permissive, being preferentially linked to those mosquitoes that
have the widest distributional area.

On the other hand, we see that the multi-pathogen model using the mean value
of ε leads to very similar results to that of the distributional model, with a correlation
coefficient of 0.651 between the two lists. We interpret this as being due to the fact that the
confirmed positive mammals taken across all four MBFVs represent a very diverse and
heterogeneous set of niche conditions. In this circumstance, one would not expect to see
a specialized ecological relationship between a given mosquito species and these many
mammal species, as the latter do not possess any relevant characteristic that could represent
a basis for such a specialization. In this case then one would expect mosquito distributional
area to be a good predictor of probability of being a vector for multiple pathogens.

Interestingly, our ranking is consistent with known evidence of these mosquito species
as potential vectors of different pathogens. The most studied species for example, A aegypti,
was the first ranked species in our list, and is well known for its capacity to transmit all
our considered MBFVs, as well as other pathogenic viruses [47,48]. The second-ranked
mosquito species, C coronator, inhabits rural areas [49]. However, its ecology and epidemi-
ology are poorly known. With our approach, we note that it is strongly associated with
mammals confirmed as positive for DENV, YFV and SLEV, which leads us to hypothesize
that it is a likely vector of one or more of these MBFVs. As rural and synanthropic species
can invade natural areas, taking advantage of human behaviors that promote favorable
sites for reproduction (e.g., garbage management), its monitoring should be extended to
urban, rural and natural areas. The third in our ranked list, C quinquefasciatus (Table 1 and
Figure 1), is the most abundant species in Mexican urban settings [50]. It feeds on both birds
and mammals (principally on humans and dogs [50]), and therefore may transmit different
pathogens (such as WNV and ZIKV [51]) among a wide diversity of hosts. The fourth in
our ranked list is C nigripalpus, from which SLEV was isolated in Southern Mexico [22].
The fifth in our ranked list, H mesodentatus, is highly ranked as a vector of DENV, YFV and
SLEV (Table 1), but much less so for WNV. In fact, YFV was isolated from this mosquito
species in Guatemala [52], and currently, DENV serotype 1 was detected in its conspecific
H leucocelaenus in Brazil [53]. Therefore, our approach accurately suggests the potential role
of different mosquito species in a multi-pathogenic framework.

Figure 2 shows the mosquito assemblages linked to each MBFV. This network shows
that 37 mosquitoes out of 60 (61.67%) are potentially associated with two or more MBFVs.
In spite of the limited virological evidence in this case, 6 out of 60 mosquitoes (16.67%)
have been confirmed as positive to two or more pathogens. It is interesting to note that the
community with the highest mosquito richness (with 16 species) merge both DENV and
SLEV as both viruses share five hosts (J = 0.2273, Jaccard index). This mosquito community
includes the most abundant and studied species in Mexico, such as A aegypti, A albopictus,
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C nigripalpus, C coronator and P ferox [22,37,49,54]. This mosquito community also includes
C erraticus, which is one of the most abundant species in temperate regions [55]. It also
includes H mesodentatus and Psorophora howardii, that inhabit sylvatic sites which can
be linked to potential wild mammal hosts [54,56]. With our approach, we see that the
DENV/SLEV community involves nine mosquito genera, including both anthropophilic
and non-anthropophilic mosquitoes (e.g., A aegypti and Uranotaenia sp., respectively) and
which inhabit distinct habitats, such as urban, sub-urban and pristine areas (Figure 2).
So, although DENV is well established in urban settlements, where it circulates mainly
between humans, A aegypti and A albopictus [37]; in other tropical countries, other Aedes
spp. have been linked to DENV sylvatic cycles [57], while other genera (Sabethes and Culex)
have been incriminated by molecular findings [58,59]. These results are consistent with our
prediction that the DENV transmission cycle is much more complex and diverse than that
suggested by its link to A aegypti and A albopictus in urban environments. Similarly, SLEV,
which originated from Central America and circulates mainly between Culex mosquitoes
and avian or mammal hosts [22,60], is predicted to have a complex transmission cycle, with
multiple vectors and hosts involved. Together, our findings suggest that DENV and SLEV
are more generalist than had been previously thought.

Turning now to a discussion of the complex inference networks for MBFVs, we noted
that the mosquito communities linked with WNV and YFV have lower species richness
than the DENV/SLEV community, with just 14 and 13 species, respectively (Figure 2). The
WNV community includes two of the primary vectors of this MBFV, C quinquefasciatus
and C pipiens. It also includes ornithophilic species (C quinquefasciatus, C pipiens and
A punctipennis) that alternate their blood meals between avian and mammalian hosts [61].
It is well known that WNV infects a wide range of mosquito genera, and other hosts,
including sandflies, ticks, reptiles and amphibians [36,62–64] and has been reported in most
parts of Mexico, including both urban and natural areas. So, there are many mosquito and
avian species, as well as domestic animals, incriminated in its transmission cycle [18,45,65],
though current knowledge about the species involved is insufficient and there are many
gaps in our knowledge of WNV dynamics.

The YFV mosquito assemblage includes S chloropterus, which has been incriminated
in YFV circulation in South America [35]. Besides Aedes mosquitoes, this community
also includes other genera that may be involved in YFV transmission, but have not yet
been tested (e.g., Deinocerites). Circulation of YFV in Mexico has not been confirmed in
mosquitoes, and, regarding hosts, there are only reports of antibodies against this virus
in bats and urban rodents from Merida city, in the Yucatan Peninsula [15,16]. However,
these results may represent cross-reactions with other circulating MBFVs within serological
tests [15,16]. YFV in humans was eradicated from Mexico many decades ago, but it still
circulates in Central America and various Caribbean islands within primates and arboreal
mosquitoes [66]. Our results suggest that we should consider a potentially wide range of
vectors and hosts when evaluating the risk of reintroduction of YFV into Mexico. Currently,
the study of arboreal mosquito communities is neglected, and entomologic studies in
pristine areas, where many potential hosts can be found, are scarce [54].

The “disconnected” assemblage (mosquitoes not shown in Figure 2) includes mosquito
species that are at the bottom of our ranked list and therefore with relatively lower lev-
els of co-occurrence with infected mammals. However, their potential role in MBFVs´
transmission cycles should not be completely discarded. For example, A vexans has been
found to be positive for ZIKV, and therefore it is essential to consider it as a potential
multi-pathogen vector [51]. In fact, we should not a priori underestimate the direct or
indirect participation of any species (vector or host) in the MBFVs´ dynamic but, rather,
use approaches such as ours to prioritize disease surveillance efforts, test new hypotheses
and develop actionable information regarding public health and biodiversity conservation.
Furthermore, recognizing how mosquito communities modify MBFVs’ transmission cycles
is important to be able to infer and predict viral dynamics [67].
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In Figure 3, we observed that the direct connectivity of the subnetwork associated to
DENV includes 82.98% (78 out of 94) of all nodes (see STATUS on Figure 3a). Meanwhile,
the YFV subnetwork contains 60.63% of all species (see STATUS Figure 3b), of which only
five species (three and two mosquito and mammal species, respectively) were confirmed
as positive to YFV. Similarly, the SLEV and WNV subnetworks include 96.81% and 98.94%
of all nodes, respectively (see STATUS Figure 3c,d). The WNV subnetwork shows that
69 species (16 and 53 mammal and mosquito species, respectively) are confirmed as positive
to WNV. Here, we constructed a cohesive community, which describes mosquito-mammal
assemblages with a high degree of spatial correlation. We observed that all subnetworks
have similar connectivity paths and contain the most highly connected nodes (as describe in
Results section). The common members of the most cohesive assemblage of all pathogens
(Figure 4) includes the primary mosquito vector A aegypti as well as other well-known
species, such as C quinquefasciatus, C pipiens and A albopictus, among others. It also contains
mammals with abundant populations, that are well-adapted to human environments, such
as the white-tailed deer (Odocoileus virginianus), peccary (Tayassu pecari), opossum (Didelphis
marsupialis) and bats (Artibeus lituratus and Sturnira lilium). Opossums and bats have also
been confirmed as positive for two of our four MBFVs [13,16,17,68]. In this regard, we may
consider the most cohesive network as a “core group” of those potential hosts involved in
MBFVs in Mexico, and also emphasizes the importance of considering transmission cycles
from a multi-MBFV-vector-host perspective.

To our knowledge, there are no risk maps that predict the distribution of mosquito
vectors or of multiple MBFVs in Mexico. At a regional level, geographical information has
been restricted to distribution maps for a few mosquito species, such as A cozumelensis,
C quinquefasciatus and C coronator [49]. At the country level, most of the information is in the
form of incidence maps for DENV based on human cases [8]. An exception is found in [28],
who used the current approach but analyzed only the potential distribution of the single
vector A aegypti and its co-occurrence with Mexican wild mammals. In this regard, we
extended the approach of [34] to estimate the distribution of pathogens through the richness
of their potential vectors, where the latter considers the extraction of communities based
on the MBFV’s distributions from those mammals confirmed as positive as a proxy for the
distribution of the pathogen itself. For example, Figure 5 shows the potential distribution of
A aegypti, a well-known predictor for the distribution of DENV, based on the co-occurrence
of these 34 known confirmed positive mammals, but this prediction does not consider the
potential role of other mosquito species. However, by including the mosquito assemblages
of our community network analysis (Figure 2), we can estimate the distribution of MBFVs
based on the distributions of those vectors which have been identified as positive to at
least one MBFV. So, mosquito richness can be used as a proxy with which to predict
the probability to find MBFVs in a particular area. In this sense, Figure 6a shows a
prediction of the distribution of DENV and SLEV given by the community of multiple
vectors and multiple confirmed positive mammals. Comparing these two distributions
(Figures 5 and 6a) we can see that the distribution of A aegypti is limited and it does
not reveal an appropriate pathogen distribution, but our model shows a more inclusive
distribution. Moreover, Figure 6b,c describe the potential distribution of the YFV and WNV
communities, respectively. Both predicted distributions are similar to the DENV/SLEV
distribution, but with the WNV distribution showing a trend towards northern states of
Mexico. Within this complex scenario, the potential distribution of MBFVs is expanded.
This is especially the case for poorly known vector and host species, which have generally
been neglected by health authorities, but which could play an important role in those
enzootic cycles of zoonotic pathogens that are essential for the maintenance of MBFVs
in nature and this is relevant information for the monitoring of arboviral diseases and
their vectors.

Our analysis did not consider some other confirmed positive mammals as potential
hosts due to the fact that they are poorly represented in the data set, including rodents of the
genera Rattus and Mus, in spite of the fact that they are associated with MBFVs in urban and
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rural sites in Mexico [15,65,69]. Similarly, for domestic mammals and other potential non-
mammalian warm-blooded hosts [65]. The presence of domestic animals in natural habitats
modifies the transmission of vector-transmitted pathogens, so their potential role in the
transmission cycle deserves further study [70]. Our approach considers the co-occurrence
among potential vectors and wild mammals that have been confirmed positive, but it does
not guarantee that the species interact with each other, as co-occurrence is a necessary
but not sufficient condition for interaction. For example, the fact that mosquito females
might feed on these mammals does not itself prove MBFV transmission. So, we need to
confirm a trophic interaction between mosquitoes and potential wild hosts in conserved
and disturbed sites in order to evaluate the potential participants within enzootic and
epizootic transmission cycles [71]. Most of the mosquito species listed are anthropophilic,
but they can feed on any available warm-blooded hosts [72]. However, small size mammals
are not usually a typical food source among mosquitoes [58,73], while other mosquito
species seem to not bite humans, such as Uranotaenia sapphirina and Ur. lowii, that feed
on amphibians [74], or Orthopodomyia alba that feeds on wild birds [75]. As the choice of
a blood meal by mosquitoes depends on the current availability of warm-blooded hosts,
in this paper we do not exclude any potential trophic interactions between mosquitoes
and mammals.

Although our approach is capable of predicting and understanding the transmis-
sion cycles of any MBFV, along with any biotic agents whatsoever, it does require the
corresponding data for both the MBFVs and the agents. It is for that reason we restricted
attention to DENV, YFV, SLEV and WNV and to only potential mammalian hosts, as there
have been multiple studies that have confirmed an ample number of mammal species
as being infected with these MBFVs. By this we do not wish to imply that avian hosts
are not important, especially in the case of WNV and SLEV. We will return, in the future,
to a consideration of both mammalian and avian potential hosts so as to make a potential
comparison of their relative importance in the transmission cycle of these MBFVs and,
importantly, their potential role from a multi-pathogenic perspective. Additionally, our
methodology is capable of disentangling causal chains so as to better understand the role
of confounders [76,77]. This is particularly relevant in the case of mammals and birds as
their co-occurrence with MBFVs may be intermediated by mutual interactions other than
direct interactions with mosquitos.

Our approach in this paper combines both recently developed analytical tools and
empirical knowledge about potential vectors and hosts. However, its application must be
long-term, active and empirically tested, due to the fact that mosquito and host diversity
and range, and their associated distributions, are quite dynamic. Additionally, current
global changes, most of which are of anthropogenic origin, are modifying viral dynamics.
We must therefore be prepared for future pathogen emergence and invasions. Finally, it is
urgent to better understand and quantify the current distribution of MBFVs in Mexico in
order to improve the decision-making process in these areas: (a) wild mammal conservation
priorities; (b) mosquito management; and (c) prediction, prevention, and control of vector-
borne diseases. Finally, our approach emphasizes the importance of designing and using
new theoretical models to better understand the dynamics of MBFVs and, in particular,
to view and model them from a multi-pathogenic point of view.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12050398/s1, Supplementary Materials S1. List of positive confirmed mammals for
some MBFV. The table includes 5 columns: Mammals—the name of the mammal species. DENV—1
indicates that the mammal species has been confirmed positive for DENV, 0 otherwise. YFV—1
indicates that the mammal species has been confirmed positive for YFV, 0 otherwise. SLEV—1
indicates that the mammal species has been confirmed positive for SLEV, 0 otherwise. WNV—1
indicates that the mammal species has been confirmed positive for WNV, 0 otherwise.
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