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The aim of this study was to carry out a literature review on the overall benefits of resistance training (RT) after stroke and
undertake a critical analysis of the resistance exercise programs surveyed (rest interval between sets and exercises, number of sets,
number of repetitions, intensity, duration of training, and weekly frequency). To obtain articles for the review, we searched PubMed,
Google Scholar, and Physiotherapy Evidence Database (PEDro). Inclusion criteria were considered using the PICO (population,
intervention, control/comparison, and outcome variables) model. The following characteristics were recorded for all articles: type
of study, author, year of publication, participants (time after stroke, sample size, and age), benefits of RT, and structured resistance
exercise programs. Positive effects of training were found on anxiety status, quality of life, muscle hypertrophy, cognitive function,
strength, and muscle power. Only 5 studies described the main variables of RT in detail. Lack of control of some variables of RT may
negatively affect the results of this practice. The findings of the present study may further inform health and physical conditioning

professionals on the importance and necessity of using the main variables in the search for benefits for individuals with stroke.

1. Introduction

Stroke is generally defined as a neurological loss caused by
an abnormal perfusion of brain tissue. The most common
types of stroke are intracerebral hemorrhage, subarachnoid
hemorrhage, and ischemic (cerebral infarction) [1]. A recent
projection from the American Heart Association (AHA) [2]
indicated that, by 2030, 3.4 million people aged >18 years will
have had a clinical diagnosis of stroke. These data deserve
concern, once this disease is characterized by a poor prog-
nosis, from—at least—a marked impairment of functional
capacity and cardiorespiratory fitness due to central and
peripheral mechanisms until early death [3-5]. In fact, in
2013, stroke was the cause of 1 in every 20 deaths in the US,
and every 40 seconds someone is affected by this disease [2].

Several risk factors have been suggested to be associated
with the physiopathology of stroke, such as hypertension, dia-
betes mellitus, atrial fibrillation, high triglycerides, tobacco
use, inadequate diet, family history and genetics, gender,
atherosclerosis, chronic kidney disease, sleep apnea, and
physical inactivity [2, 6-16]. Regarding the last one, indeed,
not only is physical inactivity known to be associated with the
development of some, if not all, of the aforementioned risk
factor for stroke, but also data demonstrate that moderately
active individuals and highly active individuals have a 20%
and 27%, respectively, lower risk stroke incidence than low-
active individuals [17].

On the other hand, evidences have demonstrated that
exercise training has a strong capacity to collaborate with
changes on cardiorespiratory capacity, mobility, cognition,
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upper and lower limb motor capacity, and balance of stroke
survivors [18, 19]. Within the myriad of possibilities with
physical training, some researchers have proposed that resis-
tance training (RT)—the kind of exercise that leads muscles
to work or hold against an applied weight—may have a key
role in the rehabilitation process after stroke as an effective
strategy in the treatment of these individuals [20-22]. Much
of the expectation around RT is due its capacity to modulate
neuromuscular parameters (e.g., muscle mass, strength, and
power) in samples composed of individuals who present a
similar phenotype to the patient with a stroke, such as older
adults who commonly show a nonconducive physiological
environment due to neuromuscular denervation, low-grade
inflammation, and functional incapacity [23, 24].

In this sense, an increasing number of evidence have been
published in the last years demonstrating the benefits of RT
in stroke patients. This phenomenon encourages authors to
publish a review discussing the potential clinical variables
that have not been evaluated in the context of exercise
training and are extremely important to be measured in
stroke survivors, as, for example, cognition, aphasia, and
fatigue to quote a few [18]. Moreover, a recent systematic
review with metanalytic regression suggests that most RT
studies present a considerable number of biases, strongly
limiting possible inferences about the data [19].

In addition to these concerns regarding the internal and
external validity of these data, very little has been discussed
about the design of the RT programs proposed in these
studies. This kind of consideration seems to be important
because the manipulation of the RT variables (rest interval
between sets and exercises, number of sets, number of repeti-
tions, intensity, duration of training, and weekly frequency)
leads to different cardiovascular, metabolic, and neuro-
muscular responses [25-28]. Furthermore, many healthcare
consumers—with or without previous scientific training in
exercises sciences—base their clinical practices on exercise
training studies. Lastly, it is noteworthy that the effectiveness
or not of the RT program is dependent on the organiza-
tion of its variables. Therefore, we indicate the limitations
associated with RT prescription will collaborate with future
investigations that aimed to understand the potential of RT
to collaborate with rehabilitation in stroke survivors.

Thus, the current study aimed to discuss critically the
main aspects regarding the RT prescription in programs with
stroke patients, indicating the benefits of this type of training
when all variables of importance are fully incorporated, as
well as suggesting how studies may be better designed in an
attempt to improve their internal and external validity.

2. Materials and Methods

2.1. Data Sources and Searches. Relevant studies were iden-
tified through computerized and manual searches. For data
collection, PubMed, Google Scholar, and PEDro databases
were systematically searched from 2003 until August 2017
(last 15 years). The following keywords were used for our
search: stroke, cerebrovascular accident, cerebral vascular acci-
dent, resistance exercise, and resistance training. This review is
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written in accordance with Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines.

2.2. Study Selection. The PICO (population, intervention,
control/comparison, and outcome variables) model was used
for inclusion criteria. Studies were chosen for inclusion if
they met the following 4 inclusion criteria: (A) humans
of both genders, aged over 18 years with chronic stroke;
(B) structured resistance exercise program; (C) randomized
controlled trials; (D) health benefits.

The screening was performed by 2 independent review-
ers. For each article, any discrepancy between the 2 reviewers
was resolved by discussion. In the first screening stage (titles
plus abstracts), studies were included when both reviewers
agreed they were eligible for inclusion or if there was doubt
about whether to exclude them. In the second screening stage
(full text), studies were included when both reviewers felt
they met all the inclusion criteria.

These reviewers documented the methodological quality
of studies and extracted relevant data. The following quality
criteria were documented: baseline comparison of groups,
randomization, all assessed outcomes, and details of par-
ticipants (i.e., age, gender, time after stroke, and comorbid
conditions).

2.3. Data Extraction. The following characteristics were
recorded for all articles: type of study, author, year of pub-
lication, participants (time after stroke, sample size, and age),
benefits of RT, and structured resistance exercise programs.
This procedure was performed by 2 reviewers: one collected
the data and the second double-checked it.

3. Results and Discussion

A total of 478 articles were identified initially. In total, 12
peer-reviewed articles were included based on our inclusion
criteria. The 12 studies enrolled 424 participants (middle-
aged or elderly) with chronic stroke. The extracted study
and population characteristics, protocols, and outcomes are
shown in Tables 1 and 2.

3.1. Beneficial Effects of Different Designs of RT in Stroke
Survivors. The variables investigated could be didactically
divided into five large constructs as follows: physical capa-
bilities (i.e., muscle endurance [VO2 max, 6 minutes walk
distance, and peak aerobic capacity], muscle strength and
power, and balance), body composition (i.e., body mass
index, muscle mass), cognition (general and executive func-
tions [working memory, verbal fluency tasks, attention, and
speed of information processing]), quality of life elements
(e.g., anxiety, pain), and blood cardiovascular risk factors
(i.e., fasting insulin, HOMA-IR, 2h plasma glucose, total
cholesterol, LDL cholesterol, and HDL cholesterol). All these
variables were improved after resistance exercise programs in
individuals with stroke.

Tables 1 and 2 depict data about participants, such as
time after stroke, sample size and age, type of study, author’s
name, year of publication, evaluations of the investigated
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variables, benefits of RT, and structured resistance training
programs (rest interval between sets and exercises, number
of sets, number of repetitions, intensity, duration of training,
and weekly frequency). Regarding RT methodology and
protocols we found the following characteristics: number of
exercises, 1 to 7; number of series, 2 to 4; intensity, low,
moderate, and high; weekly frequency, 2 to 4 days; duration
of the protocol, 5 to 12 weeks; number of repetitions, 6, 8, 10,
15, and 20; and rest interval between sets and exercises when
shown, 2 and 3 minutes.

To our knowledge, this is the first review that critically
evaluated RT programs used in stroke patients. This research
is important to help to inform the healthcare consumers,
mainly strength and conditioning professionals, about the
need to control the variables of RT in stroke patients. In
addition, the present study provides trainers and coaches with
examples of well-controlled RT protocols and their benefits
on the prognosis of stroke patients [29-33].

The main finding of this literature review lies in the fact
that only 5 studies clearly laid out the main variables of RT
used. The other 7 randomized controlled trials linking RT
to stroke lack any description of rest interval between sets
and exercises. According to some researchers, this important
variable is widely used in studies involving resistance exer-
cises [34-46]. In this context, we attempted to scrutinize how
researchers dealt with the variables involved in RT and the
associated benefits for poststroke patients.

Physical capabilities are extremely benefited after RT pro-
grams. Interestingly, the different RT designs might elicit dif-
ferent adaptations. Due to the principle of specificity—where
it is postulated that a physical capacity is increased when the
stimulus is similar to its performance (e.g., muscle strength is
improved in response to resistance training)—most studies
have focused on the capacity of RT to elicit significant
improvements on the neuromuscular tract. This hypothesis
has been confirmed, once numerous findings demonstrated
that different designs of RT might cause improvements on
dynamic, isokinetic, and isometric muscle strength, muscle
power, and muscle tone of the nonparetic (muscle strength:
+38.2%; muscle power: +28.5-61%) and paretic limbs (mus-
cle strength: +31.4%; muscle power: +33.0-61%) of stroke
survivors [31, 32, 47-51]. In fact, the studies differ in the
number of repetitions (6-20), sets (2-4), sessions per week
(2-3), intensities (low [50% 1RM], moderate [~70% 1RM],
and moderate to high/high [80% 1RM]); pattern of muscle
contraction (eccentric, concentric, or both), trained limb
(paretic, nonparetic, or both).

In an elegant study performed by Lee et al. [52], for
example, poststroke patients were submitted to a progressive
resistance training program that consisted of two sets of
eight repetitions at 50% of 1IRM (in the first two weeks)
and at 80% of IRM in the following weeks. To ensure that
the participants performed exercises in the target intensity,
researchers monitored the perceived exertion through a Borg
Perceived Exertion Scale. Results indicated that the progres-
sive RT was able to significantly improve muscle strength,
muscle power, and muscle endurance. Furthermore, authors
observed that these results were not reached by volunteers
that had performed a high-intensity cycling exercise (85%

of VO2 peak). Nevertheless, as aforementioned, if a lower
intensity was approached, as performed by Ouellette et al.
[49], similar improvements in muscle capacity were observed.

It is important to mention that these improvements in
muscle strength and power can be associated with elevated
walking velocity and performance, balance, and transfer
capacity (i.e., timed up and go [TUG]), as demonstrated by
Fernandez-Gonzalo et al. [31], Flansbjer et al. [32], Severinsen
et al. [48], and Ouellette et al. [49], as well as self-reported
function [49]. These data have high external validity because
stroke patients commonly show a high prevalence of motor
impairment (67.0%), which is associated with poor outcomes,
such as low quality of life and falls risk [53, 54], and
predominantly characterized by low walking ability (88%),
poor balance (51.4%), and dysfunction on mobility (54.1%).
Moreover, improvements in self-reported function indicate
that stroke patients are feeling better to perform the basic,
instrumental, and advanced activities of daily living, probably
suffering less with muscle fatigue and weakness.

On the other hand—different from muscle strength,
which does not seem to be much influenced by different
structures of RT—changes on aerobic capacity may be
dependent on the organization of the RT variables. Indeed,
Severinsen et al. [48] submitted stroke patients to a classical
lower limbs RT program for 12 weeks. The prescription of
exercise was based on three sets of 8 repetitions at ~50-80% of
IRM. The findings did not demonstrate significant alterations
on aerobic capacity.

When poststroke survivors underwent a moderate to
high/high-intensity RT based on three sets of 8 repetitions at
80% of IRM [52], the authors observed not only an amelio-
rated muscle strength and power, but also an increased mus-
cle endurance in both limbs—paretic and nonparetic—which
was considered as the maximal number of repetitions that
the volunteers could achieve in the 30s. Similarly, volunteers
of Ivey et al. [47] showed significant improvements in peak
oxygen consumption (+6%) and muscle endurance (paretic:
+178%; nonparetic: +161%) after a RT program. However, the
protocol was based on two sets of 20 repetitions until failure
in three exercises for each lower limb member.

These data strongly highlight the importance of the right
modulation of RT variables on organic adaptations, mainly
the use of specificity in the context of muscle endurance. As
stated by Lee et al. [52] daily activities frequently require the
capacity to sustain muscle contraction for long periods. Inter-
estingly, muscle endurance was improved after RT program
with an elevated intensity (80%) [52], not in concordance
with literature, because authors believe that programs with a
high number of repetitions and a low intensity, such as that
performed by Ivey et al. [47], are more probable to cause this
type of adaptation due to biochemical responses. However, it
is possible that the threshold to improve muscle endurance
in patients with chronic diseases (e.g., stroke) is lower than
in healthy patients. The plausibility of this theory is based on
the findings that demonstrated increased aerobic capacity in
patients with heart failure after RT [55].

The monitoring of morphological parameters is
another important clinical aspect in stroke patients, once
several evidences have been discussing that a sarcopenic



phenotype—characterized by a decreased lean muscle
mass followed by impaired muscle strength and/or
functionality—is showed by these patients [5, 56]. In
nonstroke patients, exercise intensity has a key role in the
hypertrophic response to RT, so that most studies have
demonstrated that RT programs at moderate to high and
high intensities demonstrate a superior capacity to elicit
improvements on muscle mass compared with RT programs
with lower intensities [57].

In the context of stroke, just a few randomized clinical
trials have investigated the impact of different RT programs
on morphological parameters. In one of the few studies,
Fernandez-Gonzalo et al. [31] decided to investigate the
impact of a RT program with an overload on eccentric
contractions in the cross-sectional area (CSA) of quadriceps
muscle of stroke survivors. This approach is interesting
because most interventions focus on muscle contractions
composed of concentric and eccentric actions. On the other
hand, eccentric muscle contractions have been used as a tool
to induce muscle damage, for example, since during this kind
of muscle contraction a lower number of fibers are working,
leaving the muscle more susceptible to damage, collaborating
to the study of delayed onset muscle soreness, inflammation,
and hypertrophic response [58-61].

Nevertheless, some groups have proposed that RT pro-
grams composed of isolated eccentric contractions might
propitiate superior gains in muscle mass and strength com-
pared to concentric training programs [62]. In this sense,
stroke survivors were submitted to a RT program based on
eccentric overload in a flywheel characterized by 4 sets of 7
maximal knee extensions of the more-affected lower limb.

The findings demonstrated an increased CSA after 12
weeks of RT. This increase in lean muscle mass could help
to explain the higher muscle strength and power, as well
as walking speed observed in stroke patients undergoing an
eccentric RT program in comparison with volunteers who
performed a concentric RT program [50], so that taken
together data demonstrate a potential superior effectiveness
of eccentric RT programs in comparison with concentric RT
programs.

However, unfortunately, these are isolated evidences and
more studies are still necessary to understand the importance
of this kind of muscle contraction in the morphological and
neuromuscular parameters of stroke survivors. Furthermore,
future studies should utilize protocols of eccentric overload
RT training with higher external validity than the proposed
one by Fernandez-Gonzalo et al. [31] and Clark and Patten
[50] since flywheels and isokinetic equipment are expensive
and limited to be used in the context of health promotion.

Regarding cognition, data have demonstrated that stroke
patients show cognitive impairment rates range from 20% to
70%, depending on the type of diagnosis [63]. These data
deserve concern because this phenomenon indicates that
stroke survivors present a high risk to develop dementia
[63]. Between the several domains that compose cognition,
executive function, which is an essential cognitive domain to
maintenance of autonomy and independence during aging
[64], seems to be one of the most affected domains after
the cerebrovascular event, since evidence suggests that stroke
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survivors demonstrate a faster decline in this cognitive
domain (0.63 points/year) [65].

Intriguingly, even in the face of such data, a recent review
indicated that studies are not investigating the impact of RT
programs on cognitive parameters of poststroke survivors
[18].In fact, to the best of our knowledge, just one study aimed
to investigate this phenomenon. In the trial of Fernandez-
Gonzalo et al. [31], an improved executive function (work-
ing memory, verbal fluency tasks, attention, and speed of
information processing) were observed after the RT program.
However, as aforementioned, this study was performed on a
specific machine and most studies are still necessary.

After the cerebrovascular event, stroke patients present an
increased prevalence of cardiometabolic disorders, leading to
an elevated risk of recurrent stroke or other cardiovascular
events (e.g., myocardial infarction). In this sense, Zou et
al. [66] proposed a RT program based on three sets of 15
repetitions until muscle failure of the leg press, leg extension,
and leg curl. This kind of RT training might be beneficial
because of two factors: (a) a larger number of repetitions
may elicit a larger translocation of glucose transporter 4
(GLUT4) to sarcolemma and, consequently, larger glucose
uptake; (b) muscle contractions until failure might elicit a
hypertrophic muscular signalization, inducing increase in
muscle mass [57], the largest site of glucose uptake in the
human organic system. Data demonstrated that several blood
cardiovascular risk factors (i.e., fasting insulin, HOMA-IR,
2h plasma glucose, total, LDL, and HDL cholesterol) were
improved after the RT program, regardless of the alterations
on body mass.

3.2. What Were the Main Limitations Observed in RT Pre-
scriptions? The acute and chronic organic responses to RT
are dependent on the organization of its variables (rest
interval between sets and exercises, number of sets, number
of repetitions, intensity, duration of training, and weekly
frequency). Regarding the acute effects, patients with and
without hypertension, for example, experienced postexercise
hypotension (PEH) in RT protocols performed at moderate
intensity [67-69]. However, an increasing number of evi-
dences have indicated that exercise cadence might have a key
role in this phenomenon [70]. In turn, chronic changes on
cognitive parameters do not seem to be intensity-dependent,
but time-dependent [71-75]. On the other hand, muscle
strength is increased after RT protocols composed of elevated
tension [25].

Regardless of its beneficial effects, for a long time, RT
was not recommended for patients clinically diagnosed
with any cardiovascular diseases [76]. This conduct was
assumed because some experiments demonstrated an impor-
tant increase in blood pressure values during the performance
of RT [77]. However, recently, numerous evidences have to
indicate that RT may be carried out safely if the variables are
controlled [78].

This brief explanation demonstrates the importance of
organizing the RT variables for effectiveness and safeness
of the exercise program. Stroke survivors are, undoubtedly,
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patients who deserve special attention during the perfor-
mance of the exercise training, once they present increased
risk of falls, muscle weakness, exacerbated fatigue, autonomic
dysfunction, and hemodynamic instability, to quote a few
clinical symptoms. Therefore, researchers should perform a
detailed explanation about the RT protocols in an attempt to
provide the information necessary for healthcare consumers
to replicate—within their means—the protocols in their
clinical practice. Unfortunately, despite the abovementioned
beneficial effects, most studies have failed to detailedly
describe the organization of the RT variables. The main
limitations include an insufficient or even absent description
of the rest intervals between sets and exercises, the name of
exercises, the cadence of muscle contraction, and the tools
used for RT prescription.

Regarding the description of rest intervals between sets
and exercises, this variable was not described in almost
all investigations. This is curious because in our clinical
practice, as well as in the laboratory, this issue has been
extensively discussed because an unsatisfactory rest interval
may negatively interfere with expected benefits. As Fleck [37],
Kraemer et al. [40], and Ratamess et al. [42] have pointed out,
cardiorespiratory and metabolic responses are affected by the
duration of intervals of rest between exercises and sets. In
addition, rest intervals have a key role in the neuromuscular
adaptations as stated by Robinson et al. [44], who demon-
strated that greater rest intervals were associated with greater
strength gain when compared to shorter intervals.

In the RT protocols of Ouellette et al. [49] and Lee et
al. [51, 52], for example, researchers failed to describe the
rest intervals among the sets and exercises. However, authors
reported that RT sessions were performed at 70-80% of
IRM, which may elicit accumulation of metabolites. This
phenomenon might be a problem in the context of stroke,
because patients present exacerbated fatigue and muscle
weakness, impairing the clearance of metabolic debris. There-
fore, it is possible to infer that authors used >2 minutes of
interval among the series, as recommended for this kind
of RT [79]. However, a long interval may not be enough
to elicit the necessary stress to cause muscular adaptations.
Consequently, the replicability of these studies would be
compromised.

Another meaningful aspect is the description of the
exercises that were used in the RT program. This occurs
because hemiparesis markedly impairs the pattern of move-
ment and, in the clinical practice, the use of specific exercises
is not always possible. In fact, we have observed that several
adaptations should be performed in the pattern of move-
ment/exercise in order to contemplate the muscular action
that can be performed by the patients.

If the purpose of the session of RT was to exercise the
pectoralis major, for example, it is possible to infer that
researchers had to adapt the exercise to contemplate the
muscle group, since stroke patients present several limitations
that may make it impossible to conduct the exercise in the
machines. Thus, future studies should describe the name of
the exercises that were used in the experiments, as well as
indicating if any kind of adaptations was performed.

The method used for prescription of RT intensity has
been widely discussed not only in the context of exercise as
medicine, but also in the sports science field. This occurs
because evidence suggests that results on 1RM test for lower
limb may variate until 14% of a series of nonsuccessive tests
[80].

Curiously, Severinsen et al. [48] reported problems to
work with the IRM method, so that researchers realized that
values could be under- and/or overestimated, making the
inferences about the zone of intensity difficult where indi-
viduals have performed the RT program. Alternatively, Lee
et al. [51] in addition to IRM used a Borg Perceived Exertion
Scale, which has been indicated as a valuable tool to exercise
prescription [81, 82]. Indeed, RPE allows the adjustment of
the load in each session of exercise, differently from the IRM
method, which needs a new battery of evaluations.

However, most researchers have discussed that a previous
period of adaptation is necessary before the use of subjective
scales. This deserves to be reinforced in patients with stroke
because a longer period might be necessary for them since,
as aforementioned, they commonly present cognitive impair-
ment. Nevertheless, this issue still must to be investigated.

Lastly, it is noteworthy that some concepts have been
wrongly stated. This may lead to wrong conclusions and
prescriptions between healthcare consumers. In some studies
[49], authors declared that a progressive RT was performed.
However, RT intensity was maintained during the whole
period. It is important to clarify that a progressive RT is not
based on the adjustments on load due to muscular adaptation,
but a progressive increase in load—from 50% to 80%, for
example—is necessary. This kind of RT was demonstrated
in the study by Lee et al. [52]. Furthermore, some authors
declared that the RT program was performed at high intensity
when the load was around 70% of 1RM. Inferences about
high-intensity RT must be made carefully based on these data
because most authors declare that training loads at 70% of 1
RM correspond to moderate intensity [83, 84].

Figure 1 shows the minimal amount of information that
should be described in experiments that use RT programs.

4. Conclusions

After analyzing the 12 randomized controlled trials, we found
that only 5 studies may indeed help health and physical
conditioning professionals in exercise prescription for stroke
patients, since they did detail and control the main RT
variables.

More randomized controlled trials with tight control of
the main variables of the RT should be undertaken so that
health professionals may be more scientifically informed
when prescribing resistance exercises for individuals with
stroke. Individuals with stroke may be considered patients
at risk; therefore, it is critical to be cautious in exercise
prescription. The findings of the present study may further
inform health professionals on the importance and necessity
of using the main variables (rest interval between sets and
exercises, number of sets, number of repetitions, intensity,
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(i) Targeted muscle (e.g., quadriceps)
(ii) Number of exercises
(iii) Adaptations on exercise movement (e.g., unilateral knee extension)
(iv) Cadence of muscle contraction (e.g., 2 seconds on concentric action
and 1 second on eccentric action)

RPE SCALE

N4

(i) Method used for intensity prescription (e.g., IRM test)
(ii) How was the adaptation period
(iii) Method used for intensity monitoring (e.g., Borg scale)

5
3

W

WA

(i) Frequency of the sessions (e.g., 2 days per week)
(ii) Training period (e.g., 6 months)

(i) Exercise intensity
(ii) Volume
™ (iii) Machines, dumbbells, elastic bands

FIGURE 1: Minimal amount of information that should be described in experiments that use RT programs.

duration of training, and weekly frequency) in the search for
benefits for individuals with stroke.
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