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a b s t r a c t

The novel Coronavirus disease 2019 (COVID-2019) has become a global pandemic and affected almost
all aspects of our daily life. The total number of positive COVID-2019 cases has exponentially increased
in the last few months due to the easy transmissibility of the virus. It can be detected using the nucleic
acid test or the antibodies blood test which are not always available and take several hours to get
the results. Therefore, researchers proposed computer-aided diagnosis systems using the state-of-the-
art artificial intelligence techniques to learn imaging biomarkers from chest computed tomography
and X-ray radiographs to effectively diagnose COVID-19. However, previous methods either adopted
transfer learning from a pre-trained model on natural images or were trained on limited datasets.
Either cases may lead to accuracy deficiency or overfitting. In addition, feature space suffers from
noise and outliers when collecting X-ray images from multiple datasets. In this paper, we overcome
the previous limitations by firstly collecting a large-scale X-ray dataset from multiple resources. Our
dataset includes 11,312 images collected from 10 different data repositories. To alleviate the effect
of the noise, we suppress it in the feature space of our new dataset. Secondly, we introduce a
supervision mechanism and combine it with the VGG-16 network to consider the differences between
the COVID-19 and healthy cases in the feature space. Thirdly, we propose a multi-site (center) COVID-
19 graph convolutional network (GCN) that exploits dataset information, the status of training samples,
and initial scores to effectively classify the disease status. Extensive experiments using different
convolutional neural network-based methods with and without the supervision mechanism and
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different classifiers are performed. Results demonstrate the effectiveness of the proposed supervision
mechanism in all models and superior performance with the proposed GCN.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The outbreak of the ongoing coronavirus disease 2019 (COVID-
9), caused by severe acute respiratory syndrome coronavirus 2
SARS-COV-2), urged the World Health Organization (WHO) to
eclare the statement of Public Health Emergency of International
oncern (PHEIC) on 30th January, 2020 [1]. Later on 11th March
020, the WHO declared COVID-19 as a global pandemic. As of
1th October, 2021, WHO reported 236,599,025 confirmed cases
f COVID-19 in more than 227 countries and territories, including
,831,486 deaths (death rate is 2.04%) [2]. Yet, the confirmed
ases can be exponentially increased due to the easy transmis-
ibility of the virus and its new strains [3], particularly, when
recautions are not applied. COVID-19 patients commonly suffer
rom mild to severe cough, fever, and breathing problems as well
s pneumonia symptoms [4]. However, asymptomatic COVID-19
ases impose a great burden on the spread of the virus as they
annot be easily detected [5]. Although research institutions and
harmaceutical entities have already developed some vaccines
hat could help combating COVID-19, the effectiveness of such
accines is still arguable. Therefore, early detection and diagnosis
f COVID-19 remains a paramount task in disease prevention and
ontrol.
The COVID-19 consists of single-stranded ribonucleic acid as-

ociated with 4 main structural proteins (Spike, Envelope, Mem-
rane, and Nucleocapsid) which can be detected using either the
ucleic acid test or the antibodies present in subject’s blood [6].
herefore, it was recommended by Chinese government to con-
irm the diagnosis of COVID-19 using the reverse transcription
olymerase chain reaction (RT-PCR) [7]. However, the RT-PCR
est kits availability is challenging in many regions in low- and
iddle-income countries that leads to difficulties in samples
ollection and transportation. In addition, lab tests also suffer
rom high false-negative cases that likely happen during samples’
reparation and quality control [8]. Furthermore, the RT-PCR
rocess takes relatively long time (4–6 h) to get results and
ay not be always efficient [9]. Hence, many researchers tried

o introduce fast, accurate, and low-cost methods for COVID-19
iagnosis.
To this end, many researchers utilized the findings from med-

cal imaging techniques (X-ray and computed tomography (CT))
o early diagnose the suspected COVID-19 cases and other lung
iseases as well [10]. In fact, these techniques, particularly CT,
ave demonstrated to be an effective and fast alternative to the
T-PCR with high detection accuracy [7,11]. In addition, imaging
ata can be stored for disease follow-up measurements. Usually,
hest X-ray or CT images are examined by 2 or more expert
adiologists to determine the presence of the infection. However,
ue to the shortage of radiologists and the long examination
ime of the scans, developing computer-aided diagnosis systems
ecomes increasingly required for COVID-19. Despite CT scan
rovides richer information about lung lesions than the X-ray
ounterpart, it has higher cost, not always available, and takes
onger acquisition time. Therefore, X-ray remains the gold stan-
ard imaging modality for diagnosis chest diseases, especially in
ow-income and developing countries.

Recently, many methods were proposed in the literature using
he emerging technologies of artificial intelligence to, screen, de-
ect, classify, and assess the diagnosis of COVID-19 from chest X-

ay images, see the following reviews [12–18]. The breakthroughs
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of computer vision and deep learning methods have been effec-
tively used in many studies to extract high level features. Majority
of the methods in the literature adopted different variants of
deep convolutional neural networks (CNN) [19], ResNet [20],
and/or VGGNet [21] to classify the patient’s image to normal,
bacterial pneumonia, viral pneumonia, or COVID-19. However,
many of the current methods employ transfer learning techniques
to alleviate the issue of data availability for training, e.g. [22–
26]. Furthermore, previous studies used insufficient number of
samples to train the models and likely suffer from overfitting.
Contrarily, combining samples from different hospitals/centers
can improve the robustness of diagnosis system, therefore it at-
tracts much attentions. Despite some studies combined different
datasets to increase the number of training samples, the inter-
dataset variations produce an undesirable noise in the combined
dataset which consequently affects model’s performance, if not
suppressed. In addition, different hospitals all over the world usu-
ally use different imaging equipment and acquisition standards
which result in an inter-variance among the data samples. Hence,
alleviating this noise is highly desirable. Moreover, currents stud-
ies only consider the imaging biomarkers and ignore other useful
information, that could improve diagnosis performance. For ex-
ample, the statistical information of the extracted features, the
interactions between samples in the classifiers, and relationship
between datasets from different hospitals.

In this paper, we propose a novel method based on graph
convolutional network (CGN) to incorporate other information
with extracted features. The main contributions of this paper are
as follow. First, we use a VGG-16 (hereinafter, we simply use
VGG) network with a novel supervision mechanism to extract
features for every sample in our multi-center/site datasets. To
alleviate the effect of the noise in the extracted features from
the different sites/centers, we propose a supervision mechanism
in the training process. Specifically, after pre-training the VGG
network, we get the statistical information (mean values) of the
extracted features in those training samples, and then we use
the statistical information as a supervision to train VGG network
again. Second, we propose a multi-site COVID-19 GCN as a clas-
sifier to accomplish the diagnosis task based on the previously
extracted features. In this part, we further consider the difference
between datasets and design a multi-site COVID-19 graph in GCN
to establish the interactions between the samples. The proposed
COVID-19 graph exploits dataset information, status of training
samples, and initial scores. Third, we collect a large-scale dataset
from multi-centers to boost the training process and avoid the
potential occurrence of overfitting. Our dataset contains 11,312
X-ray radiographs from 10 different centers/sites.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related studies on COVID-19 diagnosis. In Section 3,
we presents our proposed GCN method. Section 4 is dedicated for
the experimental results and comparisons with state-of-the-art
methods. Discussion is presented in Section 5. Finally, conclusions
and perspectives are given in Section 6.

2. Related work

In this Section we revisit the major works on COVID-19 diag-
nosis based on the major backend architectures. Specifically, we
focus on the methods that used variants of CNN-based architec-
tures: ResNet, VGG, U-Net, and sequence-based ones.
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Deep CNN architectures have been extensively used in many
detection, recognition, and classification tasks. Basically, CNN ex-
tracts high level features through multiple stages and hence
can effectively learn the inherent representation of the underly-
ing data. Likewise, many studies adopted CNN-based models for
COVID-19 diagnosis from both CT and X-ray images [15,22–53].
For instance, Ozturk et al. [40] trained a typical end-to-end CNN
model (DarkCovidNet) that consists of 19 convolutional layers
to perform binary and multiclass classification of X-ray images.
This model achieved good accuracy for binary and multiclass
classifications and it was evaluated by expert radiologists. In
another work, Islam et al. [35] exploited CNN to extract high
level feature from X-ray images and adopted long short-term
memory (LSTM) network for classification. Wang and Wong [44]
proposed a deep model (COVID-Net) to detect COVID-19 cases
from relatively big dataset of X-ray radiographs with different
disease classes. Zhang et al. [48] proposed a confidence-aware
anomaly detection (CAAD) model for viral pneumonia screening
to differentiate the viral pneumonia from non-viral pneumonia
and healthy controls as a one-class classification-based model.
The CAAD model contained an anomaly detection network and a
confidence prediction network based on CNN and it was trained
on large X-ray image dataset. Chowdhury et al. [30] proposed
a parallel-dilated CNN-based (PDCOVIDNet) model that used a
dilated convolution in the parallel stack of convolutional blocks to
capture and propagate discriminative features to detect COVID-19
from X-ray radiographs.

The VGGNet architecture has been also widely adopted in
many studies for COVID-19 diagnosis. For example, Panwar et al.
[41] proposed an nCOVnet model that included a 24 layer CNN
layers. A pre-trained VGG16 network on the ImageNet dataset
was used for feature extraction in the top layers of their model
and another 5 customized layers. Brunese et al. [28] proposed a
three phases approach to firstly detect the presence of a pneumo-
nia in chest radiographs then differentiate between the COVID-19
and pneumonia and finally localize the COVID-19 infected areas
in the X-ray. This method was also based on a pre-trained VGG-16
model that was trained on the ImageNet dataset. Apostolopoulos
and Mpesiana [22] evaluated different CNN architectures and
adopted transfer learning to detect the abnormalities of chest X-
rays and classify them to different classes. Authors demonstrated
that VGG19 and MobileNet v2 are among the best CNN-based
architectures to detect COVID-19 from X-ray images.

On the other hand, deep ResNet-based models have demon-
strated an outstanding performance in COVID-19 detection. For
instance, Oh et al. [39] proposed a patch-based CNN architecture
based on simple ResNet-18 to train a limited size dataset for
detecting COVID-19 from X-ray images and adopted the transfer
learning using the pre-trained weights from ImageNet dataset.
Similarly, Jain et al. [36] adopted transfer learning from ImageNet
dataset and proposed a two-stage strategy using residual net-
work architectures, i.e. ResNet50 and ResNet101. This method
was trained and validated on medium size dataset and also uti-
lized data augmentation. Yoo et al. [46] used deep learning-
based decision-tree classifier to detect COVID-19 and tuberculo-
sis from X-ray images. Specifically, they adopted a pre-trained
ResNet18 on the ImageNet dataset and 3 binary decision trees
for classification.

Several studies evaluated different CNN-based models to
choose the most efficient one [25,38,47,54]. For example, Narin
et al. [38] used 5 pre-trained CNNs-based architectures (i.e.
ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-
ResNetV2) and implemented 3 binary classifications to classify
different lung diseases from X-ray images. Authors noted that, the
pre-trained ResNet50 network was able to achieve the best classi-

fication performance compared with other CNNs models. Minaee
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et al. [25] proposed a deep learning architecture for COVID-19
detection based on fine-tuning of four state-of-the-art CNN mod-
els (ResNet18, ResNet50, SqueezeNet, and DenseNet121). Authors
collected a dataset of 5000 chest X-rays to train and test their
model and achieved good sensitivity and specificity rates. Also,
Zebin and Rezvy [47] implemented a transfer learning pipeline
and used 3 pre-trained CNN-based models (VGG16, ResNet50,
and EfficientNetB0) for better feature extraction. This method was
used to classify COVID-19 chest X-ray images collected from 2
publicly available datasets.

Recurrent neural networks (RNN) and LSTM were also widely
adopted in literature for time series prediction of COVID-19. For
instance, Demir [55] proposed a deep LSTM model to automat-
ically identify COVID-19, pneumonia, and normal subjects from
X-ray images. Islam et al. [35] adopted a CNN and an LSTM
architecture to automatically diagnose COVID-19 from X-ray im-
ages. Specifically, CNN was adopted for deep features extraction
while LSTM was used to detect COVID-19 subjects based on
the extracted CNN features. Similarly, Khan et al. [56], proposed
a hybrid framework based on CNN to extract multi time-scale
features from convolutional layers and LSTM that identifies short,
medium, and long-term dependencies by learning the represen-
tation of time-series data. Likewise, Aslan et al. [57] combined
CNN with bidirectional LSTM model to improve the feature learn-
ing and boost the detection accuracy of COVID-19 from X-ray
images. In another work, Aradhya et al. [58] proposed a cluster-
based one-shot learning that requires few samples. Their model
was based on an ensemble of the generalized regression neu-
ral network (GRNN) and the probabilistic neural network (PNN)
classifiers at decision level.

To summarize, in Table 1 we present the most related works
on COVID-19 diagnosis indicating the used architecture, dataset
size, task(s), and the performance evaluation.

3. Material and methods

3.1. Multi-center datasets

In this work, we collected a total number of 11,312 X-ray
radiographs from 10 multi-center datasets. In our dataset, we
have 5656 and 5656 X-ray images for COVID-19 infected and
healthy cases, respectively. The detailed information of multi-
center datasets is given in Table 2. In our collected dataset, we
randomly picked part of each dataset since some datasets have
too many samples (e.g., D2 has 4235 samples and D5 has 4044
samples). In addition, we chose the same number of COVID-
19 and healthy images to avoid the class imbalance problem.
Examples of healthy and COVID-19 X-ray images from different
datasets are shown in Fig. 1.

3.2. Proposed method

Our proposed framework consists of three main stages. First,
we adopt the VGG architecture [20] to extract high level features
from the X-ray radiographs. Then, we compute the mean values of
the extracted features for the infected and healthy cases, respec-
tively. Second, we use two computed mean values of extracted
features as a supervisory factor to constrain the VGG network. In
this part, we train the VGG network again to output the extracted
features and an initial predicted score for every X-ray image.
Third, by designing our multi-center COVID-19 graph in GCN, we
accomplish the COVID-19 diagnose task. The overview of whole
COVID-19 diagnosis framework is shown in Fig. 2. Note that, the
words ‘‘multi-center’’ and ‘‘multi-site’’ are used interchangeably

throughout this paper.
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elated works on COVID-19 diagnosis from chest X-ray radiographs.
Author(s) Architecture Dataset Task Performance

Zhang et al. [48] CNN 100 COVID-19
1431 Other

COVID-19 vs. Others 96.0% (Sens)
70.65% (Spec)
0.952 (AUC)

Ozturk et al. [40] CNN 127 COVID-19
500 No-findings 500
Pneumonia

COVID vs. No-Findings
COVID vs. No-Findings vs. Pneumonia

98.08%(ACC)
87.02% (ACC)

Islam et al. [35] CNN+LSTM 1525 COVID-19
3050 Other

COVID-19 vs. Normal vs. Pneumonia 99.4% (ACC)
99.9% (AUC)
99.2% (Spec)
99.3% (Sens)
98.9% (F1-score)

Chowdhury et al.
[30]

CNN 219 COVID-19
1341 Normal
1345 viral pneumonia

COVID-19 vs. normal, vs. viral
pneumonia

96.58% (ACC)
96.58% (Prec)
96.59% (recall)
96.58% (F1 score)

Panwar et al. [41] VGG16 + CNN (nCOVnet) 142 COVID-19
142 Normal

COVID-19 vs. Normal 97.62% (Sens) 78.57% (Spec)
88.10% (ACC) 0.881 (AUC)

Apostolopoulos
and Mpesiana [22]

Different CNNs 448 COVID-19
1414 bacterial
pneumonia
1008 Normal

COVID-19 vs. Others 96.78% (ACC)
98.66% (Sens)
96.46% (Spec)

Oh et al. [39] (FC)-DenseNet103
ResNet-18

191 Normal
57 tuberculosis
54 bacterial pneumonia
20 viral pneumonia,
180 COVID-19.

COVID-19 vs. Others 70.7 (ACC)
60.6 (Prec)
60.1 (Recall)
59.3 (F1 score)
89.7 (Spec)

Jain et al. [36] ResNet50 and ResNet101 250 COVID-19
315 Normal
300 bacterial pneumonia
350 viral pneumonia.

COVID-19 vs. Others 98.93 (ACC)
98.93 (Sens)
98.66 (Spec)
96.39 (Prec) 98.15 (F1
score)

Narin et al. [38] ResNet50, 101, ResNet152,
InceptionV3 and
Inception-ResNetV2

1023 COVID-19
2772 bacterial
pneumonia
2800 Normal
1493 Viral Pneumonia

COVID-19, normal viral pneumonia
and bacterial pneumonia

ResNet50
96.1% (ACC) Dataset-1,
99.5% (ACC)
for Dataset2 and 99.7%
(ACC) Dataset-3

Minaee et al. [25] ResNet18, 50, SqueezeNet,
DenseNet161

520 COVID-19
5000 Non COVID-19

COVID-19 vs. Others 98% (Sens)
90% (Spec)

Zebin and
Rezvy [47]

VGG16, ResNet50, and
EfficientNetB0

673 X-ray, CT
69% COVID-19
300 for others

COVID-19 vs. Normal VGG16 90% (ACC)
ResNet50 94.3% (ACC)
EfficientNetB0 96.8% (ACC)

Waheed et al. [52] CNN+GAN 403 COVID-19
721 Normal

COVID-19 vs. Normal 95% (ACC)
90% (Sens)
97% (Spec)

Abbas et al. [53] CNN (ResNet) 105 COVID-19
80 Normal
11 SARS cases

COVID-19 vs. Normal vs. SARS 95.12 (ACC)
97.91 (Sens)
91.87 (Spec)
96.55 (AUC)

Aradhya et al. [58] GRNN+PNN 69 COVID-19
79 Normal
79 bacterial pneumonia
79 viral pneumonia.

COVID-19 vs. Normal
COVID-19 vs. Normal vs. bacterial
pneumonia
COVID-19 vs. Normal vs. bacterial
pneumonia vs. viral pneumonia

100% (ACC)
85.23% (ACC)
74.05% (ACC)

Sethy et al. [59] ResNet50+SVM 127 COVID-19
127 Pneumonia
127 Healthy

COVID-19 vs. Others 95.33% (ACC)
95.33% (Sens)
0.953 (F1 score)

Moutounet-
Cartan [60]

VGG-16 125 COVID-19
152 Normal
48 Other pneumonia

COVID-19 vs. No Finding vs. Other
Pneumonia

93.9% (ACC)
87.7% (COVID-19 Sens)
96.8% (No Finding Sens)

ACC=Accuracy, Sens=Sensitivity, Spec=Specificity, Prec=Precision, AUC=Area Under Curve.
.3. Supervision mechanism

As shown in Fig. 2, our VGG network includes seven convolu-
ional layers followed by seven max-pooling layers and rectified
inear unit (ReLU) as an activation function. The detailed param-
ters of the convolutional layers and pooling layers are shown
n Table 3. We have total of 11,312 images from 10 datasets,
4

whereas there are a total 1,498,372 parameters in our network.
Since our collected dataset comes from multi-center datasets,
there is an indispensable difference among the X-ray radiographs.
Hence, the parameters of VGG network result in noises on the ex-
tracted features. Significant fluctuations in the extracted features
also deteriorate the performance of the classifier. To improve
the quality of the extracted features and alleviate the effect of
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Table 2
Detailed information of the multi-center datasets from which we collected our dataset.
Datasets COVID-19 Healthy Links

D1 700 700 https://github.com/ieee8023/covid-chestxray-dataset
D2 1500 1500 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
D3 90 90 https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets
D4 900 900 https://data.mendeley.com/datasets/2fxz4px6d8/4
D5 1500 1500 https://data.mendeley.com/datasets/8h65ywd2jr/3
D6 200 200 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
D7 56 56 https://www.kaggle.com/darshan1504/covid19-detection-xray-dataset
D8 130 130 https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays
D9 30 30 https://www.kaggle.com/anaselmasry/covid19xray
D10 550 550 https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
Total 5656 5656
Fig. 1. Examples of healthy and COVID-19 X-ray images from different datasets. Columns from left to right represent D6, D7, D8, and D10, respectively. Rows from
op to down represent normal and COVID-19 radiographs, respectively. (Some infected regions marked by chest physician are highlighted with red dashed circles in
he second row).
he noise, we propose a supervision mechanism. The feature
xtraction process details are as follows: First, we pre-train the
GG network and use it to extract initial features. Specifically,
e split the dataset into 80% and 20% for training and testing
ets, respectively. In addition, during the training process, a 10%
f the training samples are used for validation. Then, we use all
raining samples to pre-train our VGG network, and then use
he pretrained VGG network to extract the features from the
ast pooling layer for every sample. Therefore, we get a 256 × 1
feature vector for every image. By averaging the feature vectors
for COVID-19 cases and for healthy cases, respectively, we get
a mean COVID-19 feature vector and a mean healthy feature
vector. Second, we revise the VGG network by adding the su-
pervision mechanism, which uses the mean COVID-19 feature
vector and the mean healthy feature vector to constrain the
extracted features to realize the aim of suppressing noises. In this
part, we train the proposed VGG framework with the supervision
mechanism again. The training and testing samples are same with
that in the first step. By using the trained VGG framework, we
finally get the updated extracted features for every image and get
an initial score for every image to represent the initial diagnosis
results.

For training samples, we compute the mean values of feature
vectors and get a mean feature vector for COVID-19 infected cases
and a mean feature vector for healthy patients. Using the above
5

two mean feature vectors, we design a supervision mechanism on
the VGG network as shown in Fig. 2.

3.4. VGG network for feature extraction and initial scores

As shown in Fig. 2, our VGG network with the supervision
mechanism considers the feature’s difference of the COVID-19
and healthy cases. Since the training samples’ status are already
known, we use the two kinds of the mean feature values to
constrain the extracted features. Specifically, we use them to
extract supervised features and get an initial score for every X-ray
radiograph by training it again. To further reduce the dimen-
sion of the feature vector, we use the recursive feature elimina-
tion [61] to select the most discriminative features represented
in a low-dimensional feature vector for every subject.

3.5. Graph convolutional network

Compared with traditional neural networks, GCN uses graph
theory to improve performance, particularly it plays a quite no-
table role in filtering noise. Typically, each node in the graph
represents the feature vector of a subject and the edge represents
the interaction between corresponding pair of nodes on a given
graph. Graph theory uses all nodes on the graph to perform
convolution, and edge weights are the key to its performance as

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets
https://data.mendeley.com/datasets/2fxz4px6d8/4
https://data.mendeley.com/datasets/8h65ywd2jr/3
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/darshan1504/covid19-detection-xray-dataset
https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays
https://www.kaggle.com/anaselmasry/covid19xray
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia


A. Elazab, M.A. Elfattah and Y. Zhang Applied Soft Computing 114 (2022) 108041

w
(
s
t
c
w
h

Fig. 2. Overview of the proposed COVID-19 diagnosis framework. (a) The VGG network to extract initial features from X-ray images to compute mean feature values.
(b) The supervision mechanism based on the mean feature values on VGG network to improve its performance and use it to extract the feature vector and the initial
score for every X-ray image. (c) The multi-center COVID-19 GCN that considers dataset information, status of training samples, and initial scores. Softmax layer of
the GCN is used to score every X-ray radiograph and output the final diagnosis results.
they are corresponding to convolution coefficients. Thereby, they
attracted much attention [62–64]. In the following, we propose a
multi-center COVID-19 graph in GCN to establish edges to fit the
diagnosis task’s characteristics.

3.5.1. Multi-center COVID-19 graph
We first examine the differences among the datasets; hence

e split all nodes on the proposed GCN into several groups
clusters). In other words, subjects in the same dataset repre-
ent a cluster, which means the number of clusters represent
he number of datasets. In this paper, total of 10 clusters are
orresponding to the 10 datasets. For the nodes in different group,
e do not set up connections for them that means their edges will
ave zero weights. Regarding the nodes within the same group,
6

we set the weights of their edges by considering the training
samples’ disease status and initial scores from the VGG network.
Specifically, the edge weight between two subjects in the same
group is calculated using the following formula:

A (v, u) = (a ∗ Sim (F v, F u) + b ∗ Sim (Scorev, Scoreu))

× (1 + rS (Sv, Su)) , (1)

rS (Sv, Su) =

{
1, Sv = Su
0, otherwise,

(2)

where the edge weights construct the adjacency matrix (A).
A v, u represents the edge weight between subjects v and u,
( )
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able 3
etailed parameters of the proposed network.
Layer Type Filter

size
Stride Kernel Input size No. of

parameters

1 Convolution2D 3 × 3 1 64 128 × 128 150
2 Convolution2D 3 × 3 1 128 128 × 128 2040
3 Pool 2 × 2 2 128 64 × 64 0
4 Convolution2D 3 × 3 1 256 64 × 64 3400
5 Convolution2D 3 × 3 1 256 64 × 64 5650
6 Pool 2 × 2 2 256 32 × 32 0
7 Convolution2D 3 × 3 1 64 32 × 32 11300
9 Convolution2D 3 × 3 1 128 32 × 32 22550
10 Pool 2 × 2 2 128 16 × 16 0
11 Convolution2D 3 × 3 1 256 16 × 16 22550
12 Convolution2D 3 × 3 1 256 16 × 16 22550
13 Pool 2 × 2 2 256 8 × 8 0
.14 Convolution2D 3 × 3 1 64 8 × 8 45100
15 Convolution2D 3 × 3 1 128 8 × 8 90100
16 Pool 2 × 2 2 128 4 × 4 0
17 Convolution2D 3 × 3 1 256 4 × 4 18020
18 Convolution2D 3 × 3 1 256 4 × 4 360200
19 Pool 2 × 2 2 256 2 × 2 0
20 Convolution2D 3 × 3 1 64 2 × 2 360200
21 Convolution2D 3 × 3 1 128 2 × 2 360200
22 Pool 2 × 2 2 128 1 × 1 0
23 Fc1 12060
24 Fc2 122

1,498,372

Sim (·) is the similarity of imaging information, F v and F u are the
extracted feature vectors of subjects v and u, respectively. a and b
are weight parameters of the similarity terms. Scorev and Scoreu
denote the scores of subjects v and u from the VGG network, rS
epresents the distance of the disease status (the statuses of those
raining samples on graph are known) while Sv and Su represent
heir disease status.

The most widely used method for evaluating similarity of
maging information based on the extracted feature is based on
he correlation distance which is calculated using [65]:

im (F v, F u) = exp
(

−
[ρ (F v, F u)]2

2σ 2

)
, (3)

where ρ(·) and σ are the correlation distance function and the
width of the kernel, respectively.

Calculating the correlation distance using Eq. (3) may affect
the convolution performance. Therefore, we estimate the simi-
larity measure based on the fact that, the VGG network has good
feature extraction capability. By using VGG network to extract
features from images, we get the diagnosis score of each subject,
see Fig. 2. Based on the calculated scores, the similarities can be
computed using:

Sim (Scorev, Scoreu) = exp
(

−
[ρ (Scorev − Scoreu)]2

2σ 2

)
. (4)

3.5.2. GCN structure
In the GCN-based methods, the spectral theory applies the

convolution of Fourier transform and Taylor’s expansion formula
to process the adjacency matrix to achieve a better filtering
effect and computational efficiency [65]. To calculate the spectral
convolution, we can consider it as a multiplication operation of a
signal x ∈ Rn and a filter gθ = diag(θ) as follows:

gθ ∗ x = Ugθ (Λ)U Tx =

K∑
k=0

θkTk
(
L̃
)
x, (5)

where U is the matrix of eigenvectors, θk is a vector of Chebyshev
oefficients, Tk is Chebyshev polynomials function, L̃ = 2/λmaxΛ−

, and g (Λ) is well approximated by a truncated expansion in
N θ

7

terms of Chebyshev polynomials to the K th-order. In this paper,
we use the following formula to calculate U :

L = IN − D−
1
2 AacD−

1
2 = UΛU T , (6)

where IN represents the identity matrix whilst D is the diagonal
degree matrix.

After performing the spectral convolution operation, the adja-
cency matrix As is estimated using

∑K
k=0 θkTk(L̃) where K is the

polynomial order and it is used to control the filter effect (see its
effect in Section 5.2).

Finally, the proposed architecture combines two graph con-
volutional layers that use the ReLU as an activation function (See
Fig. 2(c)). Following the two graph convolutional layers, a Softmax
function is used to output probability distribution for the final
diagnosis of the disease.

4. Experiments and results

4.1. Experimental setup and evaluation metrics

All experiments of this paper were conducted on a machine
with Intel(R) CPU i7-8700 at 3.19 GHz, GPU NVIDIA TITAN Xp,
128G of RAM, using Keras deep learning library. In our VGG
network, we used the following parameters. Learning rate was set
to 1e−4, Adam optimizer was adopted for optimization, and the
number of epochs was 200. In addition, our dataset was divided
to 80% for training (in which 10% were used for validation)
and the remaining 20% for testing. The total running time is
composed of the training of the three phases of our framework;
the VGG feature extraction, the supervision mechanism, the GCN
diagnosis (Fig. 2(a)–(c)). The training time for these phases was,
respectively, 2.27 h, 1.84 h, and 0.4 h (totally 4.11 h).

In this work, we evaluated the performance of our meth-
ods using several metrics. Namely, we measured the sensitivity
(Sens), specificity (Spec), accuracy (ACC), and area under the
curve (AUC) of receiver operating characteristic (ROC) which are,
respectively, defined as:

ACC =
TP + TN

TP + TN + FP + FN
, (7)

Sens =
TP

TP + FN
, (8)

Spec =
TN

FP + TN
, (9)

where TP, TN, FP , and FN are the number of true positives, true
egatives, false positives, and false negatives, respectively.

.2. Comparison methods

In this paper, we used several deep learning-based methods
o perform feature extraction. These methods are based on CNN,
esNet, and VGG architectures. Additionally, we used these meth-
ds with and without the proposed supervision mechanism to
valuate its efficacy. For classification, we also considered differ-
nt classifiers. Namely, multilayer perceptron (MLP) [66], random
orests (RF) [67], gradient boosted decision trees (GBDT) [68],
CN, and the proposed GCN. In addition, we adopted the end-
o-end training as baseline to evaluate the effect of the pro-
osed supervision mechanism on feature learning. The reason of
hoosing these methods is that, they have been widely used in
iterature and achieved the state-of-the-art performance in many
asks. For GCN and MLP, the main parameters that were used
n the comparisons are as follows. Number of iterations was 3,
ropout rate was 0.1, l2 regularization was 5 × 10−4, learning
ate was 0.005, number of epochs was 200, number of neurons
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er layer was 32, and number of extracted features was 30. For
F parameters, the number of trees was 500, and the maximum
epth was three. For GBDT, learning rate was 0.01, number of
pochs was 200, and maximum depth of the tree was 5.

.3. Classification performance

In Table 4, we summarize the classification results for our
inary task (COVID-19 vs. Healthy) using different feature ex-
raction methods (with and without the supervision mechanism)
nd classifiers. It can be noticed that, the proposed supervision
echanism effectively improves the performance of all classifiers.

n particular, the proposed GCN with the supervision mechanism
n the VGG network achieves 96.41%, 96.6%, 96.2%, and 98.7%
or ACC, Sens, Spec, and AUC, respectively. Best results are given
n boldfaces for every classifier. In addition, we compared the
erformance of our method with the state-of-the-art methods for
OVID-19 diagnosis. Comparisons are given in Table 5. From this
able, it is obvious that the proposed method is not only trained
n the biggest dataset but also it achieves the best performance
n COVID-19 diagnosis. Note that, although the dataset used in
ang et al. [44] is apparently the biggest dataset, the major part
f this dataset is generated one, not real X-ray images. Similarly,
uz et al. [51] used a quite big dataset of 13,569 subjects (but
nly from 3 centers), yet, our performance has about 2.5% higher
ccuracy than it. Despite our proposed method achieves higher
ccuracy than the methods in Table 5, there are other methods
n literature that attained better accuracy than ours e.g., [35,36,
0,54,55,57,58]. Nevertheless, these methods were tested on a
elatively small datasets with limited number of centers which
ay not be appropriate and thus hinder their clinical signifi-
ance, without further investigations. It is noteworthy that, in our
ataset, we maintain the class balance by choosing equal number
f the healthy and the COVID-19 subjects (see Table 2) which
ot only neutralizes the feature learning process but also further
romotes the reliability of the proposed method performance.
ote that, the results in Table 4 were obtained by setting a and b
n Eq. (1) to 0.5.

In addition, in Fig. 3, we depict the performance of the pro-
osed method for the both accuracy and the loss function during
he training phase. It is shown that, the training and validation
ccuracies of our method reach 99.01% and 96.41%, respectively,
t epoch 64 (Fig. 3a). Similarly, our loss function (categorical
rossentropy) has a stable behavior with almost same generaliza-
ion gap around epoch 98 (Fig. 3b). The stability of the accuracy
nd the loss function during training process is mainly due to
he effectiveness of our proposed supervision mechanism which
nhances the feature learning ability in our model.
We further draw the ROC curves to demonstrate the effec-

iveness of the proposed supervision mechanism on the perfor-
ance of different classifiers as shown in Fig. 4. It is clear that

he classification performance is improved using our supervision
echanism, particularly with the proposed GCN.

. Discussion

In this Section, we discuss the main advantages of proposed
ethod and the current limitations in our study. Besides, we also

nvestigate the effect of the supervision mechanism on the feature
xtraction, the polynomial order, and the number of features as
ell.
8

5.1. Effect of the supervision mechanism

The proposed supervision mechanism obviously improved the
feature extraction procedure, not only the proposed method,
but also many other deep feature extraction methods. This is
demonstrated on a variety of performance metrics in Table 4. In
this table, a number of feature extraction methods (2nd column)
with and without the supervision mechanism are evaluated using
various classifiers (1st column). It is shown that the supervision
mechanism can boost the performance of all these classifiers,
especially in terms of accuracy. For instance, in the last block
of Table 4, the performance of our proposed GCN classifier with
CNN feature extraction can be improved by 0.7%, 2.4%, and 1.9% in
terms of ACC, Sens, and AUC, respectively, when the supervision
mechanism is adopted.

We also demonstrate how the top 12 features are affected
when using the proposed supervision mechanism in Fig. 5. In this
figure, features of COVID-19 (yellow and red) and healthy (blue
and green) subjects with and without supervision are plotted. It
can be noticed that, there is a great difference between COVID-19
and healthy subjects when supervision mechanism is adopted as
compared with no supervision. This can ultimately ease and boost
the classification task by using the underlying classifier.

Moreover, we also evaluate the effect of weightings of the
supervision mechanism on the accuracy of COVID-19 diagnosis.
Table 6 lists the accuracy over different weighting values. In
this experiment, the best accuracy was achieved at a supervision
weighting of 0.2, with an increase of 1.81%.

5.2. Effect of the polynomial order

The polynomial order (K ) in Eq. (5) also affects the perfor-
ance and shall be carefully determined. In this subsection, we
xplore the effect of this parameter on the accuracy measure
ACC). Specifically, we empirically tested different values of K
uch that Kϵ{1, 2, 3, 4, 5}. Table 7 reports the accuracy of dif-
erent orders of K. From this table, it is noticed that, the ac-
uracy slightly increases at higher degrees till it reaches the
est performance at K = 3. However, choosing higher order of
(K > 3) decreases the diagnosis accuracy. Therefore, in this
ork, we fixed the polynomial order to 3 as it achieved the best
erformance.

.3. Effect of number of features

We also explored the effect of the number of extracted fea-
ures on the diagnosis performance. We tested the influence of
ifferent number of the extracted features N on the classification

accuracy. In this experiment, we tested Nϵ [10, 250] and the
classification accuracy is given in Table 8. It is obvious that, when
N ≥ 30, the accuracy is better than N < 30. On the other hand,
the classification accuracy becomes the best (96.41%) when N =

30. By increasing the number of features, the accuracy slightly
decreases. Hence, we fixed N to 30 features.

5.4. Limitations

Although the proposed GCN and the supervision mechanism
achieved promising performance, the current study still has few
limitations. First, we used only X-ray radiographs to extract
COVID-19 biomarkers for disease diagnosis. However, using mul-
timodal data fusion from CT and X-ray can potentially improve
the diagnosis performance. Second, we only focused on binary
classification task of COVID-19 and healthy subjects. Multiclass
classification of other chest disease (e.g. pneumonia, viral pneu-
monia, and nodules) are increasingly desirable. Thus, it would be
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Fig. 3. Performance of the proposed method during training phase. (a) Accuracy (b) Loss function.
Fig. 4. ROC curves of the proposed GCN and the other classifiers using our
supervision mechanism. The solid lines represent the classifiers performances
using the supervision mechanism while the dashed lines represent the perfor-
mances without the supervision mechanism. From the zoomed version on right,
it is clear that supervision mechanism can enhance the diagnosis performance
not only of our GCN but also for other methods as well.

better to include other disease classes in our proposed method.
Third, we only focused on the classification without quantifying
the disease status. Indeed, it is quite advantageous to estimate
the severity level of the infection towards more personalized
treatment.

6. Conclusions and perspectives

In this paper, we proposed a novel method based on GCN with
supervision mechanism to diagnose COVID-19 from X-ray ra-
iographs. Specifically, we combined the supervision mechanism
ith VGG network to extract the most informative features and
sed the proposed GCN to perform the classification to either
OVID-19 or healthy images. Our method was trained on a rel-
tively big dataset collected from a large number of sites/centers
nd attained superior performance to many other classifiers. This
s particularly due to the effective feature learning capability of
he proposed supervision mechanism. Moreover, the proposed
ethod outperformed the state-of-the-art methods and achieved
9

Table 4
Classification performance using the proposed GCN and the supervision
mechanism against different deep feature extraction and classification
methods.
Classifier Feature extraction ACC (%) Sens (%) Spec (%) AUC (%)

None

CNN 95.5 95.9 95.1 99.2
CNN+Supervision 96.2 94.8 97.5 99.4
Resnet 93.9 90.3 97.4 98.6
Resnet+Supervision 94.3 91.9 96.8 98.7
VGG 94.5 92.1 96.9 98.8
VGG +Supervision 96.1 96.4 95.5 98.9

MLP

CNN 95.8 95.2 96.3 98.5
CNN+Supervision 96.1 96.8 95.4 99.2
Resnet 94.5 95.8 93.2 98.1
Resnet+Supervision 95.0 96.2 93.8 98.4
VGG 94.6 95.2 94.1 95.0
VGG+Supervision 96.0 96.4 95.5 99.1

RF

CNN 93.3 94.7 91.8 92.8
CNN+Supervision 92.2 98.8 85.6 91.6
Resnet 83.2 85.4 80.8 82.7
Resnet+Supervision 93.4 95.1 91.7 93
VGG 84.3 84.3 84.4 83.9
VGG+Supervision 95.9 96.2 95.5 95.4

GBDT

CNN 93.1 95.1 91.3 93.3
CNN+Supervision 92.2 98.9 85.5 91.5
Resnet 83.5 84.9 82.0 83.0
Resnet+Supervision 93.4 95.1 91.6 92.9
VGG 83.5 84.9 82.0 83.0
VGG+Supervision 95.6 96.0 95.3 95.2

GCN

CNN 95.5 94.7 96.3 98.1
CNN+Supervision 96.2 96.9 95.5 99.0
Resnet 94.2 94.2 94.2 98.2
Resnet+Supervision 94.3 97.1 91.5 98.0
VGG 94.6 95.6 93.7 98.2
VGG+Supervision 95.9 96.2 95.7 98.3

Our GCN

CNN 95.7 94.5 97 96.9
CNN+Supervision 96.4 96.9 95.9 98.8
Resnet 94.4 94.4 94.3 98.5
Resnet+Supervision 94.8 93.0 96.6 98.5
VGG 94.6 95.3 93.9 97.2
VGG+Supervision 96.41 96.6 96.2 98.7

96.41 %, 96.6%, 96.2%, and 98.7% for ACC, Sens, Spec, and AUC,
respectively.

The eminent performance of our proposed method can help
in combating the COVID-19 pandemic by providing an early di-
agnosis tool from chest X-ray radiographs, particularly in the
low-income and isolated regions where RT-PCR test kits are not
available. After further investigations, we believe that the pro-
posed method can be adopted in the healthcare systems in dif-
ferent ways, especially with the development of the internet of
things. One way to achieve this is incorporating our method
with the screening system of the chest X-ray scanner to provide
the radiologists/technicians with preliminary diagnosis. Another
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Fig. 5. Effect of the supervision mechanism on the top 12 features. Yellow and red colors are COVID-19 features while the blue and green colors represent the
ealthy features with and without supervision, respectively.
able 5
omparisons between the proposed method and the state-of-the-art COVID-19
iagnosis methods from X-ray radiographs.
Method Dataset

size
No. of
centers

ACC
(%)

Sens
(%)

Spec
(%)

AUC
(%)

Zebin and Rezvy [47] 673 2 94.3 – – –
Panwar et al. [41] 284 1 88.1 97.62 78.57 88.09
Wang et al. [44] 13,975 5 93.3 91.0 – –
Sethy et al. [59] 381 2 95.33 95.33 – –
Waheed et al. [52] 1124 3 95 90 97 –
Abbas et al. [53] 196 2 95.12 97.91 91.87 96.55
Luz et al. [51] 13,569 3 93.9 96.8 – –
Moutounet-Cartan [60] 327 2 93.9 87.7 – 97.4
Proposed 11,312 10 96.41 96.6 96.2 98.7

Table 6
Effect of weightings of the supervision on the COVID-19 diagnosis accuracy.
Predict/supervision ACC (%)

1.0–0.0 94.6
0.9–0.1 96.0
0.8–0.2 96.41
0.7–0.3 96.1
0.6–0.4 94.8
0.5–0.5 95.2
0.4–0.6 95.6
0.3–0.7 96.1
0.2–0.8 96.0
0.1–0.9 93.8

possible way is utilizing the proposed method (together with
other patient’s clinical data) in remote computer-aided diagnosis
system on a cloud system platform. Finally, it might also be useful
to develop a light-weight application of the proposed method to
be applicable on hand-held devices.

In our future work, we will evaluate the performance of the
roposed method on multimodal data (i.e. CT images and X-
ay radiographs) towards learning complementary features. In
10
Table 7
Effect of different degrees of the polynomial (K ) on the diagnosis accuracy of
COVID-19.
K ACC (%)

1 96.36
2 96.36
3 96.41
4 96.06
5 96.10

Table 8
Effect of number of features on the diagnosis accuracy of proposed method.
Number of features (N) ACC (%)

10 94.08
20 96.27
30 96.41
50 96.41
70 96.14
90 96.23
110 96.32
130 96.19
150 96.32
170 96.32
190 96.28
210 96.23
230 96.23
250 96.23

addition, it will be interesting to measure the severity of the
COVID-19 on the chest tissues to evaluate the risk of the infection.
Last but not least, it will be highly desirable to learn the spread
of the infection in the tissue. This can be achieved by modeling
the volume changes of the infected areas and can be potentially
addressed via adversarial learning.
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