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ABSTRACT Estimation of genetic population structure based on molecular markers is a common task ~ KEYWORDS

in population genetics and ecology. We apply a generalized linear model with LASSO regularization ~ community

to infer relationships between individuals and populations from molecular marker data. Specifically, detection

we apply a neighborhood selection algorithm to infer population genetic structure and gene flow  graphical models
between populations. The resulting relationships are used to construct an individual-level population  neighborhood
graph. Different network substructures known as communities are then dissociated from each other selection

using a community detection algorithm. Inference of population structure using networks combines  population

the good properties of: (i) network theory (broad collection of tools, including aesthetically pleasing genetic
visualization), (i) principal component analysis (dimension reduction together with simple visual in- structure

spection), and (iii) model-based methods (e.g., ancestry coefficient estimates). We have named our
process CONE (for community oriented network estimation). CONE has fewer restrictions than con-
ventional assignment methods in that properties such as the number of subpopulations need not be
fixed before the analysis and the sample may include close relatives or involve uneven sampling.
Applying CONE on simulated data sets resulted in more accurate estimates of the true number of
subpopulations than model-based methods, and provided comparable ancestry coefficient esti-
mates. Inference of empirical data sets of teosinte single nucleotide polymorphism, bacterial disease
outbreak, and the human genome diversity panel illustrate that population structures estimated with
CONE are consistent with the earlier findings

population graph

Network thinking has opened up new avenues for biological research
and has recently gained popularity in fields such as ecology, epidemi-
ology, and population genetics (Proulx et al. 2005; Dyer et al. 2010;
Jombart et al. 2011; Dyer 2014; Greenbaum et al. 2016). For example, it
has improved our ability to understand and disentangle the demographic
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and evolutionary processes that have shaped the genetic architecture of
natural populations and maintained their genetic variation, which has
important implications for conservation genetics, medicine, and ep-
idemiological investigations. Here, we show that the concepts of net-
work theory can help to infer interconnections within and between
subpopulations, and to better visualize the associated demographic
and evolutionary processes.

Recent breakthroughs in high-throughput sequencing technologies
have paved the way toward large-scale sequencing of nonmodel organ-
isms. In human genetics, efforts are underway to screen the worldwide
genetic variation by sequencing thousands of individuals to generate
millions of sequence variants (Abecasis et al. 2012). Today, the scope for
drawing new conclusions from studies in population genetics is no
longer limited by the data-generating process but by the statistical
methods available to analyze the vast amounts of data that are
generated. In particular, there is a need for new statistical models
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for handling so-called “large p, small #” cases, where p is the number of
markers (parameters) and # is the number of individuals sequenced in
the population of interest. One promising technique for this purpose is
graph modeling, which has several qualities that are advantageous in
the analysis of high-dimensional data (Meinshausen and Bithlmann
2006).

Traditionally, distance-based and model-based techniques have
been used to explore latent genetic structure at the population
level and infer genetic ancestry. Distance-based methods generally
rely on multivariate techniques and are also known as model-free
or algorithmic methods (Wollstein and Lao 2015). Perhaps the
most popular model-free technique is principal component anal-
ysis (PCA) (Price et al. 2006), which is implemented in software
packages such as EIGENSOFT, adegenet, and DAPC (Price et al.
2006; Jombart et al. 2010). An appealing property of these meth-
ods is that they require no assumptions about the underlying
population genetic model, and the required computational time is
manageable even when analyzing high-dimensional data sets. How-
ever, they have some notable drawbacks. First, one must choose a
distance metric from a set of many candidates, which determines
how the weighting of common and rare alleles in the populations of
interest will be set. Second, the lack of a probabilistic framework
necessitates the partitioning of individuals via ad hoc visualization
methods, although alternative solutions do exist (Jombart et al
2010).

Model-based population assignment methods have been used
extensively as alternatives to distance-based methods (Pritchard
et al. 2000; Tang et al. 2005; Alexander et al. 2009; Frichot et al.
2014; Raj et al. 2014). The objective of population assignment
methods is to use genetic information (molecular markers mea-
sured along individual DNA sequences) to assign individuals to
subpopulations and provide estimates for the ancestry coefficients.
The multinomial-Dirichlet generative model is widely used in popular
implementations of this approach such as STRUCTURE (Pritchard
et al. 2000; Falush et al. 2003), TESS (Chen et al. 2007), and BAPS
(Corander et al. 2003). Determining the number of subpopulations is
challenging when using these approaches, as is handling large-scale
data sets containing thousands of markers. An attempt to overcome
these difficulties by using maximum a posteriori estimation has re-
cently been published (Raj et al. 2014). Here we approach the same
problem from a different angle, by estimating the network topology,
which reflects the relatedness structure between individuals: We
refer to the output (i.e., the construction of a network from individ-
uals) as an individual-level population graph, in contrast to pre-
viously reported subpopulation-level works (Dyer and Nason 2004;
Dyer et al. 2010; Dyer 2014).

An individual-level population graph model in which connections
between population members are evaluated based on genetic similarities
was recently presented by Greenbaum et al. (2016). This approach, like
the earlier work of Dyer and Nason (2004) and Dyer et al. (2010), used
Gaussian models, which might give rise to spurious relationships
(Cushman and Landguth 2010). An alternative method using likeli-
hood theory of generalized linear models (GLMs) that can better ac-
count for the discrete nature of genotype data and exploit all of the
samples in the data set would thus be desirable. Moreover, Greenbaum
et al. (2016) truncated genetic relationships at a preselected threshold to
make their graph sparser and more realistic. Here, regularization tech-
niques such as the LASSO could be appealing alternatives to this ap-
proach if paired with a stability selection method (Meinshausen and
Bithlmann 2010) to introduce sparseness and find an optimal regula-
rization of the graph in a data-dependent way.

3360 | M. O. Kuismin, J. Ahlinder, and M. J. Sillanpaa

Thus, a novel graph-construction method is proposed that has some
important advantages over graph methods which have previously been
applied to population genetic data:

1. The population structure problem is divided into smaller compo-
nents via a neighborhood selection method (Meinshausen and
Bithlmann 2006), which enables the analysis of high-dimensional
genetic data.

2. The genetic relationship between individuals is exploited to di-
rectly determine their connectedness by means of a GLM frame-
work in which the discreteness of multi-locus genotype data are
acknowledged.

3. A stability-based subsampling and network modularity-based
methods are used to choose the regularization parameter in a
data-dependent manner.

4. The number of latent populations does not need to be fixed in the
analysis, and by using a suitable community detection algorithm
we can better recognize communities (i.e., clusters) in the inferred
network.

5. Related individuals can be included in the analysis as the method
has a natural way of illustrating the relatedness structure.

We have named this multiphase procedure CONE, or “community
oriented network estimation.” The CONE process can be divided into
five steps: (i) identification of an appropriate model (e.g., LASSO) for
the neighborhood selection scheme; (ii) selection of an appropriate
tuning parameter for LASSO with, e.g, stability-based subsampling;
(iii) analysis of the full data set using the selected neighborhood selec-
tion procedure and the tuning parameter determined in the preceding
step; (iv) division of individuals into different communities using a
suitable community detection algorithm; and (v) estimation of ancestry
coefficients.

We examine an undirected graph linked with the exponential
family of distributions of random variables. We restrict our focus to
genotype data for molecular markers associated with the multino-
mial distribution, and draw a parallel between the estimated graph-
ical model and the underlying network structure. It is important to
note here that our parameterization of multinomial distribution
differs clearly from that of assignment methods: we use individu-
al-level genotype probabilities instead of population-level frequency
parameters. We also note that while there is a conceptual difference
between a graph and a network, it is hard to make a practical dis-
tinction between the two concepts based on their usage in the sta-
tistical and genetically oriented literature (see e.g., Dyer and Nason
2004; Meinshausen and Bithlmann 2006, 2010; Friedman et al. 2008;
Dyer 2014; Greenbaum et al. 2016; Li and Jackson 2015). We there-
fore use the terms network and graph interchangeably.

MATERIALS AND METHODS

Simulated data
We simulated independent microsatellite data sets (two-digit coding)
using the software EASYPOP (version 2.0.1) (Balloux 2001). We ex-
amined three different scenarios with unequal sample sizes: (i) an island
model (scenario 1), (ii) a hierarchical island model with two subpop-
ulations equally grouped into two archipelagos (scenario 2), and (iii) a
hierarchical stepping-stone model with two subpopulations separated
by a central contact zone (scenario 3).

For each model, 50 data sets were simulated with 10 populations, and
(i) adifferent number of individuals per each population (160 individuals
in the first and second population, 80 in the third and fourth, 40 in the
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fifth and sixth, 20 in the seventh and eighth, and 10 individuals in the
ninth and tenth population), and (ii) an even number of individuals (62)
for each population. Here, we followed one of the sampling scenarios
of Puechmaille (2016). All parameters in EASYPOP were set according
to the works of Evanno et al. (2005) and Puechmaille (2016): individ-
uals were diploid, with two sexes with an equal number of males and
females in each population, and a random mating system was used.
Migration rates within sets were set to 0.01 and 0.001 between sets,
equal for both sexes. The mutation model was set as a mixed single-step
mutation model with an equal probability (0.3) to mutate to any allelic
state at a rate of 0.001. Data were generated for a set of 2000 individuals
with free recombination between loci, each with two possible allelic
states.

The alleles were merged into numerical values 0 (allele pair 0101),
1 (allele pair 0102 or 0201), and 2 (allele pair 0202). Simulations were run
for 10,000 generations to ensure equilibrium between drift, migration,
and mutation. EASYPOP syntax files, used in the simulations, and the R
scripts used for the simulation analysis are provided in Supplemental
Material, File S1.

Simulation of admixed populations

To simulate SNP data from a binomial model, we chose the HapMap
phase 3 CEU, CHB, and YRI samples as our ancestral populations. We
chose SNPs spaced at least 200 kb apart and the minor allele frequencies
calculated over the three populations were used as the true values of the
allele-frequency matrix. Then we chose an arbitrary subsample of loci so
that the final allele-frequency matrix contained 2500 columns. Finally,
we simulated genotypes following the binomial model presented for
example in Alexander et al. (2009) using six different models for the
true values of the Q matrix of admixture coefficients. Each simulated
data set included 600 unrelated individuals genotyped at 2500 loci. We
generated the Q matrix independently from the Dirichlet distributions,
Dir(B, v, 8), with different levels of admixture controlled with param-
eters B, v, and 8.

Teosinte data

We initially evaluated the performance of CONE by applying it to a
moderately sized SNP genotype data set gathered from 21 different
populations of teosinte, the wild ancestor of maize, from various
locations in Mexico (Pyhéjérvi et al. 2013). The data contains samples
from two different subspecies, Zea mays subsp. parviglumis (11 popu-
lations) and Z. mays subsp. mexicana (10 populations).

Here, we used the same set of markers as Pyhdjarvi et al. (2013). We
recoded the data with numerical values of 0, 1, or 2, corresponding to
the homozygous genotype AA, the heterozygous genotype AB, and the
other homozygous genotype BB, respectively. There were no mono-
morphic markers and SNPs with >10% missing data had previously
been removed from the data set. Nevertheless, 16,891 markers had
missing sample genotypes: We imputed these missing genotypes (once)
with the most common genotype of the corresponding marker (the
locus mode). There were also two individuals that did not belong to
the wild maize populations and were identified as maize hybrids within
the mexicana samples. These hybrids were not identified in the public
data set so we did not remove them from our data; we expected that
the corresponding individuals would have insignificant effects on
our population structure analysis. Our final data set thus contained
250 samples (columns N) and 36,719 markers (rows L) with no
missing genotypes. We also performed some fine-scale analysis over
the parviglumis and mexicana subspecies. For these data subsets, we
again used the same 36,719 SNPs as Pyhdjarvi et al. (2013), but due
to the smaller sample sizes, we removed the monomorphic markers.
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Imputation was performed as described above. The final data set for
parviglumis populations contained 130 samples and 35,727 SNPs,
while the mexicana data set contained 120 samples and 35,500
SNPs. The teosinte SNP data set together with some supplemental
files are available at http://datadryad.org/resource/doi:10.5061/
dryad.8m648.

Escherichia coli data

Salipante et al. (2015) analyzed 312 blood- and urine-derived isolates of
extraintestinal pathogenic E. coli (ExPEC), a common agent of sepsis
and urinary tract infections. The isolates were obtained during the
course of routine clinical care at a single institution. Whole genome
analysis was performed to infer phylogenetic relationships and detect
partitions in the population. A subset of 120 genomes was selected for
analysis here. Draft genomes were aligned against the reference E. coli
K12MG1665 genome (GenBank ID: 556503834) using Progressive-
Mauve (Darling et al. 2010) with default settings. A phylogenetic
tree was obtained using the neighbor-joining algorithm in MEGA6
(Tamura et al. 2013).

The data set contained 121 strains, including the reference
K12MG1665 and 348,859 SNP markers. Before conducting our analysis,
we removed SNPs with >5% missing alleles. We then imputed the
remaining missing genotypes (once) with the most common variant
at the corresponding site. The final data set contained 333,549 SNPs
with no monomorphic markers.

We recoded the data with numerical values of 1, 2, 3, and 4 accord-
ing to the allele (i.e., nucleotide) present at each locus. Because the
data set pertains to a haploid organism, we note that in contrast to
Equation 1 there are now four vectors to consider Eg, g=1,...,4,
corresponding to each individual locus instead of allele pairs. Using
numerical values 1, 2, 3, and 4 does not violate our neighborhood
selection framework because CONE can be generalized to an arbi-
trary number of genotypes (classes). CONE can thus be implemented
exactly as described later in the article: an estimated edge exists be-
tween nodes (strains) i and j, i,j = 1,...,121, if and only if ,ég is
nonzero for some g.

HGDP data

We used a SNP data set, named the Stanford HGDP SNP genotyping
data set (Rosenberg et al. 2002). The data set contains 1043 individuals
from 51 different populations and 660,918 SNP markers. We recoded
the data with numerical values of 0, 1, or 2 according to the number of
reference alleles C or G in the genotype. As was also done by Raj et al.
(2014), we removed SNPs that were monomorphic or had >5% of the
genotypes missing. We then imputed the missing genotypes (once)
with the most common genotype of the corresponding marker, as
was done with the teosinte data. The final data set included 659,421
markers and 1043 individuals. In contrast to the approach adopted by
Li et al. (2008) and Raj et al. (2014), we did not modify the data prior to
analysis by performing a Hardy-Weinberg equilibrium test or remov-
ing related individuals; this did not adversely affect the CONE pro-
cedure and the results obtained were comparable to those reported
previously (Li et al. 2008; Raj et al. 2014). The data are freely available
at http://www.hagsc.org/hgdp/files.html and are also deposited at
Fondation Jean Dausset-CEPH (http://www.cephb.fr/en/hgdp_panel.
php#basedonnees).

Graphical model
Let X = (X, ... 7XN)T be a random vector of N individuals. The un-
directed graph can be used to visualize the relationships between these
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individuals. We describe such a graph as a population graph because it
can be used to illustrate the individual-level population structure in a
similar way to software such as STRUCTURE, without requiring any
prior information about the population structure. Let G = (N, ¢) be a
graphical model, where A" = {1,..., N} is a set of nodes and ¢ is a set
of edges (i,j),i,j = 1,...,N, i # j in N. Each individual corresponds
to one node in the set A and a pair (i, j) is contained in the edge set ¢ if
and only if individual X; is conditionally dependent on individual X;
given all remaining individuals. More informally, there is a probabilistic
relationship between individuals X; and X; when the effect of all
remaining variables is eliminated; if this condition is satisfied, we say
that there is an edge between 7 and j or vice versa.

With large data sets containing thousands of individuals and enor-
mous numbers of SNP markers, solving the graph-selection problem
quickly becomes unfeasible. However, the problem can be made simpler
by adopting a regression approach whereby one estimates the neighbor-
hood of the node i by performing a regression of the variable X; on the
rest of the variables. The main motivation for using regression in net-
work analysis is to divide the graph-selection problem into much
smaller so-called “neighborhood selection problems” (Meinshausen
and Bithlmann 2006). Analyzing each node one by one makes it pos-
sible to analyze large data sets by estimating N nodes, each of size 2N 1.
Dividing the graph construction into smaller subproblems also makes it
possible to use parallel computing to increase time efficiency. Graph
estimates obtained using the strategy outlined above can be described as
dependency networks (Heckerman et al. 2000).

In this discussion we ignore some of the more sophisticated issues
relating to neighborhood selection; we refer the reader to publications
such as that of Meinshausen and Biithlmann (2006) for information on
graphical models associated with the Gaussian distribution. We ap-
proach the neighborhood selection as a regularized linear regression
problem (i.e., a problem of penalized regression) and use an N XN
symmetric adjacency matrix to depict the relationships between indi-
viduals (nodes). The elements of the adjacency matrix are either zero or
one. Each zero entry of the matrix indicates absence of an edge between
the nodes represented on the corresponding column and row. For
convenience, we will refer to this kind of neighborhood selection pro-
cedure based on L;-penalized (a so-called LASSO penalty) regression as
Meinshausen and Bithlmann-style (MB-style) neighborhood selection.

In the case of undirected graphs, the relationships between nodes are
visualized by drawing undirected lines (edges) between related nodes.
With Gaussian data, conditional independence is related to partial
correlations, and is consistent with the examination of zero entries in
the Gaussian inverse covariance matrix (Edwards 2000). Here we are
more interested in neighborhood selection, which is a subproblem of
covariance selection for Gaussian data.

The neighborhood selection scheme

For diploid organisms, we assume that each locus in the population has P
possible genotypes with nonzero frequencies. In general, we can assume
that P> 2 and the categories have no specific order. For every sample
(individual) there are now P different random variables corresponding
to the different genotypes, and the molecular markers for each sample
are divided into these categories. For one locus of a diploid organism,
there would be three categories corresponding to three different geno-
types AA, AB, and BB, meaning that P = 3. For the sake of simplicity,
we will describe our method for individuals representing diploid
organisms. Thus, each individual determines multiple different ran-
dom variables and their joint probability distribution through a
multinomial distribution Multinomial;(py, p2, p3; L), where py,ps
and p; = 1—p; — p, correspond to the genotype probabilities of
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the L measured markers of individual i, i=1,...,N. Again,
P1, P2, and ps have nothing to do with population frequencies. How-
ever, it is natural to expect that populations have shared genotype
frequencies and, thus, individuals from the same population group
have similar genotype probabilities. We also assume that the random
variables (genotypes) of two related population groups affect the
parameters (genotype probabilities) of both groups; this corresponds
to gene flow, with no specific direction, between population groups
and is expressed by the presence of undirected edges linking different
individuals in the graphical model.

In the original work of Meinshausen and Bithlmann (2006),
only the properties arising from Gaussian data were examined.
We apply MB-style neighborhood selection to SNP (genotype)
data measured from either haploid or diploid organisms; different
loci are seen as independent, replicated observations from the
same model (linkage equilibrium). The LASSO method is applied
in the usual way for Gaussian distributed variables, and coefficient
estimates are obtained by minimization of the regularized mean
squared error (Tibshirani 1996). With GLMs, the negative log-
likelihood is minimized instead.

We consider a multinomial model for the categorical responses (see,
e.g., Hastie et al. 2009, pp. 120-122). The data consist of a L X N matrix
X = (Xy,...,Xn), and each vector X; = (Xj, ... 7X,-L)T7 i=1,...N
can contain at most three genotypes per locus. We focus on one indi-
vidual X; and denote the remaining marker databy X_; = X {X;}. The
procedures described in the remainder of this section are then applied
to each individual, one by one. Stated formally, our objective is to
answer the question: “How does the distribution of genotypes of indi-
viduals X, j=1,...,i—1,i+1,...,N explain the genotype of the
individual X;?”

The basis of our analysis is the multi-logit model (Friedman
et al. 2010)

by — g exp{Bog + < By | "
iy = gla-i) = ’

T e {Bo B}
in which B, is a vector of dimension N —1 and g =1,2,3. For

simplicity, let p (x—;) = Pr(Xy = gi|X_;), where g = {1,2,3} cor-
responds to the gth genotype for the ith individual at the locus I,
I=1,...,L

The negative log-likelihood for the individual X; is

L
~1(Bgi data) = — > log py (x-). @
=1
We minimize the LASSO-style penalized negative log-likelihood
argn&(lgn[—l(ﬁpdata)/L+/\HﬁgH1], 3)

where HBgH1 is the L;-norm of a vector B, and A is the so-called
tuning parameter, A =0. It is well known (see for example Tibshirani
1996) that in such cases, L; regularization will yield vectors Bg, with
s <N — 1 nonzero elements depending on the value of A.

When dealing with multinomial regression, we obtain three sparse
vectors whose elements differ from each other as estimates of 8, for
each genotype category g. If performing a standard LASSO regres-
sion for Gaussian data, we would construct a graph, as described by
Meinshausen and Bithlmann (2006), by noting that there is an un-
directed edge between nodes i and j,j=1,...,i—1,i+1,...,Nif
and only if X; and X; are conditionally dependent given all other
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individuals. Thus, in the LASSO setting for Gaussian data, there is no
edge between i and j if Bj =0.

With our multinomial setting we must use a different guideline to
determine the dependency between individuals. We propose an intuitive
rule to determine whether or not there is an indication of dependency
between different individuals: set an estimated edge between i and j if
and only if Bg is nonzero for some g. This corresponds to a value of one
in the jth row of the ith column of the adjacency matrix.

Because the probability p, (x-;) also produces a dependency struc-
ture between individuals X; and X;, we use the so-called “and” rule to
ensure that the adjacency matrix is symmetric: there is an edge between
the nodes i and j if and only if “X; depends on X;” and “X; depends on X;”
given all other individuals. If the rule holds, the adjacency matrix has one
as an entry on the ith row and jth column, and vice versa. Otherwise,
the entry is zero. Alternatively, one could use a so-called “or” rule that
states that there is an edge between the nodes i and j if and only if “X;
depends on X;” or “X; depends on X;” given all other individuals.

The multinomial model cannot be used for neighborhood selection if
one of the (three) possible genotypes has a very low or zero frequency
over all loci of the samples. However, the probability of this happening
with large marker data sets is practically zero.

The advantage of the penalized multinomial model is that none of
the individuals are forced to be part of some population, unlike in
analyses performed with model-based methods. The neighborhood
selection method can be used to identify these individuals and they
arerepresented by free-floating nodes with no edges connecting them
to other nodes. No predetermination of the number of subpopula-
tions is needed because we assume that the method will naturally
divide the individuals into different populations. By itself, construct-
ing a network estimate is not sufficient to produce easily interpreted
results; we still need to separate each cluster as a separate connected
component, i.e., a cluster of nodes with few or no edges linking them
to other clusters. Dividing nodes (individuals) into clusters is dis-
cussed in the Detecting communities subsection.

One can use either frequentist or Bayesian methods in the analysis.
We used the R package glmnet (version 2.0-2) to fit the regularized
GLMs. The glmnet package exploits the cyclic coordinate descent
algorithm, which has proven to be a fast method for solving LASSO-
type problems such as Equation 3, and can work on very large data sets.
For more details about the glmnet package, see Friedman et al. (2010).
Because R stores all objects in memory, analyzing large data sets
becomes practically impossible even though the glmnet package can
handle very large vectors and make good use of sparse data. We there-
fore used R packages such as bigmemory (version 4.5.10) and ff (ver-
sion 2.2-13) to handle multi-gigabyte data sets and variables in R.
Packages bigmemory and ff can store objects to the hard drive while
preserving R’s strong capacity for efficient statistical analysis.

Choosing the tuning parameter
The neighborhood selection scheme is comparatively easy to use and
implement as nice statistical properties are obtained by adjusting a single
penalty parameter A (Raskutti ef al. 2009; Liu et al. 2010). Various common
model selection methods could be used to identify the optimal value of the
tuning parameter, including k-fold cross-validation, Akaike’s information
criterion, or the Bayesian information criterion (see, e. g., Hastie et al. 2009,
Pp- 230-245). In practice it is well known that cross-validation and in-
formation criteria are often impractical in graph construction because their
application usually produces rather dense graphs with many false-positive
edges (Wasserman and Roeder 2009; Liu et al. 2010).

In this article we represent two methods that can be used to choose a
proper value for the tuning parameter, one using a stability approach and
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Figure 1 The StARS instability measure plotted against the tuning
parameter. The red dashed line indicates the value smaller than or
equal to the threshold value (8 = 0.05) on the vertical axis, and the
corresponding value of the tuning parameter on the horizontal axis.
The simulation model considered here is the island model described in
subsection Simulated data.

the other, modularity approach, which is similar to the so-called “elbow”
method, commonly applied in hierarchical clustering (see e.g., Zhang
and Horvath 2005; Zumel and Mount 2014, pp. 187-190).

Finding the optimal tuning parameter—The stability approach:
Liu et al. (2010) used a stability approach to regularization selection
(StARS) to choose the most stable graph. The StARS is a general way
of obtaining an undirected graph-selection criterion when the graph
estimation is based on the penalized likelihood minimization prob-
lem as in Equation 3. StARS guarantees that the graph estimate will
be consistent, provided that some moderate conditions are met (see
theorem 4.2 in Liu et al. 2010). Our regularization selection pro-
cedure is based strictly on the methods described in the work of Liu
et al. (2010).

Suppose we want to choose the “best” value for the tuning pa-
rameter A in Equation 3 over a sequence of different positive values.
With StARS, we use subsampling to measure the uncertainty re-
garding the presence of edges between the nodes in the graph esti-
mate G(A) for each fixed value of A. Then we calculate the total
instability of the estimated graph based on the subsamples. Finally,
we choose an estimate A for A that gives the optimal stability among
the sparse graphs based on a special instability measure D()) associated
with the corresponding graph estimate. Assuming the sequence of the in-
stability measure is monotonic, we can choose A= min{A : D()\) =B}
with a threshold parameter 8. We use 8 = 0.05 as a default value for
our StARS procedure, as proposed in Liu et al. (2010). The selection
of A using the quantity D(A) is illustrated for the case of a data set in
Figure 1.

Although the StARS analysis is computationally intensive, we favor it
because it is readily interpreted and efficiently reduces the number of
false-positive edges. It also provides an additional graph estimate based
on the subsamples of size b, which can be used to analyze the connec-
tivity of the estimated graph as described above to determine how the
subpopulations are differentiated from each other. We present some
guidelines for reducing the computation time needed for graph estima-
tion. In principle, the tuning parameter A should be varied from zero
to a moderately large value. However, the use of small values will slow
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Figure 2 The network modularity corresponding to different numbers
of inferred communities (K) with different values of the tuning param-
eter. (A) Networks computed with subsampling. (B) Unweighted net-
works inferred with MB approximation. (C) Scaled (A). (D) Scaled (B).
The red horizontal dashed line indicates the true number of subpop-
ulations (K = 10). Each number in the plot area corresponds to an
index number i () for different ascending values for the tuning pa-
rameter. The simulation model considered here is the island model

described in subsection Simulated data.

down the glmnet package despite its ability to time efficiently produce
the whole solution path. In practice, the graph will be overly dense if
relatively small values of A are used, so it is reasonable to impose a lower
bound above zero on this parameter. Additionally, the number of
subsamples should be quite large in principle: because the processing
time is directly proportional to the number of subsamples, using many
subsamples would greatly increase the time needed to execute the
StARS procedure. However, our analysis results suggested that even
relatively small numbers of subsamples yielded reasonable results.
We use M = 20 subsamples for our StARS selection procedure,
which is also the default value for selecting the most stable tuning
parameter for the graphical lasso (glasso) algorithm (Friedman et al.
2008) in StARS analyses performed with the R package huge (ver-
sion 1.2.7) (Zhao et al. 2012). Taking that into account, under our
experimental conditions, the cyclic coordinate descent algorithm
used in the glmnet package may fail to converge for small values
of the tuning parameter A. This usually occurred when working
with small data sets using the StARS procedure. This problem could
be circumvented by tailoring the grid for the problematic candidate
A values or generating a new subsample. Problems of this kind were
not encountered when working with real-world data sets here.

Before we can describe how the elbow method can be used to choose
a proper value for the tuning parameter or how CONE can be used
for estimation of ancestry coefficients, we have to first explain some
concepts in network communities.

Detecting communities: The word “subpopulation” is used to refer
to the known grouping of individuals and the words “cluster” or “com-
munity” to refer to the grouping of individuals inferred in the data set
with the method described below. We do not assume that different
subpopulations usually form groups that will be totally separate from
all other subpopulations; rather, we assume that only very genetically
distant individuals will not be directly joined together. However, it is
natural to presume that the connections between more distantly
related groups will be much weaker than those between closely re-
lated groups; namely, individuals from the same subpopulations will
form different communities in the network. The definition of a
community or cluster in network theory is quite loose; a community
is a group of nodes having a relatively large number of interconnect-
ing edges but looser connections to other groups or nodes in the
network (Fortunato 2010).

Although the neighborhood selection procedure generates a network
estimate that includes estimates of the strengths of the edges between
different nodes, we must use some external algorithm to distinguish
communities from one another. In a similar way to Greenbaum et al.
(2016), we use a community detection algorithm for this purpose.
Specifically, we used the R packages qgraph (version 1.3.2) (Epskamp
et al. 2012) and igraph (version 1.0.1) to draw undirected graphs based
on the adjacency matrices, and we used the Fruchterman-Reingold
algorithm (Fruchterman and Reingold 1991) and the Walktrap algo-
rithm (Pons and Latapy 2006) as implemented in these packages for
community partitioning.

The basic principle of the Fruchterman-Reingold algorithm is that
each node repulses the others, but nodes (individuals) that are con-
nected by edges are drawn closer together: This gives rise to a force-
directed layout that is easier to interpret than the original graph,
with a minimal number of crossed edges and more or less separate
communities. The principle behind the Walktrap algorithm is that
nodes belonging to the same community have more edges connect-
ing each node to another. The random walks on a graph tend to get
stuck into these “dense” parts (communities) of the graph. Thus one
can compute a distance measurement of the structural similarity
between nodes and between communities, a modularity measure.
Finally, a hierarchical clustering algorithm is used to detect different
communities in the graph, and the partition that maximizes the
modularity measure is chosen as the layout with different nodes
grouped to more or less distinct communities.

Here our work differs from that of Greenbaum et al. (2016), who
used the Girvan-Newman algorithm (Girvan and Newman 2002)
in their main analysis (however, their supplemental materials

Table 1 Summary of the simulation results when detecting the true number of subpopulations K (uneven sample sizes)

Method? Scenario 1 Scenario 2 Scenario 3
CONE (Mod) 10 92% (0.28) 9 11 10 82% (0.49) 9 12 10 82% (0.42) 9 11
CONE (StARS) 10 52% (1.00) 7 11 10 82% (0.42) 9 10 10 62% (0.71) 8 11
sNMF (CE) 10 48% (1.17) 9 13 11 44% (1.56) 10 14 12 18% (2.77) 9 15
CONE (subsample) 9 26% (1.57) 7 11 10 82% (0.55) 8 10 11 46% (1.38) 10 13

Island model (scenario 1), hierarchical island model (scenario 2), and hierarchical stepping-stone model (scenario 3). Mod, modularity; CE, cross-entropy.

#We have reported the median, percentage of the number of correctly inferred subpopulations, an error measure (RMSE), and minimum and maximum (in boldface)
values of the number of inferred subpopulations. We used both the modularity approach and StARS to choose a proper value for the tuning parameter A. We have
also reported the number of inferred clusters identified with the StARS subsampling (subsample).
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Table 2 Summary of the simulation results when detecting the true number of subpopulations K (even sample sizes)

Method? Scenario 1 Scenario 2 Scenario 3
CONE (Mod) 10 96% (0.20) 10 11 10 98% (0.14) 10 11 10 94% (0.24) 10 11
CONE (StARS) 10 100% (0.00) 10 10 10 100% (0.00) 10 10 10 92% (0.37) 8 10
sNMF (CE) 10 68% (0.79) 10 12 10 84% (0.63) 10 12 10 84% (0.66) 10 13
CONE (subsample) 10 92% (0.51) 10 12 10 96% (0.20) 10 11 10 94% (0.24) 9 10

Island model (scenario 1), hierarchical island model (scenario 2), and hierarchical stepping-stone model (scenario 3). Mod, modularity; CE, cross-entropy.
We have reported the median, percentage of the number of correctly inferred subpopulations, an error measure (RMSE), and minimum and maximum (in boldface)
values of the number of inferred subpopulations. We used both the modularity approach and StARS to choose a proper value for the tuning parameter A. We have
also reported the number of inferred clusters identified with the StARS subsampling (subsample).

include a discussion on the use of alternative community detection
algorithms for network construction, including the Walktrap al-
gorithm). Importantly, in the case of the additional StARS graph,
the Fruchterman-Reingold algorithm can distinguish between
nodes to separate communities in a way that facilitates interpretation.
While alternative community detection algorithms are available, we
have found Walktrap and Fruchterman-Reingold algorithms to give
reasonable and consistent results.

Puechmaille (2016) noticed that uneven subsampling affects
STRUCTURE’s ability to infer the number of subpopulations from
a data set. Specifically, small populations tend to separate into
different subpopulations in STRUCTURE analyses. We did not
encounter this problem with CONE in our real data analyses,
although its community detection algorithms usually give the best
results when applied to evenly distributed and sufficiently large
communities. Moreover, the comparatively simple community
layout produced by CONE analyses makes it possible to identify
possible estimation errors by visual inspection.

For more detailed descriptions of community analysis and re-
views of the various community detection algorithms, see for exam-
ple Fortunato (2010), Lancichinetti and Fortunato (2009), and
Harenberg et al. (2014).

Finding the optimal tuning parameter—The network modularity
approach: In population structure analysis it is a common task to
(pre)determine the number of populations in the data set when using
model-based methods to derive the ancestry proportions from the data
(Pritchard et al. 2000; Alexander et al. 2009; Frichot et al. 2014; Raj et al.
2014). Although somewhat of an artificial concept, one has to choose
the number of populations (K) for the analysis, even if in practice there
will be no “true” value of K, as samples from real populations rarely
conform to the assumptions of the model.

With CONE, one does not need to predetermine the number of
populations. Nevertheless, it is useful to have knowledge about the
number of clusters to help understanding of the (visual) appearance in
the data. In particular, inferring the number of populations is useful if
CONE is used for estimation of ancestry coefficients. In such cases, one
can learn K directly from the data using methods common to hierar-
chical clustering (see, e.g., Zhang and Horvath 2005). For this purpose
we use the Walktrap algorithm for community detection, considering
that the hierarchical clustering algorithm is a part of the Walktrap
algorithm. Similar to hierarchical clustering methods, we derive
network estimates with various values of the tuning parameter A,
determine K to be equal to the number of communities found with
the Walktrap algorithm, and network modularity equal to that of the
given grouping. We note that the modularity value determined by the
Walktrap varies in between —1 and 1. A positive modularity value
indicates a better separation between communities of the graph. After
inferring the number of clusters and network modularity with different
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values of the tuning parameter, we examine if there is an elbow in the
network modularity vs. the number of inferred cluster plots. We ob-
served that the number of inferred communities seem to stabilize sim-
ilarly to the hierarchical cluster analysis.

We have illustrated the procedure described above in Figure 2. The
optimal value for the tuning parameter is a trade-off between the net-
work modularity and sparseness. In Figure 2, there is a clear elbow
around the 17th and 27th value of A. Here, the elbow is quite unam-
biguous but this may not always be the case; in Figure 2C the subsam-
pling of the data causes small instability in the procedure. One could
also use a slightly smaller value for A but “too small” values should be
avoided because they will lead to low network modularity and network
estimates with several insignificant edges (connections) between nodes
(individuals).

Computing ancestry coefficients

Estimation of ancestry coefficients is an essential part of model-
based methods. Considering how model-based methods derive the
relationship between ancestry proportions and an individual’s al-
leles, degree of ancestry can be directly estimated from model
parameters. In this section, we use the term “ancestry coefficients”
to refer to the estimated ancestry in general. Denote so-called
ancestry coefficient matrix as Q = (g;x), where g represents
the fraction of individual 7’s genome originating from the ances-
tral population k. The matrix Q has dimension N XK. An obvious
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Figure 3 The population structure in hierarchical island model. (A)
Detecting community structure through the unweighted graph esti-
mate with no edge weights and the Walktrap algorithm. The tuning
parameter was chosen via the modularity approach. (B) The PC1-PC2
plot of the same data set.
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drawback of visual inspection methods such as PCA and the
network analysis is that they do not directly produce an estimate
for the ancestry coefficient matrix Q, although there is a way to
estimate Q with PCA using the DAPC program (Jombart et al.
2010).

Considering that elements in Q represent ancestral proportions
of individuals in K possible subpopulations, there seems to be a
natural connection between ancestral proportions and network es-
timates; the edges in the network computed with the neighborhood
selection algorithm represent the genetic relationship between dif-
ferent individuals in the network. It is consistent to assume that the
proportion of edges of a node (representing an individual) between
other nodes belonging to a community represents the fraction of
genome from the corresponding ancestral population. Thus one
can gain an estimate of Q with CONE using the method described
below.

Assume that the nodes N in the graphical model G = (N, ¢) are
partitioned in K distinct communities, N = {C;,...,Cx} and
A = (a;;) is the symmetric N X N adjacency matrix which corresponds
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to the estimated network. Element aj; can be either all zeros and ones,
corresponding to an unweighted network, or can vary between zero
and one, representing the weighted network. Diagonal elements of A,
a;; are set to zero. The degree of a node i denoted by D; can be computed
as the column sum of the ith column of A, D; = Zilaﬁ. Clearly
0=D;=N-—1forali=1,...,N. We determine the estimate of
the ancestry proportion of individual i in the ancestral population k
as the proportion of the number of edges belonging to the community
K and the overall node degree, g, = C/D;; where Cy is the number of
edges of node i which are connected to other nodes belonging to the
community Ci, Cx = ZJLI kaji; where Ty is an indicator variable that
takes the value one if the node j belongs to a community Cy and zero
otherwise,and 1=C,=N—-1,k=1,...,K.

If D; takes the value zero, the corresponding ancestry propor-
tion estimate g is set to one, meaning that this particular indi-
vidual is not genetically related to any other individual in the sample
and comes from some spurious cluster that has not been removed
by the neighborhood selection method. Similarly to the model-
based assignment methods, such as STRUCTURE, our approach
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Figure 6 Graphical representation of ancestry coefficients. Simulated ancestry coefficients and the corresponding estimates computed with
sNMF and CONE from an arbitrary simulated data set. The entries of the Q matrix considered here were generated from the Dir(0.5,0.5,0.5)

distribution.

suffers from a label-switching problem, i.e., it is not invariant to the
permutations in the terms of different communities and can alter
with different genotype matrices with the same underlying ancestral
populations. Solving the label-switching problem is an open re-
search question but some solutions have been presented (see, e.g.,
CLUMPP software; Jakobsson and Rosenberg 2007).

Genomic relationship matrix

The genomic relationship matrix, as described by VanRaden
(2008), K = (Kj), i,j=1,...,N is obtained as follows: K = Z"Z/(2
> pi(1 = pr)), where Z is the matrix with mean allele effects set to zero.
This in turn is obtained by subtracting P from M, where Pis a 1xL
column matrix with column elements 2(p; — 0.5), and p; is the fre-
quency of the reference allele at locus , I = 1,. .., L. Matrix Z is com-
mensurate with our data matrix X after recoding to —1, 0, and 1 into
matrix M. We define a pair of strongly genetically related individuals X,
and X}, as any pair for which the corresponding element of K is >0.5,
that is K, > 0.5.

Data availability

The authors state that all data necessary for confirming the conclusions
presented in thearticle are represented fully within the article. EASYPOP
software is available from http://www.unil.ch/dee/en/home/menuinst/
softwares--dataset/softwares/easypop.html.

All SNP genotypes and related information for Z. mays subsp.
parviglumis, Z. mays subsp. mexicana, and Tripsacum dactyloides
files are available from the DRYAD database (http://dx.doi.org/
10.5061/dryad.8m648).

E. coli draft genomes are publically available at NCBI GenBank
(http://www.ncbi.nlm.nih.gov/genbank) under accession numbers
JSFQ00000000-JSST00000000. The reference strain K12 substrain
MG1665 has the GenBank ID 556503834.
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All Stanford HGDP SNP genotyping data files are deposited at
Fondation Jean Dausset-CEPH (http://www.cephb.fr/en/hgdp_panel.
php#basedonnees).

RESULTS

Estimating the number of clusters in simulated data

To illustrate how CONE is able to estimate the true number of
(sub)populations, we simulated SNP data under three different models
of population structure: the island model (scenario 1), hierarchical island
model (scenario 2), and hierarchical stepping-stone model (scenario 3).
Overall there were 10 subpopulations in each migration model. In
particular, we demonstrate how uneven sample sizes do not have a
serious effect on CONE’s ability to detect the correct number of
clusters (inferred subpopulations).

We determined the number of inferred clusters K with CONE and
SNMF (Frichot et al. 2014), where the latter represents model-based
methods. SNMF was run using the R package LEA (version 1.6.0). We
used the Walktrap community detection algorithm implemented in the
R’s igraph package to infer the number of different communities in our
graph estimate. For sSNMF we chose the optimal number of clusters
which minimized the cross-entropy criterion (Frichot et al. 2014). We
ran sNMF with the number of populations changing from 1 to 15.
We calculated five runs for each K value in each scenario to gain a
better estimate for the cross-entropy criterion. The nonnegative regu-
larization parameter o was set to 100 with SNMF. The choices we have
made are used only for illustrative purposes and both CONE and sNMF
can be used in a more adaptable manner. The performance of the
STRUCTURE program has been studied extensively (Puechmaille
2016; Evanno et al. 2005) with multiple different sample sizes and
sampling strategies; the program STRUCTURE using AK statistics
(Evanno et al. 2005) either detects the uppermost hierarchical level
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Figure 7 Graphical representation of ancestry coefficients. Simulated ancestry coefficients and the corresponding estimates computed
with sNMF and CONE from an arbitrary simulated data set. The entries of the Q matrix considered here were generated from the
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of population structure (even sample sizes) or fails to detect both the
upper or lower hierarchical levels of population structure (uneven
sample sizes).

With CONE, we used the network modularity approach and StARS
to choose the optimal value for the tuning parameter to estimate K. For
illustrative purposes only and to avoid unnecessarily long-lasting sim-
ulation loops, we used just one of the replicated data sets as a validation
set with the modularity approach and chose the value of A according to
the analysis of the validation data set. Then, we continued the simula-
tion analysis using the value of A determined from the validation set
for each of the 50 replicates. We used the root-mean-square error
RMSE(K;, K) = [ (K, — K)?/50]'/?, where K; corresponds to an
inferred number of clusters out of 50 estimates, as the error measure.
Results are reported in Table 1.

CONE, using the Walktrap community detection algorithm, out-
performed the cross-entropy criterion used with sNMF in all scenarios
when the tuning parameter is chosen based on the network modularity or
StARS. When the tuning parameter is chosen via StARS using the default
value 0.05 for B, the number of subpopulations is somewhat under-
estimated in all scenarios. Overall, CONE seems to detect the lower
hierarchical level of structure in all scenarios. In an additional analysis,
we examined how the additional weighted graph computed as a part of
the StARS procedure was able to distinguish different communities from
each other; these estimates are summarized in the last row in Table 1,
named as CONE (subsample). In both island models, communities de-
tected from the weighted graph seem to produce downward-biased
estimates of the true number of subpopulations. On the other hand,
in the hierarchical stepping-stone model, the weighted graph overesti-
mated the true number of subpopulations. The results obtained with
sNMEF, using the cross-entropy criterion, suffered from uneven sample
sizes but, in contrast to the earlier findings (Puechmaille 2016), it did not
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underestimate the true number of subpopulations. That is, SNMF was
able to detect the lower level hierarchical structure and never detected
the upper hierarchical level of structure in the hierarchical models sim-
ulated. In the island model, SNMF gave even more accurate estimates of
the true number of subpopulations compared to the corresponding
estimates inferred from the weighted network. To comprehensively il-
lustrate that the bias in estimated number of subpopulations is due to
uneven sampling, we repeated the simulation analysis using even sam-
ples. As expected, both CONE and, in particular, SNMF were able to
produce more accurate estimates of the true number of subpopulations
when the sample sizes were even (Table 2).

The essential part of our method is to inspect visually how different
samples are connected at an individual level. Although CONE did not
detect the upper hierarchical level clusters, in Figure 3A one can see how
populations in the hierarchical island model from different archipela-
gos have more edges between them and are thus drawn more closely to
each other. The community division graphically illustrated in Figure 3A
is neatly in line with the PC1-PC2 plot presented in Figure 3B.

In most realistic settings there may be no well-defined notion of
the “number of populations,” and in these settings the results are
usually explored with different values of K. For example, both Evanno
et al. (2005) and Puechmaille (2016) have shown that the STRUCTURE
program usually detects the uppermost hierarchical structure in a
sample. This hierarchy is not revealed with a distinct value of K.
Therefore, inferring networks constructed with CONE by visual
inspection is the easiest way to gain insight over the possible hier-
archical structure of the data.

Estimating the ancestry coefficients
To illustrate how CONE is able to estimate admixture coefficients
compared to model-based clustering, we conducted a simulation
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Figure 8 Graphical representation of ancestry coefficients. Simulated ancestry coefficients and the corresponding estimates computed with
sNMF and CONE from an arbitrary simulated data set. The entries of the Q matrix considered here were generated from the Dir(0.5,0.05,0.05)

distribution.

study following the guidelines of Alexander et al. (2009) and
Frichot et al. (2014). It should be noted that a fair comparison
between the proposed method and model-based methods is not
straightforward. Model-based methods describe the population
structure by probabilistic assignment and our method characterizes
the population structure with network communities. Nevertheless,
paralleling our method with a state-of-the-art methodology serves
as a good benchmark for our method’s potential. We compared our
method to the model-based method sNMF.

With CONE, we used one data set as a validation set to choose
a proper tuning parameter value with the modularity approach.
Nevertheless, using the same value for the tuning parameter in a
simulation run does not absolutely rule out the possibility that the
dimensions of the true Q and the one estimated with the CONE
framework differ. If CONE detected more (or less) than three pop-
ulations, we modified the cut height of the dendrogram leading to
three clusters. We used the RMSE to measure the accuracy of the
estimated Q matrix, RMSE(Q, Q) = (NL) "/*x||Q — Ql|z, where
|A||p is the Frobenius norm of an N XL matrix A. With sNMF, K
was set to the true number of populations (three). We ran sSNMF
just once per each simulated data set. With sSNMF, the value of the
nonnegative regularization parameter « was set to either 0 or 100 accord-
ing to the value that produced the smallest median value of the estimated
RMSEs. The simulation results are presented in Figure 4.

Using sSNMF, accurate ancestry estimates with completely admixed
and unrelated individuals were obtained for all simulated population
models. The error measures estimated with sNMF are in line with
previous studies (Alexander et al. 2009; Frichot et al. 2014; Raj et al.
2014). A larger dispersion of the CONE results can be explained by the
fact that we did not optimize the tuning parameter in each simulated
data set separately. To give a better illustration of CONE’s potential, we
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performed an additional analysis by determining the ancestry esti-
mates with several values of the tuning parameter A. Then, we
choose the estimated Q, which minimized the RMSE of the ances-
try estimate. The results are presented in Figure 5. In each case,
error estimates of CONE were diminished in every parameteriza-
tion of the Dirichlet distribution. CONE even seemed to be able to
give more accurate ancestry proportion estimates than sNMF in
two examined parameterizations of the Dirichlet distribution. We
have graphically represented typical results of the ancestry coeffi-
cients estimated with both sSNMF and CONE in Figure 6, Figure 7,
and Figure 8.

We find it remarkable that CONE was able to estimate ancestry
coefficients even close to those obtained by model-based methods,
such as SNMF. With CONE, we did not make any assumptions over
the relationship of the Q matrix and the binomial model used in our
simulation analysis. The relatively small error estimates suggests
that a sparse individual-level network represents different levels of
admixture in the data.

Application to teosinte data

To illustrate how CONE is able to describe population structure in a
practical application, we applied it to moderately sized SNP genotype
data sets previously described in Pyhajarvi et al. (2013).

We started our analysis of these data sets by running the StARS
procedure with 20 subsamples each containing almost 2000 SNP
markers, performing the logistic multinomial LASSO regression on
each subsample in turn. 40 different values of the tuning parameter A
ranging from 0.05 to 0.5 were tested. Using our in-house R code, it
took ~30 min to perform the StARS procedure for both of the sub-
species data sets on a standard desktop computer, and ~90 min for the
complete data set. After completing the StARS analysis, we used all of
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Figure 9 The individual-level dependency structure between different samples in the teosinte data. (A) Graph constructed by using our
customized neighborhood selection scheme and the nodes are colored according to the subspecies they represent. (B) Weighted graph in which
the additional StARS weights are used as edge weights; the nodes are colored based on the 21 populations identified in the teosinte data. (C)
Network of the parviglumis subspecies. (D) Network of the mexicana subspecies. The coloring and population labels were added after graph

estimation in all cases.

the SNP markers in the neighborhood selection procedure. This
graph construction process took just a few minutes, and was final-
ized using the Fruchterman-Reingold algorithm as implemented in
the qgraph package to delineate different communities. The final
graphs, which we refer to as individual-level dependency networks,
are presented in Figure 9.

Figure 9, A and B, clearly shows that the samples are divided into
two major subpopulations according to the two subspecies and
one minor subpopulation (the El Rodeo population). The network
shown in Figure 9B clearly indicates that, while the samples are
divided into several populations, these populations are arranged
into two larger groups corresponding to the two subspecies, and
gene flow occurs (or has occurred) mostly within these groups.
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Overall, the Walktrap algorithm divided the samples into 12 differ-
ent communities. On the other hand, the network modularity revealed
that the optimal number of different communities would be ~12-20 in
the data set (Figure S1). In the STRUCTURE analysis from Pyhéjarvi
et al. (2013), where the number of populations was set to four, the El
Rodeo subpopulation from parviglumis stands out as a separate
population (their figure 4B). The divergence of the El Rodeo sub-
population is probably due some environmental factor; the edge
lengths in our dependency network illustrate only the strength of
the genetic relationship between individuals, not the physical dis-
tance. For example, the Nabogame population in both Figure 9, B
and D, is connected to other populations from the same subspecies,
even though the corresponding samples are widely separated from
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Figure 10 The dependency structure inferred between individuals
from the E. coli data with the CONE framework. Each strain is repre-
sented by a colored node and labeled based on the division of the
samples into 12 different communities (C1, C2, .. ., C12) detected with
CONE. (A) Additional graph estimated using the StARS procedure. (B)
The graph resulting from CONE framework. (C) The weighted graph
obtained by combining the two aforementioned graphs.

other mexicana populations (figure 1 of Pyhéjarvi et al. 2013). The
graphs in Figure 9, A and B, indicate that there is some gene flow
between the subspecies and that most of it occurs between the
Ahuacatitlan and Puruandiro populations: this is consistent with
the STRUCTURE analysis presented by Pyhajarvi et al. (2013) (their
figure 4B). As in their analysis, the Ahuacatitlan population remains
strongly connected to other parviglumis populations, but there are
only a few weak edges connecting it to mexicana populations. Our
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graph interpretation therefore does not support the hypothesis that
Ahuacatitlan is a sister group to mexicana. In Figure 9, B and C, it
can be seen that the two Ejutla populations merge into a single pop-
ulation. This result is also consistent with the PCA of Pyhdjarvi et al.
(2013) and, on the whole, our depencency network shown in Figure 9B
has the same characteristics as the PC1-PC2 plot of Pyhajérvi et al.
(2013) (their figure 4A). As mentioned above, the mexicana popula-
tions include two hybrid samples. We assume that hybrid samples are
the two nodes from Puruandiro and Nabogame which connect these
two populations in Figure 9D. Estimated ancestry coefficients with
K =12 and K = 17 are graphically represented in Figure S2.

Application to E. coli data

As a second practical example we evaluated the performance of our
method by applying it to the SNP genotype data set previously described
in Salipante et al. (2015).

We began the CONE procedure with the E. coli data set by running
the StARS procedure with 20 subsamples containing 5775 SNP markers
each, performing the logistic multinomial LASSO regression to each
subsample individually. We used 40 different values for the tuning pa-
rameter A ranging from 0.05 to 0.5, and it took ~90 min to complete the
StARS procedure using our in-house R code. After the StARS analysis, we
used all the SNP markers in the neighborhood selection procedure. Run-
ning the neighborhood construction process took ~208 min to complete.
As in the teosinte graph construction, we used the Fruchterman-Reingold
algorithm, as implemented in the qgraph package, to distinguish different
communities from each other for visual representation. The final graph
estimates are presented in Figure 10.

In Figure 10, we colored the nodes according to their community
membership. Community detection was done using the Walktrap al-
gorithm. Based on the graph estimates, we concluded that there are 10-
12 different communities represented in the complete data set. We did
not include the strain IDs in the networks shown in Figure 10, but a
network including the strain IDs is provided in Figure S3 for readers

C1 Figure 11 The phylogenetic tree generated from the
C E. coli data. Strains are colored according to the com-
3 munity division presented in Figure 10.
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Figure 12 Graphical representation of the estimated ancestry coefficients obtained from the E. coli data set. (A) The estimated ancestry

coefficients using the weighted network (Figure 11A). With this network estimate, the number of detected clusters was 10 (K = 10). (B) The
estimated ancestry coefficients using the unweighted network (Figure 11B). (C) The estimated coefficients using the weighted network (Figure

11C). With network estimates (B and C), the number of detected clusters was 12 (K = 12). Different clusters are colored according to the same

coloring presented in Figure 10 and Figure 11.

seeking more detailed information on the nodes. After making the
division, we used the same coloring scheme to color the phylogenetic
tree that we derived from the data; this phylogenetic tree is presented in
Figure 11, and a more detailed version can be seen in Figure S4.

As clearly shown by Figure 10 (see also Figure S3 for the strain
names), the inferred community partition resembles the clades in the
phylogenetic tree (Figure 11). The resemblance is especially apparent
when comparing the phylogenetic tree to communities C2, C3, C7, and
C8. Moreover, the nodes linking communities C2 and C4 in Figure 10,
A-C, are reflected in the branch connecting strains from the corre-
sponding communities in Figure 11. However, there are some minor
differences between the tree’s branch structure and the node arrange-
ment in Figure 10, B and C, which are based on analyses of the complete
data set. For example, community C8 appears to be isolated, with no
edges linking it to C3. However, in the phylogenetic tree, there are some
branches connecting strains from these communities, while their ge-
netic relationship is weak. In the StARS graph, there are some wavering
edges between communities C3 and C8 (Figure 10A). Additionally, the
small communities identified by the CONE analysis (C7, C9, C10, Cl11,
and C12) are separated from the other communities; this division is
somewhat consistent with Figure 11 because strains from communities
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C7 and C11 are only distantly related to other strains. In addition, we
computed the ancestry coefficients with CONE (Figure 12).

Application to HGDP data

To emphasize the potential of the CONE framework in the analysis of
very large SNP data sets, we applied it to the so-called Stanford HGDP
SNP genotyping data set (Rosenberg et al. 2002), which has previously
been analyzed by authors including Li et al. (2008) and Raj et al. (2014)
using FRAPPE, ADMIXTURE, fastSTRUCTURE, and PCA. Overall
there are 1043 individuals from 51 different populations and 660,918
SNP markers.

Aswith the teosinte data, the first step in the CONE procedure was to
perform the StARS procedure with 20 subsamples, each containing
8120 SNP markers, applying the logistic multinomial LASSO regression
to each subsample separately. We used 40 different values for the tuning
parameter A, ranging from 0.05 to 0.5. It took ~2 d to run StARS
analysis in R. We ultimately set the value of the tuning parameter A
to 0.0812. Using this value we obtained our first graph estimate, which
is presented in Figure 13A.

After the StARS run, we analyzed the full data set (all 659,421 SNPs)
using the optimized A value. Having obtained the corresponding
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Figure 13 The dependency structure between individuals in the HGDP data set inferred with CONE framework. (A) The additional graph
estimated from the StARS procedure. (B) The customized neighborhood selection graph. (C) The weighted graph obtained by combining the two.
(D) Graph colored according to the different geographic areas from which the individuals in the data set originate. Each individual is represented
by a colored node according to the division of the data into seven different populations as described by Raj et al. (2014). The associated coloring

and population labels were added after the graph was estimated.

adjacency matrix, we used the Fruchterman-Reingold algorithm to
detect different communities among the nodes, yielding the graph
estimate presented in Figure 13B. As was done with the teosinte data,
we used this graph along with the additional StARS graph and calcu-
lated the entrywise product of the corresponding adjacency matrices to
produce an emphasized graph estimate: These graph estimates are
presented in Figure 13, B and C. To better illustrate the details of the
population group division, we colored the graph in Figure 13D accord-
ing to the geographic areas associated with the samples. Again, we will
refer to the graphs presented in Figure 13, A-D, as dependency net-
works. It took almost 4 d to perform our customized neighborhood
selection procedure on the whole data set using glmnet with R running
on a desktop computer with 8 GB of RAM and a 3.1 GHz Intel Core
i5-2400 processor. In our opinion, this demonstrates the CONE
framework’s ability to analyze large data sets in reasonable time
frames even when using only moderately powerful hardware and
readily available software.

The estimated networks have similarities with the ancestry propor-
tions estimated by fastSTRUCTURE and ADMIXTURE, as reported by
Raj et al. (2014), and with the PCA analysis presented by Li et al. (2008).
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The graphs in Figure 13 show that the Middle Eastern populations are
closely related to the European populations. There are also clear indi-
cations of gene flow between the populations living in Eurasia and
North Africa, which is consistent with the PC1-PC2 plot (their
figure S3B) presented in the supplemental material of Li et al. (2008).
Both the Oceanian and American populations are estimated to belong
to separate groups despite the presence of minor gene flow between
Europe and America, as indicated by both the ADMIXTURE and
fastSTRUCTURE analyses. The fastSTRUCTURE and ADMIXTURE
estimates differ from each other with respect to the way they divide
the African and Native American populations. The dependency net-
works also indicate that both the American and African populations
are divided into multiple subgroups. The ADMIXTURE ancestry
proportions imply the existence of two distinct American popula-
tion groups with some gene flow between the Northern and South-
ern populations; this is consistent with our graph estimates, in which
there are some edges linking Southern and Central American individ-
uals. Moreover, the fastSTRUCTURE ancestry proportions indicate
that the African populations are split into Northern and Central African
groups, with some gene flow between them. Both the ADMIXTURE
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analysis and the dependency networks imply the existence of a weak
gene flow between the Central Asian and African populations. The
PCA analysis of Li et al. (2008) suggests that the Oceanian popula-
tions are divided into two subpopulations, which is again consistent
with the dependency networks. Neither the ADMIXTURE nor the
fastSTRUCTURE analyses revealed a similar division.

To determine how the inclusion of close relatives affected our graph
estimation, we computed the genomic relationship matrix (VanRaden
2008). In Figure 14, nodes corresponding to closely related individuals
are shown in white. As can be seen, close relatives are present in every
population group but their presence did not seem to adversely affect the
neighborhood selection process.

To further compare our results to those of Li et al. (2008), we also
performed a fine-scale population graph analysis of the European and
Middle Eastern populations. Figure 15 shows the results obtained by
analyzing the European and the Middle Eastern populations with
CONE, which can be compared to the PCA analysis of Li et al
(2008). The graphs in Figure 15, C and D, are so-called emphasized
graphs, which were constructed in a similar way to those shown in
Figure 13, C and D, and Figure 14. Both graphs are quite similar to
the PC1-PC2 plots of Li et al. (2008) (figure 2, A and B, in their
manuscript). As noted in Li et al.’s discussion of the PCA results, the
European populations can be separated into four relatively separate
subpopulations (Adygei, Basque, Russian, and Sardinian), and a num-
ber of seemingly independent individuals are present. In Figure 15B,
the Bedouins seem to divide evenly into three continuous groups, with
some separated individuals indicating weak gene flow between other
populations. The Mozabite are distinguished as a separate population,
which is consistent with the structure of the North African region in the
emphasized graph shown in Figure 15D.

There are some elements of the dependency networks that are not
intuitively clear and whose interpretation would require a detailed
analysis of the data. The first oddity is that one Middle Eastern individual
was appointed to the central African population with no direct con-
nection to any other individual among the Middle Eastern populations.
Another difficult-to-interpret subpopulation is the small population
group consisting of 12 samples from various backgrounds that is
apparent in Figure 13 and Figure 14. The elements of the genomic
relationships between these individuals are also quite large (> 0.71),
so these samples were at least partly excluded in previous analyses of the
data set (Li et al. 2008; Raj et al. 2014). We have listed these individuals
in Table 3 and indicated them using black nodes in Figure 14. We
suggest that the formation of this extra group is not due to problems
with the CONE procedure and instead indicates that these individ-
uals have interesting qualities that have not previously been identi-
fied. Only one individual (from the Pathan population, ID no.
00251 in the HGDP data set) was estimated to be totally indepen-
dent from all of the other populations.

As also found by Raj et al (2014), both fastSTRUCTURE and
ADMIXTURE analyses suggest that more than seven population
groups are represented in the data. The dependency networks also
indicate that there may be more than seven population groups.
Estimated ancestry coefficients with different values of K (K = 20,
K =21, and K = 25) are graphically represented in Figure S5 and
Figure S6.

DISCUSSION

By applying the CONE method to certain simulated scenarios of pop-
ulation history as well as real-world data sets previously analyzed using
PCA (Price et al. 2006), STRUCTURE (Pritchard et al. 2000; Falush
et al. 2003), ADMIXTURE (Alexander et al. 2009), fastSTRUCTURE
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Figure 14 The dependency structure between individuals in the
HGDP data set as inferred with CONE. Closely related individuals
(white nodes) were identified by considering the genomic relation-
ship matrix.

(Raj et al. 2014), and FRAPPE (Tang et al. 2005), we have demonstrated
that graph inference using neighborhood selection can be used for
individual-level population structure analysis based on SNP data.

When applied to the E. coli data set, our network estimation method
gave results that were consistent with the phylogenetic tree. In general,
the inferred community partition closely resembled the distribution of
clades within the tree. The potential for recombination among and
within lineages in the E. coli population could give rise to many diffi-
culties in estimating its relatedness structure, which is a well-known
limitation in phylogenetic tree reconstruction (Posada and Crandall
2002). Population graphs constructed using our method could help
to resolve such problems because the observation of multiple connec-
tions between strains coupled with the graph’s topology can reveal
deviations from the clonal frame (corresponding to the absence of
recombination).

It has been shown that MB-style approximation is also consistent in
the so-called high-dimensional setting as the number of continuous
Gaussian random variables increases (Meinshausen and Bithlmann
2006). When using our graphical approach, the high-dimensional sce-
nario would correspond to an uncommon case in which there are more
individuals than measured “genotypes” in the data set. We did not
examine the analytic properties of such settings, but they could poten-
tially cause some practical problems in the StARS procedure, because
the subsampling in StARS can give rise to very uneven allele frequen-
cies; leading to failures of convergence when attempting to obtain
maximum likelihood estimates. It may also be the case that the number
of falsely estimated neighbors would make meaningful interpretation of
the network impossible. We also examined the potential for graphical
structure analysis based on multiallelic microsatellite data but found the
CONE procedure to be unusable with such data sets that include large
and variable numbers of classes.

Our method is able to provide a Q matrix (i.e., population mem-
bership probabilities for the individuals in the data), which could
subsequently be used in an association analysis model to correct for
population stratification (Yu et al. 2006). However, it is completely
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Figure 15 The dependency structure inferred with CONE of a subsample of the HGDP data. (A) Unweighted graph of the European populations.
(B) Unweighted graph of the Middle East populations. (C) Weighted graph of the European populations. (D) Weighted graph of the Middle East

populations.

unknown to us how well it may work in practice and therefore we
emphasize that one should proceed with caution. Further examina-
tion of the relationship between the ancestry coefficients and net-
work estimation should be derived for more exact results, but
further dwelling to the subject is left for future studies.

Jalali et al. (2011) have shown that for a multinomial model, one can
use a group LASSO penalty whereby the regression coefficients corre-
sponding to the same explanatory variable (individual) for all three
classes are forced to all become zero or nonzero together. Using the
group LASSO penalty would also yield a consistent neighborhood se-
lection procedure for the edge set ¢ under strict conditions. However,
Jalali et al. (2011) used cross-validation to choose the tuning parameter
A. In our experience, cross-validation tends to produce overly dense
graphs that are hard to interpret. The glmnet package also includes the
option to apply group LASSO penalties to the coefficients. We tested
this penalization scheme in an analysis of the European and Middle
Eastern populations from the HGDP data, using the StARS procedure
to choose an optimal value for the regularization parameter A. In the
case of the European populations, the results were practically identical
to those obtained using our simpler conditions for neighborhood se-
lection (Figure S7). For the Middle Eastern populations, the biggest
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difference was that the group LASSO penalty seemed to estimate indi-
viduals belonging to the Druze and Palestinian populations to be more
closely related than was the case without penalization. The major draw-
back of the group LASSO approach is that it increases the time required

Table 3 Twelve outlier individuals that differ remarkably from
other individuals from the corresponding populations

HGDP ID Population Geographic Area
01275 Mozabite North Africa
00904 Mandenka Central Africa
01269 Mozabite North Africa
00685 Palestinian Israel
00737 Palestinian Israel
01223 Mongolia China
01078 Sardinia Southern Europe
00750 Japanese Japan
01023 Han China
01076 Sardinia Southern Europe
01322 Lahu China
00889 Russia Russia
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to run the neighborhood selection procedure. For example, the StARS
analysis for the Middle Eastern populations took ~2.5 hr with our simple
edge selection rule whereas the group LASSO method took >9 hr to
complete. When dealing with large SNP panels, because the choice be-
tween the group LASSO penalty and our rule-based approach seems to
have minimal influence on the individual-level population graphs, the
faster computation time favors our rule-based approach over the group
penalty. Moreover, it is important to note that the dependency networks
seem to be much more sensitive to the way of choosing the tuning
parameter (StARS in our case) than to the use of a group penalty.

Weare interested in developing our method further and reducing its
computational time. Novel statistical methods such as BIGQUIC (Hsieh
et al. 2013) have been proposed to handle large data sets rapidly. Similar
to our approach, BIGQUIC can analyze data with 10° variables with the
R program. Parallel computing speeds BIGQUIC up even more. Imple-
menting our method in user friendly software is left for future studies.

The methods described here have been implemented using R and our
own procedures. A collection of codes can be found in File SI.
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