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Background:Models predicting future macrovascular invasion in hepatocellular carcinoma are constructed to
assist timely interventions.
Methods: A total of 366 HCC cases were retrospectively collected from five Chinese hospitals between April
2007 and November 2016: the training dataset comprised 281 patients from four hospitals; the external vali-
dation dataset comprised 85 patients from another hospital. Multi-task deep learning network-based models
were constructed to predict future macrovascular invasion. The discrimination, calibration, and decision
curves were compared to identify the best model. We compared the time to macrovascular invasion and
overall survival using the best model and related image heterogeneity scores (H-score). Then, we determined
the need for a segmentation subnet or the replacement deep learning algorithm by logistic regression in
screening clinical/radiological factors. Finally, an applet was constructed for future application.
Findings: The best model combined clinical/radiological factors and radiomic features. It achieved best discrimi-
nation (areas under the curve: 0¢877 in the training dataset and 0¢836 in the validation dataset), calibration, and
decision curve. Its performancewas not affected by the treatments and disease stages. The subgroups had statisti-
cal significance for time to macrovascular invasion (training: hazard ratio [HR] = 0¢073, 95% confidence interval
[CI]: 0¢032�0¢167, p < 0¢001 and validation: HR = 0¢090, 95%CI: 0¢022�0¢366, p < 0¢001) and overall survival
(training: HR = 0¢344, 95%CI: 0¢246�0¢547, p < 0¢001 and validation: HR = 0¢489, 95%CI: 0¢279 � 0¢859,
p = 0¢003). Similar results were achieved when the patients were subdivided by the H-score. The subnet for seg-
mentation and end-to-end deep learning algorithms improved the performance of the model.
Interpretation: Our multi-task deep learning network-based model successfully predicted future macrovascu-
lar invasion. In high-risk populations, besides the current first-line treatments, more therapies may be
explored for macrovascular invasion.

© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context
1. Introduction

Generally, primary liver cancer ranks higher in mortality (second
in men and fifth in women) than in incidence (fifth in men and ninth
in women), making it a highly malignant cancer [1]. Pathologically,
70�85% of primary liver cancers are hepatocellular carcinomas
(HCCs).[1] For patients without extrahepatic metastasis or macrovas-
cular invasion, liver resection and transarterial chemoembolization
(TACE) are the guideline-recommended first-line treatments [2�3];
however, because HCC is highly invasive and spreads easily into the
vascular system, 5.4�38% of treated patients are found to have mac-
rovascular invasion during follow-ups [4]. In contrast to microvascu-
lar invasion (which only influences post-resection occurrence),
macrovascular invasion can lead to aggressive liver dysfunction and
preclude patients from further treatments. Therefore, without proper
treatment, the median overall survival (OS) has been reported as
approximately 2¢7 to 4¢0 months [2,4]. Several interventions such as
targeted, immune, and radiation therapies can prolong the median
OS to over one year [4�6]. However, the safety and efficacy of such
treatments are highly dependent on early diagnosis and treatments
[7�9]. With prediction of future macrovascular invasion, at least we
may have two methods to treat macrovascular invasion more effec-
tively: the first is combining immunotherapy when macrovascular
invasion is radiologically occult [9]; the second is performing more
frequent follow-ups to detect it before it is too late. However, it is evi-
dent that strategy may be more reasonable in high-risk population
rather than in all the patients. Thus, identifying patients at high risks
of macrovascular invasion is the first challenge to be solved before
exploring such “early intervention” strategy. Therefore, determina-
tion of timely interventions for macrovascular invasion has become a
critical clinical challenge in HCC.

Evidence before this study

We searched Pubmed with the terms “hepatocellular carci-
noma” and “macrovascular invasion”) for papers published
between Jan 1, 2009, and July 17, 2021, with no language
restriction. We found that most studies focus on the treatments
or diagnosis of existed macrovascular invasion, or prediction of
microvascular rather than macrovascular invasion. Since treat-
ments for macrovascular invasion should be performed as early
as possible, we constructed a deep learning base model to pre-
dict the risk of macrovascular invasion.

Added value of this study

Our multi-task deep learning network-based model combined
clinical/radiological factors and radiomic features, which out-
performed clinical model by discrimination and calibration in
both datasets. Subdivided by the model itself and its related
image heterogeneity scores, the high-risk subgroups had signif-
icant short median time to macrovascular invasion and overall
survival. Furthermore, an applet was constructed for further
clinical application.

Implications of all the available evidence

Our combined model could predict the risk of future macrovas-
cular invasion in hepatocellular carcinoma. For patients with
high risks, current guide recommended treatments are not
enough in preventing extrahepatic metastasis and macrovascu-
lar invasion, systematic treatments such as targeted or immune
therapies should be explored.
The need for early diagnosis and treatment is unique to HCC; thus,
experience may be learned from other cancers. In nasopharyngeal
carcinoma, to treat distant metastasis more effectively, researchers
established a prediction model for future metastasis, which could be
used to select high-risk populations for early adjuvant chemotherapy
[10]. In a similar manner, prediction models may also help us to
establish a warning system for early intervention of macrovascular
invasion after liver resection, TACE, or ablation. Although many stud-
ies have focused on the prediction of microvascular invasion
[11�12]. we still lack models for macrovascular invasion. The few
related studies involve limitations such as combining patients with
micro- and macro-vascular invasions (only 18% patients had macro-
vascular invasion) [13] in the study or only identifying factors regard-
ing existing rather than future macrovascular invasion [14].
Therefore, further exploration is necessary to fill the gap between
clinical needs and current studies.

In this regard, deep learning can be informative and helpful. By in-
depth mining and efficient analysis of data both within and beyond
the traditional visual system, deep learning algorithms bring medi-
cine to the data-driven era [15]. Considering hepatology, deep learn-
ing has outperformed the traditional shear wave elastography in
assessing liver fibrosis [16]. Researchers have also proven that deep
learning outperforms conventional machine learning models in dif-
ferentiating HCC from cirrhotic parenchyma [17]. Moreover, it has
promising performance in predicting disease progression and the OS
of HCC [18]. Nevertheless, overfitting is a common problem in deep
learning algorithms. Multi-task learning was introduced to control
overfitting. Achieving positive feedbacks among related tasks can
enrich information and increase the accuracy of each task; thereby,
improving the performance the overall model [19]. Therefore, we
constructed a multi-task deep learning neural network (MTnet) to
construct models to predict macrovascular invasion and assist in
early intervention.

Considering the threat of macrovascular invasion and the advan-
tages of MTnet, we conducted a multicenter study to establish and
validate the MTnet-based model. Assisted by our model, early inter-
vention can be explored in high-risk populations to achieve addi-
tional survival benefits after guideline-recommended treatments.
2. Methods

2.1. Patients

Data on patients diagnosed with HCC between April 2007 and
November 2016 were collected from five Chinese hospitals: Yang-
jiang People’s Hospital (YPH), Zhongshan City People’s Hospital
(ZCPH), Zhuhai People’s Hospital (ZPH), Shenzhen People’s Hospital
(SPH), and Nanfang Hospital (NFH). Follow-ups were conducted until
December 2019. The inclusion criteria were: 1) patients diagnosed
with HCC clinically or pathologically; 2) patients with computed
tomography (CT) recorded at the time of diagnosis; 3) patients
undergoing an initial treatment with liver resection, TACE, or ablation
recommended by guidelines of American Association for the Study of
Liver Diseases and European Association for the Study of the Liver
[2�3]. 4) patients without extrahepatic metastasis or macrovascular
invasion at the time of diagnosis; 5) patients that developed macro-
vascular invasion after initial treatment, or patients with no subse-
quent macrovascular invasion for at least one year unless death
occurred. By contrast, the exclusion criteria were: 1) irregular follow-
ups and 2) presence of other cancers. A flowchart of the patient selec-
tion process is presented in Figure 1. Thereafter, the patients were
classified into stages, according to the modified Barcelona Clinic Liver
Cancer (BCLC) staging system based on the latest guidelines (0, A, and
B) [2�3].



Fig. 1. Inclusion and exclusion flowchart of this study.
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The study protocols were approved by the Ethics Review Commit-
tee of the Zhuhai People’s Hospital. Informed consent for medical
research was waived because patient data were collected retrospec-
tively. All patient data were anonymized before analysis.

2.2. Patient and public involvement

Patient and public involvement Patients and/or the public were
not involved in the design, conduct, reporting or dissemination plans
of this research.

2.3. Treatments and follow-ups

The initial treatment options for liver resection, TACE, and abla-
tion were determined by multi-disciplinary teams according to the
guidelines [2�3,20] (tumor characteristics, liver function, and
patients’ will). After the initial treatments, regular follow-ups were
arranged every four to six weeks for the first year. Subsequently, the
interval was doubled every year if the patients had no disease pro-
gression (PD). After three years, the interval was stabilized to three
months if the patients had no PD. During every follow-up, chest X-
rays, abdominal CT or MRI, and necessary laboratory tests were per-
formed. When symptoms of extrahepatic metastasis were identified,
an additional CT or MRI for the suspected region was acquired.

2.4. Outcomes

The primary outcome of this study was macrovascular invasion
during follow-ups, which was confirmed by two radiologists (Y.L. and
J.Y.) with 10 years of work experience. Whenever disagreements
between Y.L. and J.Y. occurred, a third radiologist (L.L. with over
20 years of working experience) was asked to perform another inde-
pendent assessment. Then macrovascular invasion was finally con-
firmed by at least two of the three radiologists. Macrovascular
invasion was determined based on the enhancement of arterial phase
imaging, expanding vessel, and/or direct extension into the vascula-
ture [21]. The secondary outcome was OS, which was calculated from
the initial treatments to the date of death.
2.5. Candidate clinical factors and radiological characteristics

The clinical factors included patients’ status (age, sex, Child-Pugh
grade, HBV infection, and CT identified cirrhosis); tumor burden
(location, lesion number, maximum diameters, alpha fetoprotein
level, and BCLC stages); and initial treatments. Considering the
potential value of the qualitative radiological characteristics, we
added nine qualitative radiological characteristics as previously
reported: [22] fusion lesions, invasive shape, HCC capsule, HCC cap-
sule breakthrough, corona enhancement, corona with low attenua-
tion, mosaic architecture, nodule-in-nodule architecture, and
enhancement ratio of the HCC lesions. All these radiological charac-
teristics were assessed by two radiologists (Y.L. and J.Y., both have a
working experience of over 10 years) independently. Whenever dis-
agreements between Y.L. and J.Y. occurred, a third radiologist (L.L.
with over 20 years of working experience) was asked to perform
another independent assessment. Then the final results were decided
by at least two among the three radiologists.



Fig. 2. Illustration of the proposed MTnet. (A) Encoder and (B) decoder of the segmentation network, where the decoder was used as a positive feedback to the encoder for extrac-
tion of rich image information; (C) Information on clinical and radiological data extracted using two fully connected layers; (D) Combination of image, clinical, and radiological infor-
mation for macrovascular invasion prediction.
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2.6. CT acquisition and tumor segmentation

The CT parameters for the participating hospitals are listed in Sup-
plementary Table S1. Because the HCC capsule can be visualized more
clearly in the portal phase than in the arterial phase [23], to ensure
segmentation accuracy, we used the portal phase for the MTnet.
Where multiple lesions were present, we identified the target lesion
according to the modified response evaluation criteria in solid tumors
assessment depending on the longest diameter and suitability [24].

2.7. MTnet-based model’s construction

The MTnet consists of two subnetworks: one for segmentation (a
modified UNet as shown in Figures 2-A and 2-B) and the other for
classification (Figures 2-A, 2-C, and 2-D).

After a manual segmentation of the HCC lesion and an automatic
segmentation of the liver, we used three blocks for MTnet. The first
block extracted information from the CT images (Figure 2-A and 2-B,
detailed in Supplementary Text S1). The extracted information was sep-
arated into two flows: one entering process for the tumor segmentation
(Figure 2-B), with a positive feedback from tumor segmentation return-
ing to figure 2-A to refine the image information; and the other entering
process for the third block (Figure 2-D). The second block extracted
information from clinical factors and radiological characteristics
(Figure 2-C, detailed in Supplementary Text S2, Text S4). The third block
predicted the risk of macrovascular invasion (Figure 2-D, detailed in
Supplementary Text S3, Text S4). For the deep learning radiomics model
(ModelDR), information came from the first block. Similarly, information
of clinical and radiological data was extracted by the second block to
construct ModelCR. The combined model (ModelCR-DR) consisted of the
entire process of the three blocks.

To test the rationality of the MTnet, we first deleted the subnet of
tumor segmentation from the MTnet and constructed a new com-
bined model (ModelNO Seg-CR-DR). We compared ModelCR-DR with
ModelNO Seg-CR-DR to test whether the subnet for segmentation was
necessary. Next, we screened for clinical and radiological factors
using conventional logistic regression. We used the identified factors
as the input of the aforementioned second block with the deep learn-
ing algorithm (ModelLogistic-CR-DR). We compared ModelCR-DR with
ModelLogistic-CR-DR to test whether the end-to-end deep learning algo-
rithm truly outperformed the conventional logistic regression.

2.8. Statistical analysis

The baseline characteristics between the training and validation
datasets were compared according to their categorization and distri-
bution. For continuous variables, Kolmogorov�Smirnov test was
used to test the normality, student's t-test was performed when they
were normally distributed, Wilcoxon rank sum test was performed
when they were not normally distributed. For grade variables, Wil-
coxon rank sum test was performed. For categorical variables, Pear-
son’s x2 test or Fisher’s exact test were performed.



Fig. 3. Study design. Without timely intervention, macrovascular invasion causes rapid deterioration of liver function. This disqualified some patients from receiving further treat-
ments (A). We combined clinical factors, radiological characteristics, and radiomics using a deep learning algorithm to construct models (B). Assessed by multiple parameters such
as AUC, calibration, and decision curve, we identified the best model (C). We compared the time to macrovascular invasion and overall survival based on the best model. We con-
structed an applet for the best model (D). AUC: area under the curve; BCLC: Barcelona Clinic Liver Cancer (staging system); IRI: integrated discrimination improvement; NRI: net
reclassification improvement; TACE: transarterial chemoembolization.
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As noted above, we constructed a radiomic model (ModelDR) using
the first block, a clinical/radiological model (ModelCR) using the second
block, and a combined model (ModelCR-DR) using the third block. First,
to evaluate the models, we compared their discrimination based on the
receiver operating characteristic (ROC), using indices such as areas
under curve (AUC), Delong test, incorporating net reclassification
improvement (NRI), and integrated discrimination improvement (IDI).
In addition, we compared their calibration and decision curves. We
used the results in the validation dataset to identify the best model.
When the difference was limited, we then referred to the results of
training dataset. Second, we tested whether the performance of the
identified best model was influenced by treatments or the BCLC stages.
Finally, to identify the threshold for high-risk populations, we used the
Yorden index in the ROC curve to subgroup the patients and compared
the time to macrovascular invasion and OS, using Kaplan�Meier plots
and the log-rank test. Moreover, to test whether the heterogeneity iden-
tified by our MTnet was related to the outcomes, we grouped the
patients using the image heterogeneity score within the tumor area
(Supplementary Text S5, Supplementary Figure S1) and compared their
macrovascular invasion and OS. The overall design of this study adhered
to RECORD guideline (Figure 3).

Two-sided p-values less than 0.05 were considered as statistically
significant. All the analyses were performed using the R and Python
software.

2.9. Role of the funding source

The funding sources were not involved in the study design, collec-
tion, analysis, interpretation of data, writing of the report, or decision
to submit the paper for publication.

3. Results

3.1. Study population and baseline characteristics

A total of 366 patients were included: patients from YPH, ZPH,
SPH, and NFH were used as the training dataset (N = 281), whereas
patients from ZCPH were used as the external validation dataset



Table 1
Baseline demographics of patients included in the study.

Training dataset
(N = 281)

Validation dataset
(N = 85)

p-value

Age 55¢1§12¢0 60¢6§12¢0 <0.001*
Sex 0.512
Male 235 68
Female 46 17
Initial treatment <0.001*
Liver resection 79 18
TACE 196 52
Ablation 6 15
HBV infection (N) 0.315
Negative 21 3
Positive 260 82
Cirrhosis1 0.407
Negative 120 32
Positive 161 53
Child-Pugh class
(N)

0.369

A 200 85
B 36 11
BCLC stage 0.630
0 32 1
A 169 64
B 80 20
Max diameter
(mm)

61¢9 (7¢0�198¢0) 67¢0 (10¢0�176¢0) 0.005*

Number of lesions 0.110
1 188 66
2 46 7
3 22 3
>3 25 9
AFP level (ng/mL,
N)

0.157

<25 120 31
25�400 80 22
>400 81 32

AFP: alpha fetoprotein; BCLC: Barcelona Clinic Liver Cancer; HBV: hepatitis B
virus; TACE: transcatheter arterial chemoembolization.

1 Refers to cirrhosis exhibiting morphological changes in the computed
tomography.
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(N = 85). During the follow-ups, 45 patients had macrovascular inva-
sion (35 in the training dataset and ten in the validation dataset).
Excluding age, initial treatments, and maximum diameter of HCC
lesions, there were no statistical differences between the training
and validation datasets (Table 1).

3.2. Comparison among ModelDR, ModelCR, and ModelCR-DR

Considering the three models (ModelDR, ModelCR, ModelCR-DR), the
AUCs were 0¢751, 0¢822, and 0¢877, respectively, in the training data-
set (Figure 4-A). The AUCs were 0¢624, 0¢770, and 0¢836, respectively,
in the validation dataset (Figure 4-B). The statistical analysis based on
the Delong test, NRI, and IDI showed that ModelCR-DR performed bet-
ter than ModelDR and ModelCR (Supplementary Table S2). Regarding
the calibration, although ModelDR and ModelCR had an unsatisfactory
performance, ModelCR-DR was better both in the training and valida-
tion datasets (Figure 4-C and 4-D). In the decision curve, ModelCR-DR

also exhibited a better performance than ModelDR and ModelCR

(Figure 4-E). Therefore, ModelCR-DR proved to be the optimal model.
We constructed an applet accordingly (Figure 5, available at https://
drive.google.com/drive/folders/1UdjobJ_zX3E-E4q6eUyBAWjW
VutgM8PF?usp=sharing).

3.3. Subgroup and survival analysis using ModelCR-DR

The subgroup analysis showed that most clinical factors had lim-
ited influence on the performance of ModelCR-DR (Supplementary
Table S3), including age (p = 0¢720; Supplementary Figure S2-A), sex
(p = 0¢421; Supplementary Figure S2-B), treatments (p = 0¢853; Sup-
plementary Figure S2-C), Child-Pugh class (p = 0¢656; Supplementary
Figure S2-E), BCLC stage (0 vs. A: p = 0¢802; A vs. B, p = 0¢714; 0 vs. B,
p = 0¢993; Supplementary Figure S2-F), max diameter (p = 0¢533;
Figure S2-G), number of lesions (p = 0¢480; Supplementary Figure S2-
H) and AFP level (<25 vs. 25�400: p = 0¢065; <25 vs. >400,
p = 0¢373; 25�400 vs. >400, p = 0¢243; Supplementary Figure S2-I).
When patients were subdivided by radiologically confirmed cirrhosis,
the two subgroups were statistically different (p = 0¢030; Supplemen-
tary Figure S2-D). However, compared to the AUC of 0¢836 in the vali-
dation dataset, the difference was primarily caused by an increase in
the subgroup without cirrhosis (0¢928), rather than a decrease in the
subgroup with cirrhosis (0.823).

The threshold of ModelCR-DR (0¢157) was identified using the You-
den index. Between the low-risk (risk � 0¢157) and high-risk sub-
groups (risk > 0¢157), there were statistical differences in the time to
macrovascular invasion in both the training (median: 1550 vs. infi-
nite days; hazard ratio [HR] = 0¢073; 95% confidence interval [CI]:
0¢032�0¢167; p < 0¢001; Figure 6-A) and validation (median: 645 vs.
infinite days; HR = 0¢090; 95%CI: 0¢022�0¢366; p < 0¢001; Figure 6-B)
datasets. Regarding the OS, the two subgroups also had statistical dif-
ferences in both the training (median: 360 vs. 617 days; HR = 0¢344;
95%CI: 0¢246�0¢547; p < 0¢001; Figure 6-C) and validation (median:
360 vs. 617 days; HR = 0¢489; 95%CI: 0¢279 � 0¢859; p = 0¢003;
Figure 6-D) datasets.

3.4. Analysis of image heterogeneity using ModelCR-DR

The median of the image heterogeneity scores within the tumor
area (H-score) at 0¢709 was also used to subdivide the patients.
Between the low-risk (H-scores � 0¢709) and high-risk subgroups
(H-score > 0¢709), there were statistically significant differences in
the time to macrovascular invasion in the training dataset
(HR = 0¢352; 95% CI: 0¢181�0¢688; p = 0¢003; Supplementary Figure
S3-A). Although there was a difference in the validation dataset, it
was not statistically significant (HR = 0¢195; 95%CI: 0¢054�0¢707;
p = 0¢082; Supplementary Figure S3-B). Considering the OS, the two
subgroups showed statistical differences in both the training
(HR = 0¢417; 95%CI: 0¢289�0¢603; p < 0¢001; Supplementary Figure
S3-C) and validation (HR = 0.554; 95%CI: 0¢345 � 0¢892; p = 0¢024;
Supplementary Figure S3-D) datasets.

3.5. Comparison between ModelNO Seg-CR-DR and ModelCR-DR

Without the subnetwork for segmentation, ModelNO Seg-CR-DR had
a lower AUC than ModelCR-DR (Training: 0¢828 vs. 0¢877; Validation:
0¢759 vs. 0¢836; Supplementary Figure S4-A, S4-B). The difference
was statistically significant per the Delong test in both the training
and validation datasets (Supplementary Table S3). Furthermore,
ModelNO Seg-CR-DR had worse calibration than ModelCR-DR, especially
in the validation dataset (Supplementary Figure S4-C, S4-D). The
decreased performance in ModelNO Seg-CR-DR proved the necessity of
the subnetwork for segmentation.

3.6. Comparison between ModelLogistic-CR-DR and ModelCR-DR

With regard to the clinical and radiological factors, the multivari-
ate logistic regression (backward: LR) identified the factors signifi-
cantly related to the macrovascular invasion, including the BCLC
stage, invasive shape, and anti-corona enhancement (Supplementary
Table S4 and S5). ModelLogistic-CR-DR had a worse AUC than ModelCR-DR

(training: 0¢810 vs. 0¢877; validation: 0¢790 vs. 0¢836; Supplementary
Figure S5-A and S5-B). The difference was statistically significant per
the Delong test and IDI in the training dataset (Supplementary Table
S6). In addition, ModelLogistic-CR-DR showed a worse calibration than
ModelCR-DR in both datasets (Supplementary Figure S5-C and S5-D).

https://drive.google.com/drive/folders/1UdjobJ_zX3E-E4q6eUyBAWjWVutgM8PF?
https://drive.google.com/drive/folders/1UdjobJ_zX3E-E4q6eUyBAWjWVutgM8PF?
https://drive.google.com/drive/folders/1UdjobJ_zX3E-E4q6eUyBAWjWVutgM8PF?


Fig. 4. Comparison of the three models. The areas under the curve for ModelDR, ModelCR, and ModelCR-DR are 0�751, 0�822, 0�877, respectively, in the training dataset (A) and
0�624, 0�770, 0�836, respectively, in the validation dataset (B). Good calibrations (C and D) and decision curve (E) were also achieved.
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Fig. 5. Patient examples by applet for ModelCR-DR. (A, B) A 56-year-old male had single HCC with a maximum diameter of 54�4 mm and was initially treated by TACE. He was identi-
fied to be in the low-risk subgroup by our applet for ModelCR-DR; no macrovascular invasion occurred for 1128 days and he remained alive at the end of the study. (C, D) A 68-year-
old male had single HCC with a maximum diameter of 55�0 mm and was initially treated by TACE. He was identified to be in the high-risk subgroup by our applet for ModelCR-DR;
macrovascular invasion occurred after 245 days and death after 301 days.
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Based on the aforementioned results, an end-to-end deep learning
algorithm was more appropriate for predicting future macrovascular
invasion.

4. Discussion

Based on the multicenter database, this study used MTnet to con-
struct a precise model (ModelCR-DR) that could predict future macro-
vascular invasion in HCC. By combining information from the
clinical/radiological factors and radiomics, ModelCR-DR achieved satis-
factory results in terms of discrimination, calibration, and decision
curve. Its performance was not influenced by the treatments or BCLC
stage. Moreover, we used ModelCR-DR and H-score to subdivide the
patients. Both high-risk subgroups had shorter times to macrovascu-
lar invasion and OS as predicted by the model. ModelCR-DR proved to
be a precise and robust model that could be used to assist early inter-
vention for macrovascular invasion in HCC.

Although macrovascular invasion can greatly jeopardize the sur-
vival of HCC patients, therapies can be used to treat it effectively
[21,25�26] Some of them may even be used to eliminate or control
residual or radiologically occult tumor cells before it is too late [9].
Nonetheless, the lack of models for identifying high-risk populations
limits the application of such early interventions. Considering this
challenge, we may refer to valuable experience in the early preven-
tion of distant metastasis in nasopharyngeal carcinoma, where a
model was constructed to predict the risk of future distant metastasis
[10]. To construct such a model with high accuracy, we assumed that
besides the traditional clinical factors, data from medical images
could be used to assess the heterogeneous information from the HCC
lesions. Theoretically, although radiomics provides a massive amount
of quantitative data, it may overlook the macro-changes across the
tumor area, as well as differences adjacent to the outer boundary of
tumor. Thus, we designed a set of radiological factors as a comple-
mentary assessment, either for morphological differences (such as
fusion lesions or non-intact HCC capsule) or for changes outside the
tumor boundary (such as corona and anti-corona enhancement). The
better performance of ModelCR-DR compared to ModelDR and ModelCR

proved that clinical/radiological factors and radiomic features were
indispensable in achieving high accuracy in predicting the risks of
future macrovascular invasion.

Deep learning algorithms have proven to be advantageous in con-
structing models for diagnosis and prognosis of cancers, especially for
liver diseases [16�18,27]. Meanwhile, among all the types of deep
learning algorithms, multi-task learning combines severally related
tasks during the training process and these can benefit from each other.
Multi-task learning has attracted considerable attention in the field of
medical image analysis [28�29]; however, its application in HCC has
been limited to microvascular invasion rather than macrovascular inva-
sion [30]. Considering the potential advantages of multi-task learning,
we constructed our MTnet to predict macrovascular invasion.



Fig. 6. Survival analysis of ModelCR-DR. Subdivided by ModelCR-DR risk at 0�157, the subgroup with a risk � 0�157 and subgroup with a risk > 0�157 had statistical significance in
times to macrovascular invasion (A and B) and overall survival (C and D) in both datasets.
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In the MTnet, the first challenge we faced was how to control the
overfitting problem. Based on the potential function of multi-task
learning in reducing the risk of overfitting [19]. we added tumor seg-
mentation as a positive feedback for the analysis of the entire liver
area. Compared to ModelNO Seg-CR-DR, ModelCR-DR had better discrimi-
nation (per AUC with the Delong test) and calibration. The results
show the necessity of a subnet for segmentation and prove the
advantages of multi-task learning.

The other issue for the MTnet was how to screen the clinical/
radiological factors. Although logistic regression is a conventional
method, a deep learning algorithm may have advantages over logistic
regression in highly complex model construction. Three factors were
identified using the logistic regression. In addition to the BCLC stages,
an invasive shape was designed to assess the ability of the tumor to
invade beyond the limitations of surrounding tissues, whereas anti-
corona enhancement was designed to assess the abnormal area of
low attenuation around the tumor. Both radiological characteristics
reflected the influence of the surrounding area by the HCC, which
contained structures of the blood vessels. However, compared to
ModelLogistic-CR-DR, the discrimination improvement of ModelCR-DR

was only significant in the training dataset. The calibration was obvi-
ous in both datasets. The results proved the rationality of screening
clinical/radiological factors using a deep learning algorithm.
This study has some limitations. First, the strict inclusion criteria
limit the sample size of this study. Considering the complexity of HCC
management, although we prove that treatments and BCLC stages
have limited influence on the robustness of our model, the conclu-
sions should be tested on a larger sample size in the future. With the
enlargement of sample size, we may use extra validation datasets to
further confirm the robustness of our model. We may also perform a
more detailed subgroup analysis, such as anatomical vs. non-anatom-
ical resection, drug-eluting bead vs conventional TACE, etc. Second,
this study was based on a Chinese population, where most of the HCC
cases were caused by hepatitis B. Therefore, for western populations
(where HCC is mainly caused by hepatitis C or alcoholic hepatitis),
our model needs further validation. Third, to further improve the per-
formance, the combination of other data resources such as MRI or
pathology may be explored. Fourth, owing to the "black box" effect,
which is common in deep learning studies, we could not provide
pathological interpretation for the deep learning radiomics. Although
our results have demonstrated the stability of our final model, further
research may be required to explore its relationship with pathologi-
cal changes in HCC.

In conclusion, by combining clinical factors, radiological charac-
teristics, and radiomics, our multi-task deep learning network-based
model successfully predicted future macrovascular invasion in the
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HCC. Considering high-risk populations, besides the current guide-
line-recommended treatments, more therapies such as a combina-
tion of targeted therapy and/or immunotherapy should be explored
to perform timely prevention or early treatments and increase the
survival rate.
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