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Long-term data establishes the efficacy of radiotherapy in the adjuvant management of breast cancer. New dose and fractionation
schemas have evolved and are available, each with unique risks and rewards. Current efforts are ongoing to tailor radiotherapy to
the unique biology of breast cancer. In this review, we discuss our efforts to personalize radiotherapy dosing using genomic data and
the implications for future clinical trials. We also explore immune mechanisms that may contribute to a tumor’s unique radiation
sensitivity or resistance.

1. Introduction

Radiotherapy is integral in the management of breast cancer.
The 25-year results of NSABP B04 published in 2002 indicate
radiation leads to less extensive surgeries, while maintaining
relapse-free and overall survival [1]. Meta-analyses show
that locoregional control as well as breast cancer mortality
benefit from adjuvant radiation therapy following breast
conservation surgery or following mastectomy with node-
positive disease [2, 3].

Technical advances in radiation therapy treatment plan-
ning since these early studies including target motion man-
agement, image guidance, and conformal planning now
result in improved ability to decrease dose to surround-
ing organs including the heart and lungs while accurately
treating diseased tissue [4, 5]. Also a number of radiation
fractionation strategies are now validated for both early and
advanced stage breast cancer. Hypofractionation studies have
revealed equivalent treatment outcomes with respect to in-
breast local control, breast cosmesis, and toxicity while being
more convenient and cost-effective with shortened treatment

duration[6–8]. Partial breast irradiation via external beam,
brachytherapy, or intraoperative techniques has been shown
to limit the volume of irradiated tissue in select groups of
women while preserving efficacy although data on long-term
outcomes is limited [9–12].

Personalized medicine has been discussed in the medical
oncology community; however, radiation oncologists have
typically delivered uniform doses of radiation without con-
sideration to biologic differences across tumors. As we enter
a new era of genomic testing, personalized radiation therapy
is becoming more feasible. Breast cancer is well suited to be
a primary malignancy in which radiation oncologists’ pilot
efforts for personalization. The role of adjuvant radiation
therapy is well established in breast cancer and gene expres-
sion data for breast malignances exists in large publicly avail-
able datasets. For this reason, our group has focused attention
on personalizing radiation therapy in this malignancy.

In this review, we will discuss efforts to define the
radiation sensitivity and resistance of genomically charac-
terized breast tumor types as determined by our novel gene
expression based radiosensitivity index (RSI).We also discuss
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personalized radiotherapy dosing after interpretation of RSI
as well as development of an actionable radiation metric,
the genomically adjusted radiation dose (GARD). Initial
validation studies in breast tumors using this model will be
reviewed, and we will also discuss rational combinations of
radiation therapy with immunotherapy utilizing RSI. Finally,
we will close with thoughts on prospective trials to test these
hypotheses.

2. Biologic Adaptation in Systemic
Management of Breast Cancer

Genomic tests have become useful tools in predicting clinical
outcomes and for guiding treatment decisions in breast
cancer, particularly for systemic therapy. For example, the
Mammaprint 70-gene signature test has been shown to be
a powerful predictor of distant metastasis in node-negative
breast cancer, and there is evidence it is a more accurate
predictor of overall survival andmetastasis-free survival than
standard clinicopathological risk assessment methods [13,
14]. Traditionally, women considered to be at high clinical risk
for distant metastasis were treated with adjuvant or neoad-
juvant chemotherapy. However, approximately 46% of these
women may not require chemotherapy if they are placed in
the low genomic risk category by the Mammaprint signature
as these women were found to gain no benefit in five-year
metastasis-free survival with adjuvant chemotherapy [15].

The Oncotype Dx recurrence score was shown to be an
accurate predictor for the risk of distant recurrence and over-
all survival at 10 years independent of age and tumor size in
patients with lymph node-negative, ER+ tumors treated with
tamoxifen [16]. In lymph node-positive patients treated with
tamoxifen, adjuvant chemotherapy provided little benefit in
terms of 10-year distant recurrence in tumors with Oncotype
Dx recurrence scores of less than 18,while patientswith recur-
rence scores greater than 31 benefited from chemotherapy [17,
18]. Furthermore, prospective studies showed patients with
node-negative, ER+, HER2-negative tumors and recurrence
scores <11 had less than a 1% risk of distant recurrence
at five years and that such patients may be safely spared
chemotherapy even if they are at high risk of distant failure
by traditional clinicopathologic risk estimation [19, 20].

With growing acceptance of data supporting the use of
tumor genomics in clinical practice, the newly released AJCC
8th edition staging guidelineswill incorporate tumor genomic
assays as stagingmodifiers. For example, in hormone receptor
positive, HER2-negative, lymph node-negative tumors, a low
risk score on theMammaprint signature or a recurrence score
less than 11 on the Oncotype Dx panel places a tumor into
the same prognostic category as T1a-T1b N0 M0, regardless
of tumor size [21]. While tumor genomic panels have seen an
increased use in guiding systemic therapy decisions, similar
tests have not gained widespread adoption in radiotherapy
management of breast cancer.

3. Biologic Adaptation in Breast Radiotherapy

Efforts are currently underway in the breast radiation oncol-
ogy community to tailor adjuvant treatment to a patient’s

biologic subtype. Although the role of radiation treatment
is known in the advanced node-positive setting, in localized
tumors with other favorable prognostic characteristics there
is an understanding that as radiation oncologists we may
be overtreating patients who may otherwise be eligible for
systemic treatment alone. Trials omitting radiation in select
favorable patients have shown higher rates of recurrences
indicating improved techniques to select appropriate patients
for treatment deescalation are needed. The 10-year results
from the CALGB 9343 study have revealed in women ≥
70 years with T1, node-negative tumors, that are ER+ and
receiving hormonal therapy, radiation therapy can be elim-
inated after lumpectomy with fairly low recurrence rates
[22, 23]. The CALGB study demonstrated a freedom from
locoregional recurrence rate of 90% in the lumpectomy with
tamoxifen alone treated arm and 98% in the arm treated with
radiotherapy.The difference was significant; however, OS did
not differ between groups. In addition, the PRIME II trial
has demonstrated the feasibility of eliminating radiation in
a cohort of women ≥ 65 years, pN0, up to 3 cm tumors and
negative margins who received adjuvant endocrine therapy
[24]. At 5 years, recurrence rates in the arm without radi-
ation were significantly higher at 4.1% compared to 1.3%;
however, the study requires continued long-term follow-
up.

Given these trials, which have demonstrated the fea-
sibility of excluding radiation therapy in the management
of early breast tumors without decreasing overall survival,
a number of studies are ongoing to assess which patients
may be candidates for radiation therapy exclusion. The
LUMINA study from the Ontario Clinical Oncology Group
(Clinicaltrials.gov identifier NCT01791829) is a single arm
study of women ≥ 55 years with T1 luminal A tumors
receiving endocrine therapy. In addition, the University of
Michigan has initiated the multi-institutional IDEA trial
(NCT02400190) in which women between 50 and 69 years
with ER+, PR+, and Her 2 negative early stage tumors
with an Oncotype Dx score ≤ 18 will receive hormonal
therapy alone. Finally, the Dana Farber Cancer Institute has
initiated the precision trial for women between the ages of
50 and 75 years with luminal A tumors measuring ≤ 2 cm
that receive hormonal therapy alone. Together, these efforts
are targeting more specific populations of women utilizing
biologic subtype to better characterize which women can be
spared radiation therapy. Although there are ongoing efforts
to personalize radiation therapy delivery based on a patient’s
unique clinical factors as well as receptor status, genomic
data would be expected to vary amongst these tumors. Efforts
from our group as well as others have suggestedmethodsmay
exist to tailor radiation therapy based on a tumor’s unique
genomic profile.

Various groups have suggested utilization of gene sig-
natures and biomarkers to predict the benefit of radiation
therapy in both early and advanced stage breast cancer. The
Danish Group published a gene signature, which predicted
the benefit of postmastectomy RT in patients with high-
risk breast cancer in the context of the Danish 82b and
82c trials [25]. A seven-gene signature was identified from
191 patients and then validated in 112 patients ultimately
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Figure 1: Trial schema for preoperative stereotactic radiation trial.

identifying a group of patients with sufficiently low risk
of locoregional recurrence in whom there was no benefit
from postmastectomy radiation therapy [26, 27]. Similarly,
studies have revealed the Oncotype Dx score to be predictive
of locoregional recurrence suggesting potential utility in
radiotherapy treatment decision-making. The University of
Michigan has also suggested a radiation sensitivity signature
(RSS) to identify patients that would benefit from adjuvant
radiotherapy [28]. The RSS was developed using clonogenic
survival assays across breast cancer cell lines. The RSS
was refined to 51 genes and validated in two indepen-
dent datasets outperforming all clinical and pathologic fea-
tures.

To better understand the effects of radiation therapy
and the tumor microenvironment we have recently opened
a phase 2 trial at our institution to assess a preoperative
accelerated partial breast irradiation (APBI) regimen of
28.5 Gy in 3 fractions following 6 to 8 weeks later by
surgical resection (Figure 1). Although several attempts at
preoperative radiation have occurred in the phase I setting
including 21 Gy in one fraction and 31.5 Gy in three fractions
[29, 30], an important goal of our trial is to obtain pre-
and postradiated tissue to assess the unique changes in the
radiation sensitivity and to assess the immune landscape
that may be important to the tumor’s sensitivity to radia-
tion.

4. RSI Development and Validation

Historically, radiation therapy dose delivery and fractiona-
tion schemes have been uniform with variation only in defi-
nition of target volume (i.e., +/- nodal volumes). A patient’s
unique tumor biology has not been taken into account. The
development and validation of the radiosensitivity index
(RSI) have taken place over the past decade as a means

to help predict radiosensitivity of various tumor types and
response to radiation treatment [31]. RSI was developed to
predict differences in cellular radiosensitivity based on the
surviving fraction of cells at 2 Gy (SF2) in cell lines. The
process of developing the signature included two main steps.
The first step included the identification of 10 genes using
an algorithm correlating basal gene expression and other
parameters (tissue of origin, Ras, and p53 mutation status) to
SF2 in a panel of 48 human cancer cell lines.The top 500 genes
were selected and interconnected in a biological networkwith
a systems biology approach [31]. The 10 hub genes selected
for the RSI algorithm were found to be the most connected
genes in the network. Thus, the criteria for gene selection
are based on the individual ability of the gene to predict
SF2 and its biological importance within the network. The
second step used the 10 genes to train a gene expression
algorithm to predict SF2. This final algorithm is RSI and has
been locked since the first validation studies in rectal cancer
[32].

This model predicts RSI to be directly proportional to
tumor radioresistance (RSI, high index = radioresistance).
Prior work has shown RSI to be predictive for the benefit
of radiotherapy in a number of different primary cancers,
including esophageal, rectal, head and neck, breast, glioblas-
toma, pancreas, and prostate malignancies as well as colon
and liver metastases [32–40]. RSI has correlated to outcomes
of local control and overall survival in these disease sites.
Since RSI is a radiation specific marker, we found RSI to be
correlated to endpoints of local control and overall survival
in these disease sites in patients treated with radiation but not
in patients not receiving radiation therapy.

We have previously shown RSI to be prognostic in breast
cancer patients treated in several independent datasets. In
a dataset of patients treated at the Karolinska University
Hospital (n=159), we noted patients predicted to be radiosen-
sitive had an improved 5-year relapse-free survival when
compared with radioresistant patients (95% versus 75%, p =
0.02) [33]. Since RSI is a radiation specific signature, there
was no difference in radiosensitive/radioresistant patients
treated without RT (71% versus 77%, p = 0.67). In addition,
in a separate dataset of patients treated from the Erasmus
Medical Center (n=344), radiation treated radiosensitive
patients had an improved 5-year distant metastasis-free
survival over radioresistant patients (77% versus 64%, P=
0.0409), but no difference was observed in patients treated
without radiation (radiosensitive versus radioresistant, 80%
versus 81%, p = 0.94) [33]. RSI has also been validated
in a cohort of 343 patients treated at 4 Dutch Centers
(Netherlands Cancer Institute, Radboud University Medical
Center, Erasmus Medical Center, and Ziekenhuis Amstel-
land) with breast conserving therapy that included whole
breast radiation with or without a tumor bed boost [37]. We
noted that local recurrencewas not predicted across the entire
cohort. However, the combination of receptor type with
radioresistance according to RSI identified a subpopulation
of patients with an increased risk of local recurrence. In
contrast, integrating RSI into the luminal subtypes did not
identify additional risk groups with increased risk of local
recurrence.



4 International Journal of Breast Cancer

Figure 2: GARD score distribution and density within 60 Gy dose
level, by disease site. The red dot represents the median GARD
value for each disease site at assigned dose levels. Colors in the
plot correlate with the sample density. GARD=genomic adjusted
radiation dose. IDC=invasive ductal carcinoma. TCC=transitional
cell carcinoma. NMSC=nonmelanoma skin cancer. Reprinted from
The Lancet Oncology, Vol. 18, Scott JG, Berglund A, Schell MJ et al.,
A genome-based model for adjusting radiotherapy dose (GARD):
a retrospective, cohort-based study, 202-211, 2017, with permission
from Elsevier.

5. The Genomic Adjusted
Radiation Dose (GARD)

The linear quadratic model is a commonly used metric
by radiation oncologists to quantify the biologic effect of
radiation dose on various tumor types as well as normal tissue
[41]. Since the model was developed as a molecular estimate
of SF2, our group hypothesized RSI could be integrated
into the model to represent a tumor’s unique response to
radiation therapy. Such a model, which integrates tumor
specific biology into the response to radiation, is vital for
progress towards precision radiation oncology.The result was
the genomically adjusted radiation dose or GARD, which has
since been published and validated in independent datasets
of breast, glioblastoma, pancreas, and lung tumors [42].
We assessed GARD for 8,271 tumor samples in the Moffitt
Total Cancer Care Database, our institution’s tissue biorepos-
itory [43]. GARD values varied based on primary tumor
histology (Figure 2). Median GARD values were lowest for
tumor types traditionally thought to be more radioresis-
tant including glioblastoma and sarcoma and higher for
tumor types thought to be more radiosensitive including
virally associated cervical cancer as well as oropharyngeal
cancer.

Similarly, we have shown RSI to be correlated with the
12-Chemokine (12-CK) signature, a validated gene expres-
sion signature for immune-related and inflammation related
genes[44–46]. We found the two signatures to be inversely
correlated across tumor types indicating greater immune
systemic activation to be correlatedwith radiosensitivity [47].
The 12-CK score has also been assessed in breast cancer
samples at our institution [48].Higher 12-CK scores (immune

active) were noted in white patients, poorly differentiated,
and basal and Her 2+ molecular subtypes. Higher 12-CK
scores also demonstrated superior overall survival (p=0.008)
and recurrence-free survival (p<0.0001) especially in basal
and Her 2+ patients.

GARD predicted distant metastasis-free survival and
relapse-free survival onmultivariate analysis in two indepen-
dent datasets of patients treated with adjuvant breast radio-
therapy. In addition, in a separate analysis from our group
presented in abstract form and currently in preparation for
publication, GARD predicted for local recurrence in patients
with ER negative tumors but not ER positive tumors [49]. In
this analysis, we note a small subset of womenwhomay bene-
fit from dose escalation to the whole breast to 60 Gy reaching
an optimal GARD level to compensate for an unfavorable
genetic profile.These data suggest uniformdosingmay lead to
inferior outcomes in select populations of patients. A dosing
optimization strategy, which takes into account a tumor’s
unique genetic profile, may allow for improved outcomes
with dose escalation and potential sparing of toxicity with
dose deescalation inmore favorable profile tumors. Although
further prospective validation is required, themodel provides
a framework to integrate a genomic component into the
assessment of radiation effect to assess a tumor’s unique
sensitivity to radiation.

6. Immune Infiltrates and Radiation Response

It is evident the response to RT varies widely across tumors,
which is partially driven by topographic biophysical vari-
ability in the microenvironment as well as the intrinsic
mutational profile in individual tumor cells. Breast cancers
are composed of tumor cells and a diverse mixture of stromal
cells, including fibroblasts, endothelial, and innate or adap-
tive immune cells [50]. Each of these cellular constituents
contributes to the dynamic framework of the tumor, which
either promotes or antagonizes further cancer progression.
Recently, immune cells have received considerable atten-
tion in oncology due to the sustainable clinical responses
observed after altering the host immune response to various
malignancies [51].Whether breast cancer patients will benefit
from immunomodulating strategies is an area of active
investigation.

Breast cancer has traditionally been considered a more
immunologically silent tumor relative to other malignancies
(e.g., melanoma) due to lower observed mutational burden
[52, 53], origination in a tissue that requires strict immune
regulation during dynamic remodeling cycles [54], and the
absence of a higher incidence in immunosuppressed indi-
viduals [55]. Though these features suggest an immuno-
suppressive microenvironment, decades of literature have
qualitatively described tumor-infiltrating lymphocytes (TILs)
in breast cancer specimens [56]. Immune cells appear to
increase in density along the spectrum of breast atypia to
overtmalignancy [57] with the latter being further influenced
by the specific breast cancer subtype [58]. As our knowledge
has continued to progress, it has become more evident
that not only the proportion, but also the type of TIL(s)
present in breast cancer is important in determining clinical
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outcomes. For instance, a high CD8-positive T cell infiltrate
may predict for improved clinical outcome whereas high
levels of T-regulatory cells may portend to worse tumor
control [59]. Most studies have associated clinical outcomes
with individual immune cells or small subsets, which does
not fully recapitulate the diversity of immune cells orches-
trating the immune response to a tumor [60]. More recently,
advancements in molecular and computational biology have
facilitated a higher resolution of the immune landscape in
breast cancer. Ali et al. profiled 11,000 breast tumors for 22
different immune cell types by gene expression analysis and
identified that there were baseline differences in TIL presence
between ER+ and ER- tumors and that the prognostic value
of a given TIL differed between hormone receptor statuses
[61]. Similarly, analysis of 7,270 nonmetastatic breast tumor
samples demonstrated different TIL types predict differences
in clinical outcomes, which is strongly influenced by breast
cancer subtypes [62]. In this study, increased presence of 𝛾𝛿
T cells and M1-polarized macrophages resulted in improved
tumor control in ER+ tumors, whereas HER2-enriched
tumorswith elevatedT-regulatory cells hadworse tumor con-
trol. These results underscore the importance of stratifying
breast tumors by subtype and immune cell compositionwhen
attempting to design rational therapeutic combinations that
alter the immune response to a given tumor.

The relationship between radiation therapy and the
immune system continues to evolve. Currently, it is believed
radiation causes an immunogenic cell death, which is charac-
terized by the release of various proinflammatory cytokines as
well as cell autonomous ‘danger-signals’ that cause TIL infil-
tration and tumor remodeling [63]. Consequently, radiation-
induced tumor antigen release can assist in generating an
‘in situ’ tumor vaccine [64]. Furthermore, the effects of
radiation therapymay extend beyond the targeted tumor by a
phenomenon termed the abscopal effect [65–67]. During this
process, immune cell cross-reactivity may occur between the
targeted tumor and distant tumor deposits outside the radia-
tion field, thus potentially amplifying the systemic antitumor
response.

Clinical decision-making tools that incorporate the
immune composition of individual breast tumors with
RSI/GARD may reveal optimal therapeutic approaches for
both primary and oligometastatic disease. For example, if a
given tumor has a low proportion of antitumor TILs, then
radiation delivery may enhance the repertoire of respond-
ing immune cells and can be delivered up to an optimal
GARD. Alternatively, if the tumor has a high proportion
of antitumor TILs, then systemic delivery of an immune-
modulating drug may be more appropriate as delivery of
radiation to an immune-primed tumor may inadvertently
destroy any present immune effectors due to their intrinsic
radiosensitivity [68].

7. Immunotherapy Trials

A number of clinical trials are currently underway to
assess the utility of immune checkpoint inhibitors in the
management of breast cancer. These immunomodulators
may have particular promise in the management of triple

negative tumors. These tumors have been shown to have
higher levels of PD-L1 expression than other breast subtypes
[69, 70]. KEYNOTE-012 provided initial clinical activity
and feasibility data on the use of pembrolizumab in heav-
ily pretreated recurrent or metastatic triple negative breast
cancer [71]. Response rates of 18.5% in 27 evaluable patients
were noted. The median time to response in this cohort
was 17.5 weeks and the median duration of response has
not yet been reached. Combining radiation therapy with
immune checkpoint inhibitors may hold promise [72, 73].
There is strong preclinical rationale for synergy in a com-
bined modality approach including upregulation of PD-L1
expression and enhancement of the immunogenicity of these
tumor types [74]. In addition, there is clinical evidence to
suggest oligometastatic breast cancer patients treated with
high dose per fraction radiation have improved overall
survival as well as duration of responses compared to other
solid tumor histologies [75]. Fractionated and high dose
per fraction radiation may also be an optimal regimen to
stimulate the immune system based on preclinical evidence
[76].

There are ongoing efforts to improve upon the response
rate of KEYNOTE-012 by utilizing high dose per fraction
radiation. A trial has demonstrated the feasibility of com-
bined extracranial hypofractionated radiation with pem-
brolizumab with assessments of response rates to be reported
(NCT02730130). There is the possibility that combining data
gathered with RSI and tailoring radiation therapy dose could
lead to an improved ability to stimulate the immune system
and the immunogenicity of immune checkpoint inhibitors.
Numerous efforts are ongoing in a number of malignan-
cies to combine radiation therapy and immune checkpoint
inhibitors. A variety of different dosing schedules are being
used in these trials. Although data from these ongoing trials
will be available in the near future, an informed genomic
approach to rationally combine thesemodalities with optimal
sequencing and radiation dosingwould be highly informative
for future trial design.

8. Conclusion

Radiation therapy has long played an integral role in the
management of breast cancer. Although for many years
radiation oncologists have delivered uniform doses of radio-
therapy based on long-term prospective data, an improved
understanding of tumor biology as well as access to genomic
information may allow for greater personalization of radio-
therapy dosing in the near future. Various fractionation
schedules have now shown equivalence in data and we
are now at a point that, through genomics, strides can
be made towards the personalization of radiation treat-
ment delivery for the management of breast cancer. This
has the potential to not only decrease treatment burden
and side effects of treatment but also decrease recurrence
rates.
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