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IL = interleukin; MAPK = mitogen-activated protein kinase; MEC = mammary epithelial cell; PI3K = PI 3-kinase; PrlR = prolactin receptor; Stat5 =
signal transducer and activator of transcription 5.
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Introduction
Pituitary prolactin is a key regulator of breast development
[1–3]. Some prolactin is also produced by the breast
epithelium itself, and local prolactin signaling can be
deregulated during breast carcinogenesis [4,5]. Prolactin
acts via the prolactin receptor (PrlR), a member of the
cytokine receptor family [6], and its associated kinase
Jak2 [7]. One of the key signaling molecules activated by
the PrlR is the signal transducer and activator of transcrip-
tion 5 (Stat5) [8,9].

A genetic approach to address and compare the contribu-
tion of PrlR and its key signaling molecule Stat5 for
mammary gland differentiation during pregnancy, by dele-
tion of their genes, is complicated by two instances. First,
two closely related Stat5 genes exist, namely Stat5a and
Stat5b. They share 92% of their amino acid sequence, are
partially functionally redundant, and differ mainly in their
carboxy-terminal region [10]. The establishment of Stat5a
and Stat5b double knockout mice is therefore mandatory.
Second, because PrlR-defective mice [11] or mice carry-

ing inactivated Stat5a and Stat5b (Stat5ab–/–) are infertile
[12], it is not possible to study the development of their
mammary glands during pregnancy. To overcome the
second problem, powerful transplantation techniques have
been used (for a review, see [13]). In particular, mammary
epithelium from infertile mice can be engrafted to
mammary fat pads of wild-type prepubertal mice that are
surgically cleared of the endogenous epithelium [14].

PrlR–/– mammary epithelial cells (MECs) engrafted to
cleared mammary fat pads of a wild-type host, and thus
exposed to a normal endocrine milieu, undergo normal
ductal development during puberty but fail to form alveoli
and to differentiate into milk-secreting cells during preg-
nancy [15]. This indicates that the PrlR expressed in
MECs is required for alveologenesis and the associated
differentiation process.

Miyoshi et al. used mammary epithelial transplants of
Stat5ab–/– epithelium and compared them directly with
PrlR–/– epithelial transplants [16]. At first glance, the
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expectations that the phenotypes of Stat5ab–/– and PrlR–/–

epithelia are similar are met. But as Miyoshi et al. looked
more closely, they uncovered thought-provoking differ-
ences that tell us we still have some significant lessons to
learn about the biology of these signaling molecules.

Phenotypical similarities of Stat5ab–/– and
PrlR–/– epithelia
Whole mount microscopy of mammary glands engrafted
with Stat5ab–/– or PrlR–/– epithelium confirms that both
mutants form a normal ductal system in the adult virgin
host. At the end of pregnancy, however, when the wild-
type epithelium has fully expanded and the alveoli are
distended by secretion, there is no alveolar development
in the PrlR–/– MEC and little development in the Stat5ab–/–

MEC. Expression of the milk proteins is substantially
reduced in both of the mutant tissues. Together, these
data confirm that Stat5 and the PrlR play an essential role
in alveolar morphogenesis and differentiation.

Unique defects in the differentiation of the
Stat5ab–/– epithelium
As Miyoshi et al. examined the structural organization of
the epithelium at the end of pregnancy in more detail, a
Stat5ab–/– epithelial-specific phenotype became apparent.
The intraductal space, clearly discernable even in the
smallest ducts of the PrlR–/– epithelium, is partially obliter-
ated in the Stat5ab–/– epithelium. The epithelial cells lining
in the smallest branches are of irregular shape and appear
disorganized. There are multiple layers of luminal epithelial
cells in the Stat5ab–/– transplants and, consequently,
crowded lumina.

Electron micrography reveals that microvilli on the apical
surface and tight junctions are difficult to find in Stat5ab–/–

epithelia, and that the intercellular spaces are disrupted. It
remains most puzzling that the unique Stat5ab–/– defect
becomes apparent specifically when alveolar morphogen-
esis is to take place. This suggests an essential and
nonredundant role of Stat5 in the induction or repression
of genes in the epithelial cells forming the alveoli versus
those forming the ducts. A putative function of such genes
is the control of intercellular adhesion in the nascent
alveoli.

Proliferative response to estrogen and
progesterone is more profoundly inhibited in
the PrlR–/– MEC compared with the Stat5ab–/–

MEC
Miyoshi et al. assessed the proliferative response of the
mutant engrafted epithelia by injecting animals with estra-
diol and progesterone, and measuring 5′-bromo-
2′deoxyuridine incorporation 48 hours later. In this assay,
both mutant epithelia exhibited a reduced epithelial prolif-
eration when compared with an engrafted wild-type
epithelium. Remarkably, the inhibition of the PrlR–/–-defi-

cient MEC was approximately twofold higher than the inhi-
bition of the Stat5ab–/– MEC.

Since at the end of pregnancy both mutant epithelia have
perfectly completed ductal morphogenesis, and this
process is under the control of estrogen and progesterone
[1], it is at first sight surprising that the mutant epithelia
respond differently to estradiol and progesterone in the
proliferation assay. Possible explanations for the failure to
detect a proliferation phenotype at the end of pregnancy
are that the time of hormonal stimulation is longer or
because there is compensation through many additional
stimuli during pregnancy, or both. Indeed, there are other
examples of transient phenotypes that disappear by the
end of pregnancy (e.g. wnt-4) [17].

Implications for the role of the PrlR–Jak2–
Stat5 pathway in MEC differentiation
The similarities in the defects of PrlR–/– and Stat5ab–/–

epithelia confirm an important contribution of the
PrlR–Jak2–Stat5 pathway to estrogen/progesterone-
induced proliferation and alveologenesis. There is still
much to learn regarding which genes are controlled by
this pathway in the mammary epithelium.

Stat5 has anti-apoptotic activity in hematopoietic tissues
[18]. Whether this also applies to the mammary epithelium
remains to be established.

By searching for genes controlled by this pathway,
Miyoshi et al. analyzed the expression of genes that have
been previously implicated in cellular adhesion and secre-
tory differentiation. They determined Cx 32 as a putative
target gene of the PrlR–Jak2–Stat5 pathway. Cx 32 is a
connexin induced at lactation that has a potential role in
the establishment of the secretory phenotype. Cx 32
expression is absent in the mutant epithelia. Whether the
failure of expression is due to its direct regulation by Stat5
or to a more indirect dependence on the secretory pheno-
type remains to be established.

The observed subtle differences in the phenotype of
PrlR–/– and Stat5ab–/– epithelia indicate that, in addition
to the classical linear PrlR–Jak2–Stat5 pathway, Stat5-
independent pathways triggered by the activated PrlR
and its associated Jak2 contribute to the proliferative
response of the epithelium. Other pathways that activate
Stat5 but do not involve the PrlR are also mandatory for
alveologenesis (Fig. 1).

PrlR-independent activation of Stat5
The unique defect of the Stat5ab–/– mutant epithelium
indicates a role of additional pathways not dependent on
the PrlR for the induction of Stat5. This is supported by
the reported activation of Stat5 in the mammary epithelium
by epidermal growth factor [19] and by the requirement
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for ErbB-4-triggered activation of Stat5 to trigger lobulo-
alveolar development during pregnancy [20].

Stat5-independent pathways triggered by the
activated PrlR
As observed with other cytokine receptors with associ-
ated Jak kinases, activation of the PrlR/Jak2 by prolactin
leads to the induction of other signaling pathways, such as
the mitogen-activated protein kinase (MAPK) and PI 3-
kinase (PI3K) pathways. The relative signaling output of
these different pathways appears to be crucial for the bio-
logical effect, indicating that the regulation of the balance
between these pathways is of utmost importance for
development and differentiation.

A recent example for a specific regulator of this balance is
the suppressor of cytokine signaling SOCS-3, which has
been shown to lead to the selective inhibition of Stat5 sig-
naling but not of the MAPK pathway after IL-2 stimulation
[21]. SOCS-3 might have a similar function in the
mammary gland, where it is differentially regulated during
development [22].

A further point to consider is that extensive crosstalk
occurs between prolactin and other hormonal signaling
pathways; that is, estrogen induces expression of the prog-
esterone receptor [23] and PrlR [24], prolactin signaling
induces the expression of the estrogen receptor ERα and
ERβ in granulosa cells [25,26], and prolactin has been
shown to upregulate estrogen receptor expression in cul-
tured mammary epithelial cells [27]. It is therefore important
to examine the expression of the estrogen receptor and the
progesterone receptor in the mutant epithelia to assess
whether the number of cells, which are responsive to the
hormones, is reduced in the mutant epithelia.

Finally, another possibility is that local prolactin signaling is
important to the proliferative response to estrogen and
progesterone. Both estrogen and progesterone act by
paracrine mechanisms to induce proliferation, and it is
conceivable that locally secreted prolactin is one of the
mediators of these effects.

Conclusion
Stat5 was originally cloned as the ‘mammary gland factor’
and functionally characterized as a mediator of prolactin-
induced β-casein expression. The literature suggested that
the basic role of Stat5 in the mammary gland was to
mediate prolactin signaling, while the PrlR in turn relied
heavily on Stat5 to mediate its effects.

Miyoshi et al. provide evidence that there is more than this
simple mutual relationship between PrlR and Stat5. For
example, inactivation of Stat5 leads to much more severe
defects in the intercellular adhesion of epithelial cells than
PrlR deletion, whereas PrlR deletion has a more dramatic
effect on proliferation than a deletion of Stat5. Further
analysis of the role of these signaling pathways will
provide important insight into mammary gland morphogen-
esis and differentiation.
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Figure 1

Interdependence of prolactin receptor (PrlR) and signal transducer and
activator of transcription 5 (Stat5) signaling. (a) The ‘classical’
PrlR–Jak2–Stat5 pathway contributes to alveolar development. 
(b) Alternative routes to activate Stat5 are required for alveologenesis.
(c) Potential contribution of multiple PrlR-dependent pathways to the
proliferative response to estrogen and progesterone. 
PI-3K, PI 3-kinase; MAPK, mitogen-activated protein kinase.
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