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Abstract
Background: Hepatocellular carcinoma (HCC) is the most common cancer with limited 
cure and poor survival. In our study, a bioinformatic analysis was conducted to investi-
gate the role of glycolysis in the pathogenesis and progression of HCC.
Methods: Single-	sample	gene	set	enrichment	analysis	(ssGESA)	was	used	to	calculate	
enrichment scores for each sample in TCGA- LIHC and GEO14520 according to the 
glycolysis gene set. Weighted gene co- expression network analysis identified a gene 
module closely related to glycolysis, and their function was investigated. Prognostic 
biomarkers were screened from these genes. Cox proportional hazard model and 
least absolute shrinkage and selection operator regression were used to construct the 
prognostic signature. Kaplan– Meier (KM) and receiver operating characteristic (ROC) 
curve analyses evaluated the prediction performance of the prognostic signature 
in TCGA- LIHC and ICGC- LIRI- JP. Combination analysis data of clinical features and 
prognostic signature constructed a nomogram. Area under ROC curves and decision 
curve analysis were used to compare the nomogram and its components.
Results: The glycolysis pathway was upregulated in HCC and was unfavorable for sur-
vival. The determined gene module was mainly enriched in cell proliferation. A prog-
nostic	signature	(CDCA8,	RAB5IF,	SAP30,	and	UCK2)	was	developed	and	validated.	
KM and ROC curves showed a considerable predictive effect. The risk score derived 
from the signature was an independent prognostic factor. The nomogram increased 
prediction efficiency by combining risk signature and TNM stage and performed bet-
ter than component factors in net benefit.
Conclusion: The gene signature may contribute to individual risk estimation, survival 
prognosis, and clinical management.
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1  |  INTRODUC TION

Liver cancer is the sixth most common cancer and the fourth leading 
cause of cancer- related deaths worldwide. Hepatocellular carcinoma 
(HCC) accounts for 75%– 85% of these cases.1 Cancer prevention 
and treatment advances have reduced the overall incidence and 
mortality rates in recent years. However, liver cancer is gradually 
increasing and has aggravated the global disease burden.2 The main 
risk factors for HCC include chronic hepatitis B or hepatitis C virus 
infection, aflatoxin exposure, alcohol abuse, smoking, obesity, and 
others.3 Patients with HCC are usually diagnosed at intermediate 
or advanced stages due to occult onset and atypical symptoms. 
Curative treatment methods, including surgical resection, liver 
transplantation, and locoregional ablation, are unable to achieve the 
desired effect.4,5 Radiotherapy, chemotherapy, targeted therapy, 
and immunotherapy are integrated into the comprehensive treat-
ment of HCC, which improves the survival prognosis of patients with 
intermediate and advanced HCC.6,7

However, tumor heterogeneity may result in various therapeu-
tic responses and survival outcomes. Even though the histological 
grade and tumor stage of HCC are the same, biological behavior 
differences caused by molecular and genetic diversity affect the 
therapeutic effect.8,9 Increasing evidence indicates that energy 
metabolism reprogramming is important in the initiation and pro-
gression of HCC; especially, the shift of aerobic glycolysis from ox-
idative phosphorylation, which is first found in HCC, is a hallmark 
of liver cancer and is responsible for the regulation of proliferation, 
immune evasion, invasion metastasis, angiogenesis, and drug resis-
tance in HCC.10- 12 Aerobic glycolysis can rapidly produce sufficient 
adenosine triphosphate to meet the energy requirements of tumor 
growth and proliferation under hypoxic conditions. The metabolic 
intermediates of glycolysis can serve as raw materials for the syn-
thesis of proteins, lipids, and nucleic acids. The production and ac-
cumulation of lactate and hydrogen ions during glycolysis lead to 
the acidification of the extracellular microenvironment, which can 
induce apoptosis of peripheral normal cells and produce an immuno-
suppressive effect on effector immune cells, prompting the invasion 
and metastasis of tumor cells.13 Glycolysis is regulated by glycolytic 
enzymes and by transcription factors that include c- MYC, hypoxia 
inducible	factor-	1	(HIF-	1),	and	p53,	which	are	related	to	the	expres-
sion and alteration of multiple oncogenes.14 Consequently, anti-
glycolytic therapy might inhibit tumor proliferation and kill tumor 
cells.	Glycolytic	rate-	limiting	enzymes	and	HIFs	are	ideal	targets	for	
HCC.15 Key glycolytic enzymes, such as hexokinase 2 (HK2), phos-
phofructokinase	(PFK),	and	pyruvate	kinase	2	(PKM2),	are	reported	
tumor markers.16,17 Their expression and activity can affect the 
glycolysis of tumors, in turn affecting the proliferation of tumors. 
Moreover, inhibition of glycolysis can increase the sensitivity of ad-
vanced HCC to sorafenib in cell and animal models.18 In addition, 
18F-	fluorodeoxyglucose	 positron	 emission	 tomography/computed	
tomography	 (18FDG-	PET/CT)	 enables	 the	 location,	 diagnosis,	 and	
follow- up of HCC based on glycolysis.19

The risk signature for the prognosis of HCC involving glycolysis- 
related genes has been investigated previously.20- 22 Nevertheless, 
the function of genes that might interact with glycolysis pathway 
in HCC has not been explored. Here, we analyzed the role of the 
glycolysis pathway in HCC tumorigenesis, screened the genes that 
might interact with glycolysis pathway, and assessed their import-
ant prognostic value. The identified genes enabled the construction 
of a highly efficient prognostic model to predict the survival and 
clinical risk of HCC. In addition, a nomogram that combined gene 
signatures and clinical characteristics displayed a higher prediction 
performance. The results reveal some novel promising targets for 
HCC that appear to be very important for prognosis evaluation, risk 
stratification, and reasonable treatment options.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection and processing

The transcriptome data of TCGA- LIHC and the corresponding clini-
cal information were downloaded from The Cancer Genome Atlas 
(TCGA (http://cance rgeno me.nih.gov). The transcriptomic gene ex-
pression	profiles	of	 ICGC-	LIRI-	JP	and	GSE14520,	 and	correspond-
ing clinical data were obtained from International Cancer Genome 
Consortium (ICGC, https://dcc.icgc.org/) and Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). Due to the un-
known identity of patients from the above cohorts, informed con-
sent was waived. Patients with incomplete survival information and 
a survival period of less than 30 days were excluded. Their detailed 
information is provided in Table 1. Two hundred genes encoding 
proteins involved in glycolysis and gluconeogenesis were extracted 
from	 the	 gene	 set	 (HALLMARK_GLYCOLYSIS)	 retrieved	 from	 the	
Molecular	Signatures	Database	of	GSEA	(https://www.gsea-	msigdb.
org/gsea/index.jsp).

2.2  |  Single- sample gene set enrichment analysis 
(ssGSEA) and weighted gene co- expression network 
analysis (WGCNA)

ssGSEA	was	applied	 to	calculate	 the	enrichment	score	 that	 repre-
sented the absolute enrichment degree of a gene set in each sample 
by an empirical cumulative distribution function based on the given 
gene	expression	profile.	Glycolysis	 ssGSEA	scores	of	424	 samples	
from	 TCGA-	LIHC	 and	 445	 samples	 from	GSE14520	were	 derived	
using	the	Gene	Set	Variation	Analysis	 (GSVA)	package.	The	scores	
were compared in different tissue types and survival statuses using 
the limma package in R.23 Gene expression profiles of 374 tumor 
samples and 50 normal samples were used for gene set enrich-
ment	 analysis	 (GSEA)	 on	 the	 gene	 set	 (HALLMARK_GLYCOLYSIS)	
with	1000	permutations	using	GSEA	version	4.1.0.24 WGCNA was 
used to identify highly correlated gene modules and to analyze the 
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TA B L E  1 Clinicopathological	information	of	the	patients	in	TCGA-	LIHC	cohort	and	ICGC-	LIRI-	JP	cohort

Survival status

Total (N = 348)Alive (N = 223) Dead (N = 125)

Age (years old)

Mean (SD) 58.4	(12.9) 61.2 (13.7) 59.4	(13.2)

Median [Min, Max] 60.0 [16.0, 81.0] 64.0	[18.0,	90.0] 61.0	[16.0,	90.0]

Gender

Female 61 49 110

Male 162 76 238

Histological grade

G1 36 17 53

G2 104 60 164

G3 74 39 113

G4 8 5 13

AJCC TNM stage

Stage	I 126 39 165

Stage	II 54 24 78

Stage	III 36 45 81

Stage	IV 0 3 3

T stage

T1 129 43 172

T2 57 28 85

T3 32 43 75

T4 3 10 13

M stage

M0 170 80 250

M1 0 3 3

N stage

N0 166 78 244

N1 1 2 3

Survival status

Total (N = 256)Alive (N = 214) Dead (N = 42)

Age (years old)

Mean (SD) 67.5 (10.2) 66.9	(9.57) 67.4 (10.1)

Median [Min, Max] 69.0	[31.0,	89.0] 68.5 [37.0, 83.0] 69.0	[31.0,	89.0]

Gender

Female 51 17 68

Male 163 25 188

TNM stage

Stage	I 39 1 40

Stage	II 99 18 117

Stage	III 63 13 76

Stage	IV 13 10 23

Abbreviations: AJCC, American Joint Committee on Cancer; G1, high differentiation; G2, medium differentiation; G3, low differentiation; G4, 
undifferentiated;	LCSGJ,	Liver	Cancer	Study	Group	of	Japan.
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association between the gene modules and phenotype information 
via the WGCNA package in R. The gene module with a highly signifi-
cant positive correlation with glycolysis pathway genes was selected 
for further analysis.25

2.3  |  Development and validation of the novel 
prognostic signature

Differential gene expression analysis of the identified gene mod-
ule between 374 HCC tumor samples and 50 adjacent non- tumor 
samples in the TCGA- LIHC cohort was performed. Abnormally ex-
pressed genes were identified using the limma package in R soft-
ware.	 The	 threshold	was	 a	 false	 discovery	 rate	 (FDR)	< 0.05 and 
log2	 |fold	 change	 (FC)	 |	> 1.26 The differentially expressed genes 
(DEGs) were extracted and analyzed with the Gene Ontology (GO) 
term annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway functional enrichment analysis to investigate their 
underlying biological mechanism using clusterProfiler package in R 
software.27

The Cox proportional hazards model and least absolute shrink-
age	and	selection	operator	(LASSO)	regression	were	used	to	identify	
prognostic DEGs and construct a prognostic signature associated 
with	 overall	 survival	 (OS)	 of	 patients	 with	 HCC.28 Individual risk 
scores were calculated using the generated coefficients and their 
corresponding gene expression. In accordance with the median 
value of risk scores, we divided the cohort into high- risk and low- 
risk groups and used Kaplan– Meier (KM) survival curves and time- 
dependent receiver operating characteristic (ROC) curves to assess 
discrimination ability and prediction accuracy of the prognostic 
signature. We used the LIRI- JP cohort in the ICGC database as an 
external validation cohort to verify the prognostic effect of the 
prognostic signature. The same formula was used to calculate in-
dividual	risk	scores.	For	this,	patients	were	classified	into	the	high-	
risk and low- risk groups according to the median value of the risk 
scores. KM survival curves and time- dependent ROC curves were 
obtained, as described above. Principal component analysis (PCA) 
and	t-	distributed	stochastic	neighbor	embedding	(t-	SNE)	were	used	
to	detect	the	clustering	ability	of	the	prognostic	signature.	Subgroup	
survival analyses of age, gender, histological grade, AJCC TNM stage, 
T stage, N stage, and M stage were performed according to the me-
dian risk scores of each subgroup. The Chi- square test was used to 
evaluate the relationship between different risk levels and diverse 
clinical characteristics. The Wilcoxon rank- sum test was used to 
compare	 risk	scores	 in	different	clinical	 subgroups.	Univariate	and	
multivariate Cox regression analyses were used to confirm the inde-
pendent prognostic impact of risk scores and several clinical factors 
on patient outcomes. Gene Expression Profiling Interactive Analysis 
(GEPIA, http://gepia.cance r- pku.cn/) was applied to demonstrate 
the prognostic effect of the screened genes.29 The cBioPortal for 
Cancer Genomics (http://www.cbiop ortal.org/) was employed to il-
lustrate the mutation state of the selected genes.30

2.4  |  Development of the nomogram based on 
prognostic signature and clinical characteristics

The clinical characteristics (p < 0.05) were considered as candidate 
prognostic factors by univariate Cox regression analysis and were 
entered into the stepwise multivariate Cox regression analysis with 
the aforementioned prognostic signature. A nomogram combining 
prognostic signatures and clinical features was developed. We ana-
lyzed the prediction, discrimination, and calibration abilities of the 
nomogram using the concordance index (C- index), time- dependent 
ROC curves, KM survival curves, and calibration curves. The area 
under	 the	 curve	 (AUC)	 of	 the	 ROC	 curves	 of	 the	 nomogram	 and	
other prognostic factors, such as the AJCC TNM stage and four- gene 
based prognostic signature, were assessed and compared at differ-
ent time points over the follow- up period using time- dependent 
AUC	curves.	Decision	curve	analysis	(DCA)	was	used	to	examine	the	
benefits of different prediction models.

2.5  |  Statistical analysis

R version 4.0.3 software (https://cran.r- proje ct.org/) was the main 
tool used to conduct the statistical analysis. A p- value of <0.05 was 
considered statistically significant.

3  |  RESULTS

3.1  |  Role of the glycolysis pathway in HCC

Glycolysis	 ssGSEA	 scores	 were	 calculated	 for	 each	 sample	 in	
GSE14520	and	TCGA-	LIHC	to	represent	the	glycolytic	activity	using	
the	ssGSEA	method	from	the	GSVA	package,	according	to	the	gene	
set	HALLMARK_GLYCOLYSIS.	 In	GSE14520,	 it	was	 observed	 that	
the	glycolysis	ssGSEA	score	was	significantly	higher	in	tumor	tissues	
than in matched normal tissues (p <	0.05),	and	the	glycolysis	ssGSEA	
score of the dead patients was significantly higher than that of the 
surviving patients (p <	0.05)	(Figure	1A).	Compared	to	the	patients	
with	 lower	glycolysis	 ssGSEA	scores,	 the	patients	with	higher	gly-
colysis	ssGSEA	scores	had	worse	outcomes	 (p <	0.05)	 (Figure	1B).	
In TCGA- LIHC, although no significant difference was found in the 
comparison	of	glycolysis	ssGSEA	scores	between	tumor	tissues	and	
adjacent normal tissues (p =	0.83),	glycolysis	ssGSEA	scores	of	the	
patients with different survival outcomes were distinctly different, 
similar	 to	 the	 results	 of	GSE14520	 (p <	 0.05)	 (Figure	1C).	 The	 re-
sults of KM survival analysis indicated that the patients with higher 
glycolysis	 ssGSEA	scores	had	a	 shorter	 survival	period	 than	 those	
with	lower	glycolysis	ssGSEA	scores	(p <	0.05)	(Figure	1D).	The	re-
sults	of	GSEA	analysis	 in	 the	TCGA-	LIHC	cohort	 showed	 that	 the	
normalized	enrichment	score	of	gene	set	HALLMARK_GLYCOLYSIS	
was more than 1 and both the NOM p-	value	and	FDR	q- value were 
<0.05, indicating that the biological behaviors of glycolysis and 

http://gepia.cancer-pku.cn/
http://www.cbioportal.org/
https://cran.r-project.org/
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gluconeogenesis were more active in tumor tissues than in normal 
tissues in HCC, and it might promote the tumorigenesis and develop-
ment	(Figure	1E).

3.2  |  Novel prognostic signature based on 
four genes

WGCNA was implemented to construct a gene co- expression net-
work and to identify a highly synergistic gene set based on weighted 
gene expression correlation. After excluding one discrete sample 
(GSM363054)	 and	 setting	 the	 optimal	 soft	 threshold	 to	 4,	 hierar-
chical clustering analysis was performed. The clustering results 
were segmented to obtain many highly positively correlated gene 
modules, represented by different color branches of the clustering 
tree	(Figure	2A-	C).	The	correlation	between	gene	modules	and	gly-
colysis	ssGSEA	score	was	calculated	and	compared.	The	blue	gene	
module was determined to have the most positive correlation with 
glycolysis	ssGSEA	scores	(Cor	=	0.39,	p <	0.05)	(Figure	2D).	A	total	
of 614 genes in the blue gene module were extracted to conduct 
GO term annotation and KEGG pathway analysis. The ten most sig-
nificantly enriched KEGG pathways of these genes were cell cycle, 

DNA replication, spliceosome, oocyte meiosis, homologous recom-
bination,	 mismatch	 repair,	 Fanconi	 anemia	 pathway,	 p53	 signaling	
pathway, nucleotide excision repair, and base excision repair. The 
results of GO term analysis showed that these genes were mainly 
enriched in biological processes, cellular components, and molecular 
functions	associated	with	cell	proliferation	and	division	(Figure	2E).

After DEG analysis of 614 genes in the cohort of TCGA- LIHC, 
we identified 375 upregulated genes and 11 downregulated genes 
between	tumor	samples	and	adjacent	normal	samples	(Figure	3A,B).	
A	 total	 of	 339	 DEGs	 were	 screened	 after	 univariate	 Cox	 regres-
sion analysis (p < 0.05). Of these, nine (C5orf30, CDCA8, GTPBP4, 
NEIL3,	 PPM1G,	 PSRC1,	 RAB5IF,	 SAP30,	 and	 UCK2)	 were	 chosen	
as prognostic DEGs. The number of candidate genes was reduced 
by	 LASSO	 regression	 analysis	 (Figure	 3C,D).	 Multivariate	 Cox	
stepwise regression analysis was used to construct the prognostic 
signature via the analysis of these nine DEGs. The regression co-
efficient and gene expression of the four enrolled DEGs (CDCA8, 
RAB5IF,	SAP30,	and	UCK2)	were	calculated.	Four	DEGs	were	inte-
grated into a formula based on the product of gene expression and 
regression coefficient. The individual risk score was calculated as 
follows: Risk score = (expression of CDCA8 * 0.316) + (expression 
of	RAB5IF	*	0.378)	+	 (Expression	of	SAP30	*	0.265)	+ (Expression 

F I G U R E  1 ssGSEA	analysis	of	glycolysis	pathway	(HALLMARK_GLYCOLYSIS)	in	HCC.	Comparison	of	glycolysis	ssGSEA	scores	among	
different	subgroups	in	GEO14520	(A).	Influence	of	glycolysis	ssGSEA	score	level	on	survival	prognosis	in	GEO14520	(B).	Comparison	of	
glycolysis	ssGSEA	scores	among	different	subgroups	in	TCGA-	LIHC	(C).	Influence	of	glycolysis	ssGSEA	score	level	on	survival	prognosis	in	
TCGA-	LIHC	(D).	Gene	set	enrichment	plots	of	HALLMARK_GLYCOLYSIS	in	TCGA-	LIHC	(E)
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of	UCK2	*	0.334)	(Table	2).	All	four	DEGs	were	upregulated	in	HCC	
and	high	expression	levels	were	unfavorable	indicators	for	OS	of	the	
patients.

Taking the median value of risk scores as the cutoff value, 
the cohort of TCGA- LIHC was divided into the high- risk and low- 
risk groups. The distribution of risk scores, survival status, and 

expression	of	the	four	genes	are	displayed	in	Figure	4A.	With	the	in-
crease in risk score, more patients tended to be in the state of death. 
The heatmap indicated that four genes were overexpressed in the 
high- risk group compared to the low- risk group. KM curves demon-
strated that the prognosis of the high- risk group was significantly 
poorer	than	that	of	the	low-	risk	group	in	OS	(p <	0.05)	(Figure	4C).	

F I G U R E  2 WGCNA	analysis	of	gene	expression	profiles	in	HCC.	One	outlier	was	detected	by	sample	clustering,	sample	dendrogram,	
and	trait	heatmap	(A).	Soft	threshold	equaled	4	when	scale	independence	tended	to	the	maximum	and	mean	connectivity	tended	to	the	
minimum	(B).	Hierarchical	clustering	tree	revealing	26	gene	modules	(C).	Correlation	between	the	26	gene	modules	and	glycolysis	ssGSEA	
scores (D). Gene enrichment analysis of the blue gene module (E)

F I G U R E  3 DEG	and	LASSO	regression	analyses.	Volcano	plot	of	the	DEGs	(A).	Heatmap	of	the	DEGs	(B).	Filtration	of	variables	in	LASSO	
regression	(C).	9	DEGs	were	obtained	from	LASSO	regression	(D)

TA B L E  2 Stepwise	multivariate	Cox	regression	analysis	of	survival	prognostic	genes

Id Expression Coefficient HR 95% CI p value

CDCA8 Up-	regulated 0.316 1.372 1.065– 1.767 0.014*

RAB5IF Up-	regulated 0.378 1.459 1.105–	1.928 0.008**

SAP30 Up-	regulated 0.265 1.304 0.954–	1.783 0.096

UCK2 Up-	regulated 0.334 1.396 1.014–	1.923 0.041*

Abbreviations: CI, confidence interval; HR, hazard ratio.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Time- dependent ROC curves were used to detect the predictive ef-
fect	of	the	risk	signature	on	the	OS	of	patients.	The	AUC	value	was	
used	 to	 represent	 the	prediction	ability.	The	AUC	values	at	1-	,	3-	,	
and	5-	years	were	0.815,	0.726,	and	0.725,	respectively	(Figure	4E).	
The ICGC- LIRI- JP cohort served as the validation cohort for the risk 
signature. According to the median value of the overall risk scores, 
the patients from the ICGC- LIRI- JP cohort were classified into the 
high- risk and low- risk groups. The distribution of risk scores, survival 
status,	and	expression	of	the	four	genes	are	shown	in	Figure	4B.	The	
results	were	similar	to	those	of	TCGA-	LIHC	cohort.	Similarly,	there	
were more deaths among those at high risk. The heatmap revealed 
that the expression comparison results of four genes between high-  
and low- risk groups were consistent with those in TCGA- LIHC co-
hort. KM curves suggested that the high- risk group had a markedly 
lower	OS	rate	than	the	low-	risk	group	(p <	0.05)	(Figure	4D).	Time-	
dependent ROC curves of the ICGC- LIRI- JP cohort were plotted. 
The	AUC	values	at	1-	,	2-	,	and	3-	years	were	0.771,	0.756,	and	0.78,	
respectively	(Figure	4F).	PCA	and	t-	SNE	analyses	illustrated	that	the	

prognostic signature could clearly distinguish the high- risk and low- 
risk groups according to the sample distribution of the two groups 
(Figure	4G,H).

In the cases of age <65	 years,	 age	 ≥65	 years,	male	 sex,	 TNM	
stage I- II, T1- 2, T3- 4, M0, N0, G1- 2, and G3- 4, the KM analysis in-
dicated	that	the	high-	risk	group	had	a	significantly	poorer	OS	prog-
nosis than the low- risk group (all p <	0.05).	However,	the	OS	of	the	
high- risk and low- risk groups in the female subgroup (p = 0.1) and 
TNM	stage	III-	IV	subgroup	(p = 0.051) did not show significant dif-
ferences	(Figure	5A-	L).	Thus,	the	risk	signature	might	be	suitable	for	
risk stratification and survival prediction in most subgroups. The re-
sults of the chi- square test showed that the risk score was related 
to histological grade, AJCC TNM stage, and T stage (all p < 0.05) 
(Table 3). The results of the Wilcoxon rank- sum test indicated that 
the patients with higher risk scores tended to have poorer histolog-
ical grade, advanced AJCC TNM stage, and higher T stage of HCC 
(Figure	6A-	C).	The	results	of	univariate	and	multivariate	Cox	regres-
sion analyses in TCGA- LIHC and ICGC- LIRI- JP cohorts suggested 

F I G U R E  4 Development	and	validation	of	prognostic	signature	based	on	four	genes	(CDCA8,	RAB5IF,	SAP30,	and	UCK2)	in	TCGA-	LIHC	
and ICGC- LIRI- JP cohorts. The risk and survival distribution of the patients, and the heatmap of the four genes in TCGA- LIHC and ICGC- 
LIRI-	JP	cohorts	(A-	B).	KM	curve	revealing	the	significantly	shorter	OS	in	the	high-	risk	group	compared	with	the	low-	risk	group	in	TCGA-	LIHC	
and	ICGC-	LIRI-	JP	cohorts	(C-	D).	ROC	curve	of	the	risk	signature	in	TCGA-	LIHC	and	ICGC-	LIRI-	JP	cohorts	(E-	F).	PCA	and	t-	SNE	analyses	of	
low-  and high- risk groups in TCGA- LIHC and ICGC- LIRI- JP cohorts (G- H)

F I G U R E  5 Survival	analysis	of	risk	signature	in	the	HCC	patients	with	different	clinical	features	in	TCGA-	LIHC,	including	age	(A-	B),	
gender	(C-	D),	histological	grades	(E-	F),	AJCC	TNM	stages	(G-	H),	M0	stage	(I),	N0	stage	(J)	and	T	stages	(K-	L)
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TA B L E  3 Chi-	square	test	compared	the	clinicopathological	characteristics	of	the	patients	with	different	risk	levels

Risk

p valueLow (N = 171) High (N = 171)

Age 0.825

<65 years old 101 104

>=65 years old 70 67

Gender 0.164

Female 48 61

Male 123 110

Histological grade <0.001***

G1 38 15

G2 88 73

G3 40 71

G4 3 9

AJCC TNM stage <0.001***

Stage	I 101 60

Stage	II 31 46

Stage	III 28 52

Stage	IV 2 1

T stage <0.001***

T1 105 63

T2 31 53

T3 28 46

T4 4 9

N stage

N0 116 123

N1 0 3

M stage 0.607

M0 116 128

M1 2 1

Abbreviations: AJCC, American Joint Committee on Cancer; G1, high differentiation; G2, medium differentiation; G3, low differentiation; G4, 
undifferentiated.
*p < 0.05, **p < 0.01, ***p < 0.001.

F I G U R E  6 Correlation	between	the	risk	scores	and	HCC	patients'	histological	grades,	AJCC	TNM	stages,	and	T	stages	in	TCGA-	LIHC	
(A- C)
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that	risk	scores	could	act	as	independent	prognostic	factors	for	OS	
in patients with HCC (p < 0.05) (Table 4).

GEPIA results revealed that the expression of all four genes 
(CDCA8,	RAB5IF,	SAP30,	and	UCK2)	was	 related	 to	 the	OS	prog-
nosis of patients with HCC, and patients with higher gene expres-
sion levels were more likely to have poorer outcomes (all p < 0.05) 
(Figure	 7A-	D).	 The	mutations	 of	 four	 genes	 in	 HCC	 are	 shown	 in	
Figure	6C.	UCK2	had	the	highest	mutation	rate	(11%),	especially	in	
amplification. The other three genes had a mutation rate of <2%, 
with	a	rate	of	0.5%	for	CDCA8	(Figure	7E).

3.3  |  Nomogram integrating risk signature and 
clinicopathological features

The candidate factors with prognostic value, including AJCC TNM 
stage and risk scores calculated by the prognostic signature, were 
screened out by stepwise multivariate Cox regression analysis and 
were used to construct a highly accurate predictive nomogram 
(Figure	8A).	The	nomogram	had	a	C-	index	of	0.737	(95%	confidence	
interval [CI]: 0.686– 0.788), which was greater than the C- index of 
the	risk	prognostic	signature	(C-	index,	0.733;	95%	CI:	0.682–	0.784).	
The calibration curves showed considerable agreement between the 
nomogram-	predicted	OS	and	actual	OS	(Figure	8B).	According	to	the	
median value of risk scores calculated by the nomogram, the cohort 
was divided into the high- risk and low- risk groups. The results of 
the KM analysis demonstrated that the prognosis of the low- risk 
group was notably better than that of the high- risk group (p < 0.05) 
(Figure	8C).	The	nomogram	could	provide	a	more	accurate	survival	
prediction.	ROC	analysis	suggested	that	the	AUC	values	at	1,	3,	and	
5	years	for	the	training	cohort	were	0.825,	0.781,	and	0.759,	respec-
tively	(Figure	8D).	Time-	dependent	AUC	curves	suggested	that	the	

predictive power of the nomogram was superior to other predictive 
models, such as the AJCC TNM stage and four- gene based prog-
nostic signature at different time points over the follow- up period. 
DCA analysis showed that the nomogram could yield superior net 
benefits compared with an all- or- none treatment strategy and other 
predictive	models	(Figure	8E).

4  |  DISCUSSIONS

HCC is a common malignant disease with a high incidence and mor-
tality. Most patients with HCC are diagnosed at the terminal stage 
and have lost the chance to benefit from radical surgery.31 Although 
an increasing number of alternative therapy strategies have been de-
veloped and can prolong survival time for patients with unresectable 
HCC, they are not absolutely effective and some patients still have 
poor responses.32 The reasons why patients respond differently to 
the same treatment may reflect the heterogeneity of tumors caused 
by molecular dysregulation and genetic variation.33 Therefore, bio-
markers related to tumor development and curative effect are worth 
exploring and could be conducive to early detection, targeted ther-
apy, and personalized management of HCC.34- 36

Glucose metabolism reprogramming, especially aerobic glycol-
ysis, is important in the initiation and progression of HCC in a hy-
poxic environment, such as growth and proliferation, invasion and 
metastasis, immunosuppression, and drug resistance.37 The results 
of	 ssGSEA	 comparison	 indicated	 that	 glycolysis	 was	 more	 active	
in HCC and could promote tumor malignant behavior. The regula-
tion of glycolysis in HCC is complex and may be related to genetic 
mutation and epigenetic modulation of oncogenes and suppressor 
genes, noncoding RNAs, signaling pathways, glycolytic enzymes, 
and other factors.38	Understanding	the	mechanism	of	glycolysis	 in	

TA B L E  4 Independent	prognostic	factor	analysis	for	the	overall	survival	in	TCGA-	LIHC	cohort	and	ICGC-		LIRI-	JP	cohort

TCGA- LIHC

Univariate Cox regression Multivariate Cox regression

HR 95% CI p value HR 95% CI p value

Age 1.005 0.991–	1.020 0.474 1.010 0.994–	1.025 0.227

Gender 0.754 0.511– 1.113 0.156 0.833 0.553– 1.254 0.381

Histological grade 1.118 0.862– 1.450 0.400 0.991 0.746– 1.316 0.948

AJCC TNM stage 1.806 1.461– 2.232 <0.001*** 1.270 0.576– 2.800 0.554

T stage 1.778 1.454– 2.174 <0.001*** 1.250 0.592–	2.642 0.559

Risk score 1.614 1.444– 1.802 <0.001*** 1.564 1.376– 1.778 <0.001***

ICGC- LIRI- JP

Univariate Cox regression Multivariate Cox regression

HR 95% CI p value HR 95% CI p value

Age 1.002 0.970–	1.035 0.908 0.995 0.961–	1.031 0.799

Gender 0.438 0.230– 0.833 0.012* 0.334 0.172– 0.652 0.001**

LCSGJ	TNM	stage 2.171 1.475–	3.195 <0.001*** 2.127 1.477– 3.063 <0.001***

Risk score 1.171 1.093–	1.254 <0.001*** 1.146 1.063– 1.237 <0.001***

Abbreviations:	AJCC,	American	Joint	Committee	on	Cancer;	CI,	confidence	interval;	HR,	hazard	ratio;	LCSGJ,	Liver	Cancer	Study	Group	of	Japan.
*p < 0.05, **p < 0.01, *** p < 0.001.
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F I G U R E  7 Correlation	between	the	expression	of	the	four	identified	genes	and	HCC	patients	OS	in	TCGA-	LIHC	cohort	(A-	D).	Mutation	
of	the	four	genes	in	TCGA-	LIHC	cohort	from	Firehorse	Legacy	database	(E)

F I G U R E  8 Development	of	the	nomogram	consisted	of	AJCC	TNM	stage	and	four-	gene	based	prognostic	signature.	Nomogram	plot	(A).	
Calibration	plots	of	the	nomogram	to	predict	1-	,	3-	,	and	5-	year	OS	(B).	ROC	curves	of	the	nomogram	to	predict	1-	,	3-	,	and	5-	year	OS	(C).	
Time-	dependent	AUC	curves	of	the	nomogram	and	its	components	(d).	DCA	analysis	of	the	nomogram	and	its	components	(E)
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tumor development is essential to find novel biomarkers and prom-
ising therapeutic targets, and to improve diagnosis, treatment, and 
surveillance of HCC.

In the present study, we constructed co- expression gene mod-
ules related to glycolysis by WGCNA and identified four potential 
prognostic biomarkers to develop a novel risk signature for HCC. 
Cell division cycle- associated 8 (CDCA8), a regulator of mitosis, is 
overexpressed in bladder cancer, breast cancer, liver cancer, and 
other tumors and is involved in their growth and development. High 
CDCA8 expression may be a predictor of poor prognosis in HCC.39 
Long	noncoding	RNA	RAB5	interacting	factor	(RAB5IF)	is	highly	ex-
pressed in HCC and correlates with the poor prognosis of patients 
with	HCC.	RAB5IF	can	regulate	the	growth	of	HCC	cells	by	modu-
lating LGR5 mediated β- catenin and c- Myc signaling.40 Transcription 
factor	sin3A-	associated	protein	30	(SAP30),	an	indispensable	compo-
nent of the histone deacetylase complex, can regulate the transcrip-
tion and expression of specific genes, especially tumor suppressor 
ING1.41,42	Uridine-	cytidine	kinase	2	(UCK2),	which	can	catalyze	the	
phosphorylation of uridine and cytidine to uridine monophosphate 
(UMP)	 and	 cytidine	monophosphate	 (CMP),	 is	 associated	with	 cell	
proliferation and is a potential unfavorable prognostic predictor for 
HCC prognosis.43	Cytotoxic	agents	that	target	UCK2	enzyme	activ-
ity to induce cancer cell death are currently investigated in some 
clinical trials.44 The gene function and correlation analyses indicated 
that the genes were involved in glycolytic metabolic pathway and 
could link glycolysis and tumor growth. Therefore, the four genes 
with prognostic value might be promising biomarkers and potential 
therapeutic targets for HCC and are related to glycolysis regulation, 
tumor cell proliferation, and division in HCC.

Based on the four identified genes, a new risk prognostic sig-
nature for HCC was established and validated. The signature was 
effective for risk estimation and survival prediction. Additionally, 
the risk scores calculated by the signature were independent prog-
nostic	factors	for	OS	and	were	related	to	the	biological	activity	of	
HCC in advanced tumor stage, larger tumor size, and higher histo-
logical grade. The patients with higher risk scores might be prone 
to die and have higher recurrence risk. The nomogram combining 
the four- gene based prognostic signature and AJCC TNM stage in-
creased the precision and reliability of the prediction model and ob-
tained a greater net benefit compared with the component factors. 
The nomogram might be conducive to risk assessment and clinical 
decision- making in the diagnosis, treatment, and prognosis of pa-
tients with HCC.

This	 study	had	 several	 limitations.	 First,	 the	 results	 lacked	 the	
validation	of	experimental	data.	Second,	the	molecular	mechanism	
of the four genes in the glycolysis pathway remains unclear and 
needs	 to	be	 further	 explored	 in	 future	 studies.	 Finally,	 the	nomo-
gram should be tested by multicenter studies and analyzed by a com-
prehensive analysis of clinical information to make it more practical 
in the clinic.

In summary, our study demonstrated the role of glycolysis 
pathway in HCC. Based on the cell proliferation- associated genes 
interacting with glycolysis, the four- gene prognostic signature was 

developed	and	validated.	Finally,	a	novel	prognostic	nomogram	com-
bining the four- gene prognostic signature and clinicopathological 
features could enhance prediction efficiency after the evaluation 
and might contribute to the clinical application of personal diagnosis 
and treatment.
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