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Introduction
Otitis media (OM) is a very common disease in infants and
young children and occurs, albeit less frequently, in older
children and adults as well [1]. The hallmark feature of OM
is an inflammation of the middle-ear (ME) mucosa with or
without the presence of effusion in the ME airspace. New
OM episodes (ie, acute OM [AOM]) can be accompanied by
local symptoms of pain and overt signs (eg, erythema and
bulging of the tympanic membrane) interpretable as evi-
dencing an in situ bacterial infection or can be relatively
asymptomatic in presentation. As yet, it is unclear if these
presentations represent different underlying etiologies (eg,
local infection versus eustachian-tube dysfunction) or differ-

ent expressions of a common etiology (eg, by stage, patho-
gen, host response). AOM can progress and/or predispose to
a persistent inflammatory condition of the ME mucosa; OM
with effusion (OME, synonyms: secretory OM, glue ear) that
is recalcitrant to standard medical therapies including anti-
biotics and anti-inflammatories [2,3]. Because of the con-
ductive hearing loss that usually accompanies that disease
expression, OME in infants and young children can cause
delayed speech and language acquisition, educational defi-
cits, and poor social adjustment [4].

Effusion recovered from symptomatic AOM is usually
culture-positive for bacterial pathogens of which Streptococcus
pneumoniae, Hemophilis influenzae (non-typeable), and Bran-
hamella catarrhalis are the most common [5]. In the pre-anti-
biotic era, AOM was associated causally with a number of
potentially life-threatening complications, including menin-
gitis and mastoiditis, as well as with sensorineural hearing
loss. Current practice in the United States is to treat symp-
tomatic AOM with antibiotics, which was shown in clinical
studies to eradicate the bacterial pathogens and decrease the
duration of pain-related symptoms [6]. Nonetheless, it is not
established that antibiotic treatment promotes earlier resolu-
tion of the ME mucosal inflammation or aborts disease pro-
gression to OME. Moreover, the experience of physicians
who practice “watchful waiting” (ie, antibiotic treatment
reserved for AOM episodes for which signs/symptoms fail to
resolve within a period of days) shows that most episodes of
AOM are self-limiting and that antibiotics can be withheld
without obvious, immediate consequence in as many as
80% of the episodes [7]. Although wide adoption of this
treatment strategy is expected to reduce antibiotic use and
perhaps decrease the selective pressures driving the increas-
ing prevalence of antibiotic-resistant pathogens, ad hoc iden-
tification of patients in need of antibiotic treatment is not
possible at present, and the long-term consequences of this
practice, with respect to possible increased risks of complica-
tions, sequelae, and recurrences are not known.

In the United States, the direct and indirect costs of treat-
ing OM are estimated at $5 billion per year [8]. Because of
this large economic burden and existing controversies over
current treatments for AOM and OME, disease prevention
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has been a primary goal. In that regard, a number of prophy-
lactic strategies were reported to be effective in preventing
AOM or recurrences of AOM in “high-risk” children. These
include: tympanostomy tube insertion [9], breast-feeding
[10], antibiotic prophylaxis [9], passive immunization with
high-titer serum [11], vaccination against bacterial pathogens
(eg, S. pneumoniae [12•]), and other treatments that modify
the bacterial flora of the nasopharynx (eg, adenoidectomy,
xylitol chewing gum or lozenges, nasopharyngeal seeding
with probiotics [13–15]). However, general deployment of
some of these strategies had (or is suspected of having) unan-
ticipated consequences that curtailed enthusiasm for their
use. This is best exemplified by seasonal, antibacterial pro-
phylaxis in high-risk children, an intervention believed by
many to contribute to the selection and dissemination of
pathogenic bacteria resistant to common (and increasingly
less common) antibiotics [16]. Of note, one well-controlled,
double-blind clinical study [12•] reported that conjugated
pneumococcal vaccines decreased the frequency of AOM epi-
sodes caused by pneumococcal types of bacteria included in
the vaccine but increased the frequency of OM caused by
nonrepresented types. Because the ecology of the nasopha-
rynx with respect to bacterial adaptation, niche availability,
species competition, and species turnover is poorly under-
stood, implementation of any strategy that targets specific
(eg, antibacterial immunization) or nonspecific (eg, antibi-
otics) bacterial species (types, strains) at that site will have
unintended consequences, some of which might be detri-
mental to the host and/or general population [16].

Acute Otitis Media Is a Complication of Viral 
Upper Respiratory Tract Infection
Although bacteria can usually be recovered from the ME
during AOM, it is well accepted that the onset of most of
these episodes is temporally associated with a viral upper
respiratory tract infection (vURI). Specifically, more than
60% of new OM episodes are diagnosed immediately fol-
lowing or concurrent with a symptomatic vURI, and con-
versely, AOM occurs in approximately 25% of otherwise
healthy infants and young children with naturally acquired
vURIs [17,18,19•]. A causal relationship between these dis-
eases is supported by epidemiologic studies that document a
similar seasonal patterning for vURI and AOM [20] and by
others that reported vURI to be a significant risk factor for
OM [21]. Also, upper respiratory viruses, viral proteins, and/
or viral genomic sequences were shown to be present in a
high percentage of ME effusions recovered from AOM epi-
sodes [22,23]. Disagreements exist concerning the relative
causal importance for AOM of the different upper respira-
tory viruses, including, among others, respiratory syncytial
virus (RSV), rhinovirus, adenovirus, influenza and parain-
fluenza virus, and coxsackie virus, but the evidences pre-
sented favoring any one virus are not convincing, given the
biases introduced by sampling season, differential sensitiv-

ity of employed viral assays, and the relative skills of the lab-
oratories. It seems that most, if not all, upper respiratory
viruses can cause OM as well as provoke eustachian-tube
dysfunction and ME underpressure, which are considered to
be preconditions for OM pathogenesis [24–26].

Direct support for vURI causality of AOM is provided by
animal studies that reported OM to result from adenovirus
and influenza virus infection of the nose and nasopharynx
[27,28] and by studies in adult volunteers that reported OM
to be a complication of experimental infection with rhinovi-
rus and influenza A virus [24,25]. As mentioned, pathogenic
bacteria are recovered from the ME during AOM, but this
does not preclude a primary viral etiology. Active synergy
between certain upper respiratory viruses and nasopharyn-
geal pathogens was demonstrated for OM pathogenesis in
chinchillas and humans [27–29], and pre-existing or concur-
rent vURI in infants and children with acute, bacterial OM is
frequently observed [24,25].

Given these evidences of causality, interventions that
prevent vURIs and/or prevent the development of OM dur-
ing vURIs offer a rational and, perhaps, preferential alterna-
tive to antibiotic treatment or prophylactic strategies that
target bacterial pathogens. In this review, we discuss the
potential targets for this strategy and outline the practicality
of the various options. Others have published reviews of this
topic with a different emphasis and focus [30•].

Hypothesized Mechanisms
The specific mechanism of OM pathogenesis during a vURI is
debated. Although virus is not usually recovered by culture
from the ME during vURI-associated OM, viral protein and/
or nucleic acids can be detected in high percentages of effu-
sions using sensitive assays [21,22]. The interpretation of this
observation as evidencing local viral infection can be ques-
tioned given the lack of proof that these viruses replicate
within the ME mucosa. Recent work showed that viral
genomic sequences are confined to the effusion compartment
and are not recoverable from mucosal biopsies [31]. Of inter-
est, HIV was detected by polymerase chain reaction in ME
effusions recovered from adult patients with OM, who were
also seropositive for that virus [32•]. Most reasonably, this
can be interpreted as delivery to the ME of virus sequestered
within infiltrating leukocytes during acute inflammation. A
similar mechanism can account for the detection of virus pro-
tein and nucleic acids in ME effusions during or immediately
following a vURI. There, inflammatory cells that have
engulfed virus on encounter at the nose and nasopharynx
“home” to the ME in response to inflammation initiated by
bacterial infection, neurogenic inflammation (NGI), hydrops
ex vacuo, or other causes [33]. This hypothesis is consistent
with existing data including the observation that bacteria-pos-
itive ME effusions also containing viral genomic sequences
are less likely to resolve with antibiotic therapy than are those
with bacteria alone [34]. There, the presence of viral genomes
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in the effusion evidences concurrent or pre-existing vURI with
attendant eustachian-tube obstruction and the consequent
inhibition of effusion clearance.

A review of existing data suggests a more complicated
mechanism of OM pathogenesis during a vURI. In such a
case, a cascade of events is precipitated by exposure of the
nasal mucosa (with probable localized cellular infection) to
a virus. Upon virus detection by local antigen-presenting
cells (eg, dendritic cells, resident macrophages) and virus
interaction with epithelial cells, chemical components of
the innate immune system are produced and/or upregu-
lated (eg, defensins, increased NK activity [35]), and the
host-alert cytokines, tumor necrosis factor-α (TNF-α), and
interferon are synthesized [36,37]. If this initial response
does not abort viral replication, the sustained levels of
chemical signals are processed and amplified by genetically
programmed (eg, cytokine genotypes [38•]) and environ-
mentally tuned (eg, chronic stress [39]) biologic filters,
whose outputs first, cause the synthesis and release of
inflammatory mediators (eg, histamine, bradykinin, arachi-
donic acid metabolites) that enhance local influx of effector
chemicals (eg, serum antibodies) and leukocytes [40,41];
second, moderate production of TNF-α and interferon that
initiate NGI and coordinate the immune response; and
third, modulate the upregulation of more downstream
cytokines such as interleukin (IL)-1, IL-6, IL-8, and IL-10
that control the magnitude and duration of the immune/
inflammatory response. The synthesized and released
inflammatory mediators, neurokines, and cytokines inter-
act in both positive and negative feedback loops to moder-
ate the degree of inflammation and to specify the type
(primary Th1 or Th2) and magnitude of the host immune
response [42]. The primary effect of these responses is to
neutralize free virus and kill virus-infected cells, events that
signal the production of “anti-inflammatory” cytokines and
chemokines. These “late” signals in turn downregulate
inflammation, eliminate cellular debris, and promote
mucosal healing.

The local tissue damage caused by virus infection, the
nasal inflammatory response attributable to host defense,
and the local and systemic effects of the various chemical
signals are expressed as symptoms and signs of illness.
Extension of the inflammation with or without dissemi-
nated virus infection to anatomically contiguous structures
(eg, the eustachian tube, paranasal sinuses, lungs) can cause
complications including OM, sinusitis, and asthmatic exac-
erbations. Also, NGI is initiated by tissue damage, upregu-
lated by TNF-α, and modulated by other inflammatory
mediators [43,44]. NGI amplifies the degree of local inflam-
mation (thus promoting effector component influx to the
site of infection) and causes reflexive inflammation at more
distal target tissues (perhaps in anticipation/preparation for
disseminated infection). Because the distal effects of NGI
can include eustachian-tube dysfunction and increased ME
mucosal perfusion, possible consequences of NGI activation
are destabilized ME pressure regulation, the subsequent

development of significant ME underpressures, and, if pro-
longed, OM by hydrops ex vacuo [45].

A secondary consequence of nasal infection with certain
upper respiratory viruses is a more favorable environment
for the nasopharyngeal growth of specific bacterial path-
ogens (eg, influenza virus infection and S. pneumoniae colo-
nization [27,29]). The results of other studies suggest that
upregulated antiviral defense is accompanied by downregu-
lated antibacterial defense [46–48]. Both of these effects
serve to free resident nasopharyngeal pathogens from physi-
ologic sequestration, thereby allowing them to effectively
compete with and replace commensal species. Intermittent
relief of viral-initiated ME underpressure by eustachian-tube
openings can aspirate the nasopharyngeal pathogens into
the ME and cause in situ bacterial infection. Infection at that
site causes the early, local synthesis of TNF-α by the ME
mucosa and a cascading production of other cytokines/
mediators within the ME [49]. In turn, these chemical sig-
nals provoke the ME mucosal inflammation, which charac-
terizes OM.

Strategies for Prevention of Otitis Media 
During a Viral Upper Respiratory Infection
Although incomplete, the previous description highlights
the various checkpoints that can be targeted to prevent OM
during a vURI (Fig. 1). Broadly, these checkpoints can be
subdivided into two general classes on the basis of tempo-
ral dynamics; ie, those existing before (I, II) and after (III–
V) established virus infection of the nose/nasopharynx.

Pre-infection strategies
An obvious, although somewhat impractical (given current
demographic patterns and economic realities in the United
States and other countries) option to prevent OM caused
by a vURI is to reduce the probability of virus exposure,
and thus the risk for infection. This can be accomplished
by: maintaining good hygienic behaviors in all social situa-
tions (eg, frequent hand washing, daily nasal lavage [50]);
withdrawing children at high risk for OM from day care or
preschool (or enforced absence during virus epidemics);
strict adherence to rules that “send home” children (and
teachers) presenting to day care or primary school with
signs/symptoms of a cold/flu; and early antiviral treatment
of ill parents, siblings, and other frequent contacts. To date,
none of these options has been explored in clinical trials,
and their potential impact on OM incidence is not known.
One inherent limitation to their expected efficacy is the
absence of symptoms/signs in a high frequency of persons
with confirmed upper respiratory virus infection [51•,52],
and thus the inability to identify all infected contacts for
avoidance and/or treatment.

Alternatively, OM could be prevented by priming the
host to resist virus infection. Past studies show that high
homotypic serum IgG antibody titer, high mucosal secre-
tory IgA–specific antibody titer, and upregulated immuno-
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logic surveillance (eg, natural killer, CD8 function) can
prevent infection, reduce viral load, diminish the magni-
tude of the signal chemical production, and decrease the
magnitudes and frequencies of overt signs and symptoms
of a vURI [53,54]. Therefore, increasing the pre-exposure,
host levels of those antibodies, and/or functional activation
of T-cell subsets by vaccination and/or immunoglobulin
therapy could limit viral replication and abort the patho-
genesis of a vURI and its complications. Recent clinical
studies confirmed the efficacy of this overall strategy. Speci-
fically, a number of studies reported a significantly lesser
incidence of infection with the target virus and fewer associ-
ated OM episodes in infants and children immunized with
influenza virus vaccines (by both parenteral and intranasal
routes [55,56,57•]) or pretreated with anti-RSV–enriched
serum [58]. Unfortunately, although vaccines for other
upper respiratory viruses are in development and testing
(although a rhinovirus vaccine is not anticipated, given the
large number of circulating types), only influenza vaccines
are currently deployed, and their overall reduction of OM
burden is limited (approximately 10%). Also, an interpreta-
tion of the results for passive immunization with enhanced
RSV antibody serum is not clear-cut because the observed
OM reduction was not restricted to the RSV season, and a
study that used monoclonal anti-RSV antibodies (Palivi-
zumab; Synagis, MedImmune, Gaithersburg, MD) did not
reduce OM episodes [59]. This leaves open the possibility
that OM prevention was mediated by coexistent antibodies
directed against pathogenic bacteria within the immuniza-
tion serum.

An untested possibility is the prophylactic use of anti-
virals in children at high risk for OM during those seasons
typically characterized by infectious spread of the target virus
or after the virus is identified in family members and/or regu-
lar contacts (eg, classmates, family members). However, pro-
phylactic antiviral treatment during a viral season might
endanger the health of treated patients (as experience with
long-term use of these potent chemicals is limited) and
might represent a societal hazard by selecting for resistant
virus strains or, perhaps of greater concern, virus strains with
altered infectious and/or trophic properties [60]. Also of
interest is the possible, prophylactic use of nonspecific,

immune stimulants that upregulate components of innate
immunity and/or increase immune surveillance [61],
although given the controversial status and/or poorly ratio-
nalized mechanism of action for available treatments (eg,
homeopathic medicines), the practical application of this
approach lies in the future.

Post-infection strategies
Experimental infection of adult humans with RSV, rhino-
virus, influenza virus, and coxsackie A virus provokes a sim-
ilar local symptom/sign presentation (with varying degrees
of systemic involvement), a similar nasal secretary response,
a similar pattern of complications (with varying frequen-
cies), and a similar panel of elaborated cytokines [24–
26,40,51•]. Also, the extent of symptoms and signs of ill-
ness during vURIs does not predict the temporal dynamics
of infection resolution (ie, both asymptomatic and symp-
tomatic persons resolve the infection), and although most
available treatments target known chemical mediators and
are effective in promoting symptom relief, they do not sig-
nificantly prolong the period of viral shedding [62]. These
results suggest that the host response to common upper res-
piratory viruses (black box, Fig. 1) includes: virus-specific,
immunologic defense pathways; requisite inflammatory
pathways; and nonspecific, coincidental inflammatory
pathways. Although the requisite and virus-specific
responses are important for preventing virus dissemination
and re-establishing mucosal health, the nonspecific, coin-
cidental inflammatory responses can cause unnecessary
symptoms and provoke complications. Therefore, an ideal
vURI treatment would reduce illness and decrease com-
plications by attenuating the nonspecific, coincidental
responses while sparing the requisite responses; ie, pharma-
cologically tune the host response. This approach requires a
much better understanding of the complex signaling
involved in activating the effector components of these dif-
ferent pathways, but the promise of generalized applicabil-
ity across viruses makes the pursuit of such knowledge a
research priority.

Because viral load modulates the production of the
chemical signals that provoke inflammation, early anti-
viral treatment might prevent the necessary preconditions

Figure 1. Schematic diagramming the temporal 
course of signal processing (left to right) in the 
pathogenesis of complications during a viral 
upper respiratory infection. Roman numerals 
define the stages at which interventions can be 
introduced to prevent complications.
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for OM. One study of experimental influenza virus infec-
tion in adults reported a significantly lesser frequency of
otologic manifestations (ie, abnormal ME pressure) for
the group pretreated with the neuraminidase inhibitor,
zanamivir, when compared with those treated with pla-
cebo [63]. In contrast, a second study in that model of
infection used rimantadine and placebo treatments begun
at the time of initial symptoms and reported less influenza
virus shedding, symptoms of illness, nasal secretions, and
nasal pro-inflammatory cytokine levels for the riman-
tadine group, but no between treatment differences in
otologic complications, including the frequency of OM
[64]. The discrepant results of these two studies with
respect to antiviral efficacy for preventing the otologic
complications of influenza A infection are explicable by
the timing of the intervention (ie, prophylaxis vs treat-
ment). Therefore, this strategy might require introduction
of the antiviral treatment soon after infection, and, conse-
quently, the pre-existence of an early, overt signal (ie,
symptom/sign) of infection and, given the specificity of
antivirals, a rapid method to identify the virus.

Other targets for OM prevention during a vURI are the
specific pathways unique to OM pathogenesis. As discussed
earlier, clinical and experimental data support eustachian-
tube dysfunction (ie, failure to effectively open) and altered
nasopharyngeal bacterial flora as requisite components of
the mechanism by which a vURI translates into an otologic
disease. The cause of eustachian-tube dysfunction during a
vURI is debated. Histologic studies in chinchillas document
extension of the virus infection to the luminal mucosa, but
eustachian-tube function tests in infected ferrets, children,
and adults evidence mucosal swelling, possibly caused by
NGI [65–67]. Attempts to preserve adequate eustachian-
tube function (and ambient ME pressure) during a vURI
using oral decongestants in children and adults have not
been successful [68]. In one double-blind clinical study,
intranasal steroid (fluticasone propionate) was adminis-
tered for 7 days immediately after onset of vURI symptoms
in an attempt to decrease nasopharyngeal inflammation
(and possible eustachian-tube obstruction), but was not
efficacious in preventing AOM and might have increased
OM incidence during rhinovirus infection [69]. Nonethe-
less, some promise for this strategy is demonstrated by the
results of a randomized study that compared no treatment,
influenza vaccination, and tympanostomy-tube insertion
(which bypasses the eustachian tube to maintain ambient
ME pressure) for preventing OM during the influenza
season [55]. There, the group treated with tympanostomy
tubes had less OM than the group treated with the influ-
enza vaccine, which in turn had less OM than the untreated
group. However, a significant limitation to the pharma-
cologic manipulation of eustachian-tube function is the
paucity of data regarding drug effects on that function. This
is a focus of active research by groups in Sweden, Japan, and
the United States.

Alternatively, vURI-associated OM could be prevented by
targeting emergent or extant nasopharyngeal pathogens. As
mentioned, vaccination against S. pneumoniae, extended anti-
biotic prophylaxis, seeding the nasopharynx with probiotics,
and nasopharyngeal exposure to xylitol (by lozenge or chew-
ing gum) reduced the frequency of OM episodes [9–
11,12•,13–15]. In an adaptation of this strategy, clinical stud-
ies were designed to evaluate prophylactic antibiotics and
xylitol administered for the limited period immediately after
symptom onset during a vURI. The one published, double-
blind, placebo-controlled, clinical study of xylitol did not
show efficacy in preventing the development of OM during a
vURI [70], and the three studies that used antibiotics (peni-
cillin V, amoxicillin clavulanate, and sultamicillin) in a dou-
ble-blind, placebo-controlled format did not demonstrate
protective efficacy [71–73]. However, it is not known if these
treatments shorten the course of the OM episodes, or alterna-
tively, if antivirals administered at the time would have such
an effect.

Caveats Regarding the Impact of Proposed 
Strategies on Otitis Media Incidence
Possible strategies to prevent OM caused by vURI include
interventions that reduce the risk of virus exposure, reduce
the risk of infection given virus exposure, and reduce the risk
of OM given a viral infection. As noted, reducing exposure
to the many types of circulating upper respiratory viruses is
difficult under most circumstances, but the listed options
(such as attention to hygiene within the family and with-
drawal from day care) should be given serious consideration
for infants and children with a history of or at high risk for
recurrent OM. Breast-feeding is well established as lessening
the latter two risks and should be encouraged for all infants,
with perhaps particular enthusiasm for those with a family
history of OM or at high risk for vURI (eg, prematurity). Pas-
sive immunization with high-titer antiviral/antibacterial
serum might have a limited role in preventing OM caused by
viral and/or bacterial infection. However, because this treat-
ment option is expensive, requires monthly administration
by injection, is associated with pain and possible side
effects, and might be redundant to breast-feeding (in young
infants) and active immunization (in older infants and chil-
dren), it is best reserved for immunocompromised infants
and children who are at high risk for more serious, invasive
diseases (eg, RSV-associated pneumonia).

Effective vaccinations targeting upper respiratory virus
will decrease the incidence of vURI and reduce the incidence
of OM but, currently, this option is restricted to influenza.
Vaccines against other viruses are in development and/or
testing but their efficacy remains to be demonstrated, and
regulatory issues might delay their introduction for many
years. Because the attack rates for the different viruses that
cause vURI and the conditional incidence of OM per infec-
tion with a given viral species are not known, effective immu-
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nization with any number of these anticipated viral vaccines
might or might not have a significant impact on OM inci-
dence. This information is extremely important in develop-
ing strategies to prevent OM caused by vURIs because
parental resistance to multiple vaccinations (in addition to
those currently required or recommended) of their infants
and children is an expected impediment to strategy deploy-
ment. Also, the documented synergism between bacterial
pathogens that cause OM and specific viruses suggests that
immunization against some viruses might be redundant to
immunization against bacteria species. For example, the effi-
ciency (operationally defined as cases of OM prevented/
number of individuals treated) of influenza vaccination for
OM prevention can be expected to decrease as multivalent
pneumococcal vaccination becomes universal (given that
both will prevent pneumococcal OM). Similar redundancies
might exist for other bacteria/virus combinations. OM pre-
vention by viral vaccination is not expected to be a strategy
applicable to rhinovirus infection for which the development
of a vaccine with reasonable valence is unlikely because of
the large number of circulating rhinovirus types, the type-
specific host immune response, and the inability of neutral-
izing antibodies to access and bind with conserved capsid
domains [74]. This appreciably limits the overall efficiency of
the vaccination for OM prevention because rhinoviruses are
the most common cause of vURIs and are recognized as a fre-
quent cause of OM.

For rhinovirus and perhaps other viruses, prevention of
infection (and/or presymptomatic treatment to abort infec-
tion) might require the prophylactic use of antivirals. A
series of candidate drugs are in testing, and some of these
were shown to be effective in reducing viral load during doc-
umented infection. However, deployment of this strategy for
the purpose of preventing OM shares the same concerns
described for antibiotic prophylaxis; ie, toxicity and side-
effects for the patient and the selection of drug-resistant
virus stains with unpredictable properties. Because of the
relatively long rhinovirus season and the continuous expo-
sure to different rhinovirus strains, such concerns make this
strategy unacceptable for general use.

As discussed, there is a wide variety of other treatment
possibilities that could decrease OM during a vURI. How-
ever, all of these options require that an identifiable signal
indicative of infection precedes the development of OM. This
temporal relationship is depicted in Figure 2. Ideally, for
strategies that target OM during a vURI, all viral infections
would be associated with early symptom/sign expression, the
magnitudes of those expressions would be sufficient to be
identified as a vURI illness, and OM and other complications
would develop days after detection of the illness signal,
thereby allowing for diagnosis of the specific virus and intro-
duction of the designated intervention. Studies have shown
that the real-life situation falls far short of this ideal. For
example, experimental infection in adults shows that the
time between viral infection and symptom/sign develop-
ment is highly variable across viruses (eg, 2–3 days for influ-
enza A and HRV, >5 days for RSV infection) and that the
magnitudes of symptoms and signs of cold (flu)-like illness
might or might not achieve a level sufficient to be perceived
as signaling an infection [24–26]. In that experimental
model, the absence of illness does not preclude the develop-
ment of otologic complications, and there is no fixed tempo-
ral relationship between those complications and sign/
symptom presentation [51•]. Similarly, in young children
(2–5 years) with natural, symptomatic vURIs, approximately
50% of new OM episodes developed within 7 days before or
on the day of parent identification of a cold episode [14]. For
these reasons, the expected efficiency of any intervention for
OM prevention begun during a vURI infection is low.

For all proposed strategies, nontargeted application is
expected to have rather low efficiency. Therefore, the ad
hoc identification of subpopulations and, preferably, indi-
viduals at high risk for OM as a complication of vURIs
would allow for targeted introduction of the various strat-
egies for OM prevention, thereby increasing the efficiency
and decreasing both the risks of adverse events and the
total cost of OM prevention. Because a high heritability for
OM was reported, family history is important in making
such risk assignments [75•]. Also, in a preliminary study, a
significant relationship was reported for OM during natu-

Figure 2. Temporal relationships between virus 
infection, development of symptoms/signs, and 
the onset of complications during a vURI. For 
most vURIs, there is a narrow window of oppor-
tunity (Wo) bounded by the onsets of symptoms 
and complications within which interventions 
that prevent the complication must be intro-
duced. OM—otitis media; vURI—viral upper 
respiratory infection.
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ral RSV infection and the genotype for an interferon-α pro-
moter polymorphism [76]. These results are encouraging,
and continued study of the genetics of OM during a vURI
is a promising avenue to pursue.

Conclusions
Many members of the research community are expressing
optimism that the introduction of vaccines and antivirals
effective against most of the viruses that predispose to OM
will soon assign OM to the category of a preventable disease
[30•]. Our position is more cautious, and we emphasize
that effective deployment of these and other related strat-
egies requires careful consideration of their possible impact
on individual and societal health. Because most episodes of
OM (and vURIs) are self-limiting and without significant
long-term consequence, some of these strategies should be
reserved for those individuals who are predisposed for fre-
quent disease recurrence and/or OME. As yet, the epidemi-
ology of OM caused by vURI is not completely developed
(eg, Which viruses are most important? What is the time
lapse between infection, symptoms, and complications?),
the mechanism underlying OM pathogenesis is not fully
understood (eg, Are there specific chemical signals that can
be modulated to preserve host defense but prevent OM?
Does virus infect the ME mucosa?), and the specific target
population for aggressive intervention is not well character-
ized. These remain research questions whose answers might
or might not support the optimism of our colleagues with
respect to making OM a preventable disease.
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