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Abstract
Background: Hepatocellular carcinoma (HCC) is the most common cancer with limited 
cure and poor survival. In our study, a bioinformatic analysis was conducted to investi-
gate the role of glycolysis in the pathogenesis and progression of HCC.
Methods: Single-sample gene set enrichment analysis (ssGESA) was used to calculate 
enrichment scores for each sample in TCGA-LIHC and GEO14520 according to the 
glycolysis gene set. Weighted gene co-expression network analysis identified a gene 
module closely related to glycolysis, and their function was investigated. Prognostic 
biomarkers were screened from these genes. Cox proportional hazard model and 
least absolute shrinkage and selection operator regression were used to construct the 
prognostic signature. Kaplan–Meier (KM) and receiver operating characteristic (ROC) 
curve analyses evaluated the prediction performance of the prognostic signature 
in TCGA-LIHC and ICGC-LIRI-JP. Combination analysis data of clinical features and 
prognostic signature constructed a nomogram. Area under ROC curves and decision 
curve analysis were used to compare the nomogram and its components.
Results: The glycolysis pathway was upregulated in HCC and was unfavorable for sur-
vival. The determined gene module was mainly enriched in cell proliferation. A prog-
nostic signature (CDCA8, RAB5IF, SAP30, and UCK2) was developed and validated. 
KM and ROC curves showed a considerable predictive effect. The risk score derived 
from the signature was an independent prognostic factor. The nomogram increased 
prediction efficiency by combining risk signature and TNM stage and performed bet-
ter than component factors in net benefit.
Conclusion: The gene signature may contribute to individual risk estimation, survival 
prognosis, and clinical management.
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1  |  INTRODUC TION

Liver cancer is the sixth most common cancer and the fourth leading 
cause of cancer-related deaths worldwide. Hepatocellular carcinoma 
(HCC) accounts for 75%–85% of these cases.1 Cancer prevention 
and treatment advances have reduced the overall incidence and 
mortality rates in recent years. However, liver cancer is gradually 
increasing and has aggravated the global disease burden.2 The main 
risk factors for HCC include chronic hepatitis B or hepatitis C virus 
infection, aflatoxin exposure, alcohol abuse, smoking, obesity, and 
others.3  Patients with HCC are usually diagnosed at intermediate 
or advanced stages due to occult onset and atypical symptoms. 
Curative treatment methods, including surgical resection, liver 
transplantation, and locoregional ablation, are unable to achieve the 
desired effect.4,5 Radiotherapy, chemotherapy, targeted therapy, 
and immunotherapy are integrated into the comprehensive treat-
ment of HCC, which improves the survival prognosis of patients with 
intermediate and advanced HCC.6,7

However, tumor heterogeneity may result in various therapeu-
tic responses and survival outcomes. Even though the histological 
grade and tumor stage of HCC are the same, biological behavior 
differences caused by molecular and genetic diversity affect the 
therapeutic effect.8,9 Increasing evidence indicates that energy 
metabolism reprogramming is important in the initiation and pro-
gression of HCC; especially, the shift of aerobic glycolysis from ox-
idative phosphorylation, which is first found in HCC, is a hallmark 
of liver cancer and is responsible for the regulation of proliferation, 
immune evasion, invasion metastasis, angiogenesis, and drug resis-
tance in HCC.10-12 Aerobic glycolysis can rapidly produce sufficient 
adenosine triphosphate to meet the energy requirements of tumor 
growth and proliferation under hypoxic conditions. The metabolic 
intermediates of glycolysis can serve as raw materials for the syn-
thesis of proteins, lipids, and nucleic acids. The production and ac-
cumulation of lactate and hydrogen ions during glycolysis lead to 
the acidification of the extracellular microenvironment, which can 
induce apoptosis of peripheral normal cells and produce an immuno-
suppressive effect on effector immune cells, prompting the invasion 
and metastasis of tumor cells.13 Glycolysis is regulated by glycolytic 
enzymes and by transcription factors that include c-MYC, hypoxia 
inducible factor-1 (HIF-1), and p53, which are related to the expres-
sion and alteration of multiple oncogenes.14 Consequently, anti-
glycolytic therapy might inhibit tumor proliferation and kill tumor 
cells. Glycolytic rate-limiting enzymes and HIFs are ideal targets for 
HCC.15 Key glycolytic enzymes, such as hexokinase 2 (HK2), phos-
phofructokinase (PFK), and pyruvate kinase 2 (PKM2), are reported 
tumor markers.16,17  Their expression and activity can affect the 
glycolysis of tumors, in turn affecting the proliferation of tumors. 
Moreover, inhibition of glycolysis can increase the sensitivity of ad-
vanced HCC to sorafenib in cell and animal models.18 In addition, 
18F-fluorodeoxyglucose positron emission tomography/computed 
tomography (18FDG-PET/CT) enables the location, diagnosis, and 
follow-up of HCC based on glycolysis.19

The risk signature for the prognosis of HCC involving glycolysis-
related genes has been investigated previously.20-22  Nevertheless, 
the function of genes that might interact with glycolysis pathway 
in HCC has not been explored. Here, we analyzed the role of the 
glycolysis pathway in HCC tumorigenesis, screened the genes that 
might interact with glycolysis pathway, and assessed their import-
ant prognostic value. The identified genes enabled the construction 
of a highly efficient prognostic model to predict the survival and 
clinical risk of HCC. In addition, a nomogram that combined gene 
signatures and clinical characteristics displayed a higher prediction 
performance. The results reveal some novel promising targets for 
HCC that appear to be very important for prognosis evaluation, risk 
stratification, and reasonable treatment options.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection and processing

The transcriptome data of TCGA-LIHC and the corresponding clini-
cal information were downloaded from The Cancer Genome Atlas 
(TCGA (http://cance​rgeno​me.nih.gov). The transcriptomic gene ex-
pression profiles of ICGC-LIRI-JP and GSE14520, and correspond-
ing clinical data were obtained from International Cancer Genome 
Consortium (ICGC, https://dcc.icgc.org/) and Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). Due to the un-
known identity of patients from the above cohorts, informed con-
sent was waived. Patients with incomplete survival information and 
a survival period of less than 30 days were excluded. Their detailed 
information is provided in Table  1. Two hundred genes encoding 
proteins involved in glycolysis and gluconeogenesis were extracted 
from the gene set (HALLMARK_GLYCOLYSIS) retrieved from the 
Molecular Signatures Database of GSEA (https://www.gsea-msigdb.
org/gsea/index.jsp).

2.2  |  Single-sample gene set enrichment analysis 
(ssGSEA) and weighted gene co-expression network 
analysis (WGCNA)

ssGSEA was applied to calculate the enrichment score that repre-
sented the absolute enrichment degree of a gene set in each sample 
by an empirical cumulative distribution function based on the given 
gene expression profile. Glycolysis ssGSEA scores of 424  samples 
from TCGA-LIHC and 445  samples from GSE14520 were derived 
using the Gene Set Variation Analysis (GSVA) package. The scores 
were compared in different tissue types and survival statuses using 
the limma package in R.23 Gene expression profiles of 374 tumor 
samples and 50 normal samples were used for gene set enrich-
ment analysis (GSEA) on the gene set (HALLMARK_GLYCOLYSIS) 
with 1000 permutations using GSEA version 4.1.0.24 WGCNA was 
used to identify highly correlated gene modules and to analyze the 

http://cancergenome.nih.gov
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TA B L E  1 Clinicopathological information of the patients in TCGA-LIHC cohort and ICGC-LIRI-JP cohort

Survival status

Total (N = 348)Alive (N = 223) Dead (N = 125)

Age (years old)

Mean (SD) 58.4 (12.9) 61.2 (13.7) 59.4 (13.2)

Median [Min, Max] 60.0 [16.0, 81.0] 64.0 [18.0, 90.0] 61.0 [16.0, 90.0]

Gender

Female 61 49 110

Male 162 76 238

Histological grade

G1 36 17 53

G2 104 60 164

G3 74 39 113

G4 8 5 13

AJCC TNM stage

Stage I 126 39 165

Stage II 54 24 78

Stage III 36 45 81

Stage IV 0 3 3

T stage

T1 129 43 172

T2 57 28 85

T3 32 43 75

T4 3 10 13

M stage

M0 170 80 250

M1 0 3 3

N stage

N0 166 78 244

N1 1 2 3

Survival status

Total (N = 256)Alive (N = 214) Dead (N = 42)

Age (years old)

Mean (SD) 67.5 (10.2) 66.9 (9.57) 67.4 (10.1)

Median [Min, Max] 69.0 [31.0, 89.0] 68.5 [37.0, 83.0] 69.0 [31.0, 89.0]

Gender

Female 51 17 68

Male 163 25 188

TNM stage

Stage I 39 1 40

Stage II 99 18 117

Stage III 63 13 76

Stage IV 13 10 23

Abbreviations: AJCC, American Joint Committee on Cancer; G1, high differentiation; G2, medium differentiation; G3, low differentiation; G4, 
undifferentiated; LCSGJ, Liver Cancer Study Group of Japan.
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association between the gene modules and phenotype information 
via the WGCNA package in R. The gene module with a highly signifi-
cant positive correlation with glycolysis pathway genes was selected 
for further analysis.25

2.3  |  Development and validation of the novel 
prognostic signature

Differential gene expression analysis of the identified gene mod-
ule between 374 HCC tumor samples and 50 adjacent non-tumor 
samples in the TCGA-LIHC cohort was performed. Abnormally ex-
pressed genes were identified using the limma package in R soft-
ware. The threshold was a false discovery rate (FDR) <  0.05 and 
log2 |fold change (FC) | >  1.26  The differentially expressed genes 
(DEGs) were extracted and analyzed with the Gene Ontology (GO) 
term annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway functional enrichment analysis to investigate their 
underlying biological mechanism using clusterProfiler package in R 
software.27

The Cox proportional hazards model and least absolute shrink-
age and selection operator (LASSO) regression were used to identify 
prognostic DEGs and construct a prognostic signature associated 
with overall survival (OS) of patients with HCC.28 Individual risk 
scores were calculated using the generated coefficients and their 
corresponding gene expression. In accordance with the median 
value of risk scores, we divided the cohort into high-risk and low-
risk groups and used Kaplan–Meier (KM) survival curves and time-
dependent receiver operating characteristic (ROC) curves to assess 
discrimination ability and prediction accuracy of the prognostic 
signature. We used the LIRI-JP cohort in the ICGC database as an 
external validation cohort to verify the prognostic effect of the 
prognostic signature. The same formula was used to calculate in-
dividual risk scores. For this, patients were classified into the high-
risk and low-risk groups according to the median value of the risk 
scores. KM survival curves and time-dependent ROC curves were 
obtained, as described above. Principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE) were used 
to detect the clustering ability of the prognostic signature. Subgroup 
survival analyses of age, gender, histological grade, AJCC TNM stage, 
T stage, N stage, and M stage were performed according to the me-
dian risk scores of each subgroup. The Chi-square test was used to 
evaluate the relationship between different risk levels and diverse 
clinical characteristics. The Wilcoxon rank-sum test was used to 
compare risk scores in different clinical subgroups. Univariate and 
multivariate Cox regression analyses were used to confirm the inde-
pendent prognostic impact of risk scores and several clinical factors 
on patient outcomes. Gene Expression Profiling Interactive Analysis 
(GEPIA, http://gepia.cance​r-pku.cn/) was applied to demonstrate 
the prognostic effect of the screened genes.29  The cBioPortal for 
Cancer Genomics (http://www.cbiop​ortal.org/) was employed to il-
lustrate the mutation state of the selected genes.30

2.4  |  Development of the nomogram based on 
prognostic signature and clinical characteristics

The clinical characteristics (p < 0.05) were considered as candidate 
prognostic factors by univariate Cox regression analysis and were 
entered into the stepwise multivariate Cox regression analysis with 
the aforementioned prognostic signature. A nomogram combining 
prognostic signatures and clinical features was developed. We ana-
lyzed the prediction, discrimination, and calibration abilities of the 
nomogram using the concordance index (C-index), time-dependent 
ROC curves, KM survival curves, and calibration curves. The area 
under the curve (AUC) of the ROC curves of the nomogram and 
other prognostic factors, such as the AJCC TNM stage and four-gene 
based prognostic signature, were assessed and compared at differ-
ent time points over the follow-up period using time-dependent 
AUC curves. Decision curve analysis (DCA) was used to examine the 
benefits of different prediction models.

2.5  |  Statistical analysis

R version 4.0.3 software (https://cran.r-proje​ct.org/) was the main 
tool used to conduct the statistical analysis. A p-value of <0.05 was 
considered statistically significant.

3  |  RESULTS

3.1  |  Role of the glycolysis pathway in HCC

Glycolysis ssGSEA scores were calculated for each sample in 
GSE14520 and TCGA-LIHC to represent the glycolytic activity using 
the ssGSEA method from the GSVA package, according to the gene 
set HALLMARK_GLYCOLYSIS. In GSE14520, it was observed that 
the glycolysis ssGSEA score was significantly higher in tumor tissues 
than in matched normal tissues (p < 0.05), and the glycolysis ssGSEA 
score of the dead patients was significantly higher than that of the 
surviving patients (p < 0.05) (Figure 1A). Compared to the patients 
with lower glycolysis ssGSEA scores, the patients with higher gly-
colysis ssGSEA scores had worse outcomes (p < 0.05) (Figure 1B). 
In TCGA-LIHC, although no significant difference was found in the 
comparison of glycolysis ssGSEA scores between tumor tissues and 
adjacent normal tissues (p = 0.83), glycolysis ssGSEA scores of the 
patients with different survival outcomes were distinctly different, 
similar to the results of GSE14520 (p  <  0.05) (Figure 1C). The re-
sults of KM survival analysis indicated that the patients with higher 
glycolysis ssGSEA scores had a shorter survival period than those 
with lower glycolysis ssGSEA scores (p < 0.05) (Figure 1D). The re-
sults of GSEA analysis in the TCGA-LIHC cohort showed that the 
normalized enrichment score of gene set HALLMARK_GLYCOLYSIS 
was more than 1 and both the NOM p-value and FDR q-value were 
<0.05, indicating that the biological behaviors of glycolysis and 

http://gepia.cancer-pku.cn/
http://www.cbioportal.org/
https://cran.r-project.org/
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gluconeogenesis were more active in tumor tissues than in normal 
tissues in HCC, and it might promote the tumorigenesis and develop-
ment (Figure 1E).

3.2  |  Novel prognostic signature based on 
four genes

WGCNA was implemented to construct a gene co-expression net-
work and to identify a highly synergistic gene set based on weighted 
gene expression correlation. After excluding one discrete sample 
(GSM363054) and setting the optimal soft threshold to 4, hierar-
chical clustering analysis was performed. The clustering results 
were segmented to obtain many highly positively correlated gene 
modules, represented by different color branches of the clustering 
tree (Figure 2A-C). The correlation between gene modules and gly-
colysis ssGSEA score was calculated and compared. The blue gene 
module was determined to have the most positive correlation with 
glycolysis ssGSEA scores (Cor = 0.39, p < 0.05) (Figure 2D). A total 
of 614  genes in the blue gene module were extracted to conduct 
GO term annotation and KEGG pathway analysis. The ten most sig-
nificantly enriched KEGG pathways of these genes were cell cycle, 

DNA replication, spliceosome, oocyte meiosis, homologous recom-
bination, mismatch repair, Fanconi anemia pathway, p53  signaling 
pathway, nucleotide excision repair, and base excision repair. The 
results of GO term analysis showed that these genes were mainly 
enriched in biological processes, cellular components, and molecular 
functions associated with cell proliferation and division (Figure 2E).

After DEG analysis of 614 genes in the cohort of TCGA-LIHC, 
we identified 375 upregulated genes and 11 downregulated genes 
between tumor samples and adjacent normal samples (Figure 3A,B). 
A total of 339 DEGs were screened after univariate Cox regres-
sion analysis (p < 0.05). Of these, nine (C5orf30, CDCA8, GTPBP4, 
NEIL3, PPM1G, PSRC1, RAB5IF, SAP30, and UCK2) were chosen 
as prognostic DEGs. The number of candidate genes was reduced 
by LASSO regression analysis (Figure  3C,D). Multivariate Cox 
stepwise regression analysis was used to construct the prognostic 
signature via the analysis of these nine DEGs. The regression co-
efficient and gene expression of the four enrolled DEGs (CDCA8, 
RAB5IF, SAP30, and UCK2) were calculated. Four DEGs were inte-
grated into a formula based on the product of gene expression and 
regression coefficient. The individual risk score was calculated as 
follows: Risk score =  (expression of CDCA8 * 0.316) +  (expression 
of RAB5IF * 0.378) +  (Expression of SAP30 * 0.265) +  (Expression 

F I G U R E  1 ssGSEA analysis of glycolysis pathway (HALLMARK_GLYCOLYSIS) in HCC. Comparison of glycolysis ssGSEA scores among 
different subgroups in GEO14520 (A). Influence of glycolysis ssGSEA score level on survival prognosis in GEO14520 (B). Comparison of 
glycolysis ssGSEA scores among different subgroups in TCGA-LIHC (C). Influence of glycolysis ssGSEA score level on survival prognosis in 
TCGA-LIHC (D). Gene set enrichment plots of HALLMARK_GLYCOLYSIS in TCGA-LIHC (E)
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of UCK2 * 0.334) (Table 2). All four DEGs were upregulated in HCC 
and high expression levels were unfavorable indicators for OS of the 
patients.

Taking the median value of risk scores as the cutoff value, 
the cohort of TCGA-LIHC was divided into the high-risk and low-
risk groups. The distribution of risk scores, survival status, and 

expression of the four genes are displayed in Figure 4A. With the in-
crease in risk score, more patients tended to be in the state of death. 
The heatmap indicated that four genes were overexpressed in the 
high-risk group compared to the low-risk group. KM curves demon-
strated that the prognosis of the high-risk group was significantly 
poorer than that of the low-risk group in OS (p < 0.05) (Figure 4C). 

F I G U R E  2 WGCNA analysis of gene expression profiles in HCC. One outlier was detected by sample clustering, sample dendrogram, 
and trait heatmap (A). Soft threshold equaled 4 when scale independence tended to the maximum and mean connectivity tended to the 
minimum (B). Hierarchical clustering tree revealing 26 gene modules (C). Correlation between the 26 gene modules and glycolysis ssGSEA 
scores (D). Gene enrichment analysis of the blue gene module (E)

F I G U R E  3 DEG and LASSO regression analyses. Volcano plot of the DEGs (A). Heatmap of the DEGs (B). Filtration of variables in LASSO 
regression (C). 9 DEGs were obtained from LASSO regression (D)

TA B L E  2 Stepwise multivariate Cox regression analysis of survival prognostic genes

Id Expression Coefficient HR 95% CI p value

CDCA8 Up-regulated 0.316 1.372 1.065–1.767 0.014*

RAB5IF Up-regulated 0.378 1.459 1.105–1.928 0.008**

SAP30 Up-regulated 0.265 1.304 0.954–1.783 0.096

UCK2 Up-regulated 0.334 1.396 1.014–1.923 0.041*

Abbreviations: CI, confidence interval; HR, hazard ratio.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Time-dependent ROC curves were used to detect the predictive ef-
fect of the risk signature on the OS of patients. The AUC value was 
used to represent the prediction ability. The AUC values at 1-, 3-, 
and 5-years were 0.815, 0.726, and 0.725, respectively (Figure 4E). 
The ICGC-LIRI-JP cohort served as the validation cohort for the risk 
signature. According to the median value of the overall risk scores, 
the patients from the ICGC-LIRI-JP cohort were classified into the 
high-risk and low-risk groups. The distribution of risk scores, survival 
status, and expression of the four genes are shown in Figure 4B. The 
results were similar to those of TCGA-LIHC cohort. Similarly, there 
were more deaths among those at high risk. The heatmap revealed 
that the expression comparison results of four genes between high- 
and low-risk groups were consistent with those in TCGA-LIHC co-
hort. KM curves suggested that the high-risk group had a markedly 
lower OS rate than the low-risk group (p < 0.05) (Figure 4D). Time-
dependent ROC curves of the ICGC-LIRI-JP cohort were plotted. 
The AUC values at 1-, 2-, and 3-years were 0.771, 0.756, and 0.78, 
respectively (Figure 4F). PCA and t-SNE analyses illustrated that the 

prognostic signature could clearly distinguish the high-risk and low-
risk groups according to the sample distribution of the two groups 
(Figure 4G,H).

In the cases of age <65  years, age ≥65  years, male sex, TNM 
stage I-II, T1-2, T3-4, M0, N0, G1-2, and G3-4, the KM analysis in-
dicated that the high-risk group had a significantly poorer OS prog-
nosis than the low-risk group (all p < 0.05). However, the OS of the 
high-risk and low-risk groups in the female subgroup (p = 0.1) and 
TNM stage III-IV subgroup (p = 0.051) did not show significant dif-
ferences (Figure 5A-L). Thus, the risk signature might be suitable for 
risk stratification and survival prediction in most subgroups. The re-
sults of the chi-square test showed that the risk score was related 
to histological grade, AJCC TNM stage, and T stage (all p  <  0.05) 
(Table 3). The results of the Wilcoxon rank-sum test indicated that 
the patients with higher risk scores tended to have poorer histolog-
ical grade, advanced AJCC TNM stage, and higher T stage of HCC 
(Figure 6A-C). The results of univariate and multivariate Cox regres-
sion analyses in TCGA-LIHC and ICGC-LIRI-JP cohorts suggested 

F I G U R E  4 Development and validation of prognostic signature based on four genes (CDCA8, RAB5IF, SAP30, and UCK2) in TCGA-LIHC 
and ICGC-LIRI-JP cohorts. The risk and survival distribution of the patients, and the heatmap of the four genes in TCGA-LIHC and ICGC-
LIRI-JP cohorts (A-B). KM curve revealing the significantly shorter OS in the high-risk group compared with the low-risk group in TCGA-LIHC 
and ICGC-LIRI-JP cohorts (C-D). ROC curve of the risk signature in TCGA-LIHC and ICGC-LIRI-JP cohorts (E-F). PCA and t-SNE analyses of 
low- and high-risk groups in TCGA-LIHC and ICGC-LIRI-JP cohorts (G-H)

F I G U R E  5 Survival analysis of risk signature in the HCC patients with different clinical features in TCGA-LIHC, including age (A-B), 
gender (C-D), histological grades (E-F), AJCC TNM stages (G-H), M0 stage (I), N0 stage (J) and T stages (K-L)
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TA B L E  3 Chi-square test compared the clinicopathological characteristics of the patients with different risk levels

Risk

p valueLow (N = 171) High (N = 171)

Age 0.825

<65 years old 101 104

>=65 years old 70 67

Gender 0.164

Female 48 61

Male 123 110

Histological grade <0.001***

G1 38 15

G2 88 73

G3 40 71

G4 3 9

AJCC TNM stage <0.001***

Stage I 101 60

Stage II 31 46

Stage III 28 52

Stage IV 2 1

T stage <0.001***

T1 105 63

T2 31 53

T3 28 46

T4 4 9

N stage

N0 116 123

N1 0 3

M stage 0.607

M0 116 128

M1 2 1

Abbreviations: AJCC, American Joint Committee on Cancer; G1, high differentiation; G2, medium differentiation; G3, low differentiation; G4, 
undifferentiated.
*p < 0.05, **p < 0.01, ***p < 0.001.

F I G U R E  6 Correlation between the risk scores and HCC patients' histological grades, AJCC TNM stages, and T stages in TCGA-LIHC 
(A-C)
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that risk scores could act as independent prognostic factors for OS 
in patients with HCC (p < 0.05) (Table 4).

GEPIA results revealed that the expression of all four genes 
(CDCA8, RAB5IF, SAP30, and UCK2) was related to the OS prog-
nosis of patients with HCC, and patients with higher gene expres-
sion levels were more likely to have poorer outcomes (all p < 0.05) 
(Figure  7A-D). The mutations of four genes in HCC are shown in 
Figure 6C. UCK2 had the highest mutation rate (11%), especially in 
amplification. The other three genes had a mutation rate of <2%, 
with a rate of 0.5% for CDCA8 (Figure 7E).

3.3  |  Nomogram integrating risk signature and 
clinicopathological features

The candidate factors with prognostic value, including AJCC TNM 
stage and risk scores calculated by the prognostic signature, were 
screened out by stepwise multivariate Cox regression analysis and 
were used to construct a highly accurate predictive nomogram 
(Figure 8A). The nomogram had a C-index of 0.737 (95% confidence 
interval [CI]: 0.686–0.788), which was greater than the C-index of 
the risk prognostic signature (C-index, 0.733; 95% CI: 0.682–0.784). 
The calibration curves showed considerable agreement between the 
nomogram-predicted OS and actual OS (Figure 8B). According to the 
median value of risk scores calculated by the nomogram, the cohort 
was divided into the high-risk and low-risk groups. The results of 
the KM analysis demonstrated that the prognosis of the low-risk 
group was notably better than that of the high-risk group (p < 0.05) 
(Figure 8C). The nomogram could provide a more accurate survival 
prediction. ROC analysis suggested that the AUC values at 1, 3, and 
5 years for the training cohort were 0.825, 0.781, and 0.759, respec-
tively (Figure 8D). Time-dependent AUC curves suggested that the 

predictive power of the nomogram was superior to other predictive 
models, such as the AJCC TNM stage and four-gene based prog-
nostic signature at different time points over the follow-up period. 
DCA analysis showed that the nomogram could yield superior net 
benefits compared with an all-or-none treatment strategy and other 
predictive models (Figure 8E).

4  |  DISCUSSIONS

HCC is a common malignant disease with a high incidence and mor-
tality. Most patients with HCC are diagnosed at the terminal stage 
and have lost the chance to benefit from radical surgery.31 Although 
an increasing number of alternative therapy strategies have been de-
veloped and can prolong survival time for patients with unresectable 
HCC, they are not absolutely effective and some patients still have 
poor responses.32 The reasons why patients respond differently to 
the same treatment may reflect the heterogeneity of tumors caused 
by molecular dysregulation and genetic variation.33 Therefore, bio-
markers related to tumor development and curative effect are worth 
exploring and could be conducive to early detection, targeted ther-
apy, and personalized management of HCC.34-36

Glucose metabolism reprogramming, especially aerobic glycol-
ysis, is important in the initiation and progression of HCC in a hy-
poxic environment, such as growth and proliferation, invasion and 
metastasis, immunosuppression, and drug resistance.37 The results 
of ssGSEA comparison indicated that glycolysis was more active 
in HCC and could promote tumor malignant behavior. The regula-
tion of glycolysis in HCC is complex and may be related to genetic 
mutation and epigenetic modulation of oncogenes and suppressor 
genes, noncoding RNAs, signaling pathways, glycolytic enzymes, 
and other factors.38 Understanding the mechanism of glycolysis in 

TA B L E  4 Independent prognostic factor analysis for the overall survival in TCGA-LIHC cohort and ICGC- LIRI-JP cohort

TCGA-LIHC

Univariate Cox regression Multivariate Cox regression

HR 95% CI p value HR 95% CI p value

Age 1.005 0.991–1.020 0.474 1.010 0.994–1.025 0.227

Gender 0.754 0.511–1.113 0.156 0.833 0.553–1.254 0.381

Histological grade 1.118 0.862–1.450 0.400 0.991 0.746–1.316 0.948

AJCC TNM stage 1.806 1.461–2.232 <0.001*** 1.270 0.576–2.800 0.554

T stage 1.778 1.454–2.174 <0.001*** 1.250 0.592–2.642 0.559

Risk score 1.614 1.444–1.802 <0.001*** 1.564 1.376–1.778 <0.001***

ICGC-LIRI-JP

Univariate Cox regression Multivariate Cox regression

HR 95% CI p value HR 95% CI p value

Age 1.002 0.970–1.035 0.908 0.995 0.961–1.031 0.799

Gender 0.438 0.230–0.833 0.012* 0.334 0.172–0.652 0.001**

LCSGJ TNM stage 2.171 1.475–3.195 <0.001*** 2.127 1.477–3.063 <0.001***

Risk score 1.171 1.093–1.254 <0.001*** 1.146 1.063–1.237 <0.001***

Abbreviations: AJCC, American Joint Committee on Cancer; CI, confidence interval; HR, hazard ratio; LCSGJ, Liver Cancer Study Group of Japan.
*p < 0.05, **p < 0.01, *** p < 0.001.
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F I G U R E  7 Correlation between the expression of the four identified genes and HCC patients OS in TCGA-LIHC cohort (A-D). Mutation 
of the four genes in TCGA-LIHC cohort from Firehorse Legacy database (E)

F I G U R E  8 Development of the nomogram consisted of AJCC TNM stage and four-gene based prognostic signature. Nomogram plot (A). 
Calibration plots of the nomogram to predict 1-, 3-, and 5-year OS (B). ROC curves of the nomogram to predict 1-, 3-, and 5-year OS (C). 
Time-dependent AUC curves of the nomogram and its components (d). DCA analysis of the nomogram and its components (E)
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tumor development is essential to find novel biomarkers and prom-
ising therapeutic targets, and to improve diagnosis, treatment, and 
surveillance of HCC.

In the present study, we constructed co-expression gene mod-
ules related to glycolysis by WGCNA and identified four potential 
prognostic biomarkers to develop a novel risk signature for HCC. 
Cell division cycle-associated 8 (CDCA8), a regulator of mitosis, is 
overexpressed in bladder cancer, breast cancer, liver cancer, and 
other tumors and is involved in their growth and development. High 
CDCA8 expression may be a predictor of poor prognosis in HCC.39 
Long noncoding RNA RAB5 interacting factor (RAB5IF) is highly ex-
pressed in HCC and correlates with the poor prognosis of patients 
with HCC. RAB5IF can regulate the growth of HCC cells by modu-
lating LGR5 mediated β-catenin and c-Myc signaling.40 Transcription 
factor sin3A-associated protein 30 (SAP30), an indispensable compo-
nent of the histone deacetylase complex, can regulate the transcrip-
tion and expression of specific genes, especially tumor suppressor 
ING1.41,42 Uridine-cytidine kinase 2 (UCK2), which can catalyze the 
phosphorylation of uridine and cytidine to uridine monophosphate 
(UMP) and cytidine monophosphate (CMP), is associated with cell 
proliferation and is a potential unfavorable prognostic predictor for 
HCC prognosis.43 Cytotoxic agents that target UCK2 enzyme activ-
ity to induce cancer cell death are currently investigated in some 
clinical trials.44 The gene function and correlation analyses indicated 
that the genes were involved in glycolytic metabolic pathway and 
could link glycolysis and tumor growth. Therefore, the four genes 
with prognostic value might be promising biomarkers and potential 
therapeutic targets for HCC and are related to glycolysis regulation, 
tumor cell proliferation, and division in HCC.

Based on the four identified genes, a new risk prognostic sig-
nature for HCC was established and validated. The signature was 
effective for risk estimation and survival prediction. Additionally, 
the risk scores calculated by the signature were independent prog-
nostic factors for OS and were related to the biological activity of 
HCC in advanced tumor stage, larger tumor size, and higher histo-
logical grade. The patients with higher risk scores might be prone 
to die and have higher recurrence risk. The nomogram combining 
the four-gene based prognostic signature and AJCC TNM stage in-
creased the precision and reliability of the prediction model and ob-
tained a greater net benefit compared with the component factors. 
The nomogram might be conducive to risk assessment and clinical 
decision-making in the diagnosis, treatment, and prognosis of pa-
tients with HCC.

This study had several limitations. First, the results lacked the 
validation of experimental data. Second, the molecular mechanism 
of the four genes in the glycolysis pathway remains unclear and 
needs to be further explored in future studies. Finally, the nomo-
gram should be tested by multicenter studies and analyzed by a com-
prehensive analysis of clinical information to make it more practical 
in the clinic.

In summary, our study demonstrated the role of glycolysis 
pathway in HCC. Based on the cell proliferation-associated genes 
interacting with glycolysis, the four-gene prognostic signature was 

developed and validated. Finally, a novel prognostic nomogram com-
bining the four-gene prognostic signature and clinicopathological 
features could enhance prediction efficiency after the evaluation 
and might contribute to the clinical application of personal diagnosis 
and treatment.
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