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Conventional regression analysis using the least-squares method has been applied
to describe bacterial behavior logarithmically. However, only the normal distribution
is used as the error distribution in the least-squares method, and the variability and
uncertainty related to bacterial behavior are not considered. In this paper, we propose
Bayesian statistical modeling based on a generalized linear model (GLM) that considers
variability and uncertainty while fitting the model to colony count data. We investigated
the inactivation kinetic data of Bacillus simplex with an initial cell count of 105 and
the growth kinetic data of Listeria monocytogenes with an initial cell count of 104.
The residual of the GLM was described using a Poisson distribution for the initial cell
number and inactivation process and using a negative binomial distribution for the cell
number variation during growth. The model parameters could be obtained considering
the uncertainty by Bayesian inference. The Bayesian GLM successfully described the
results of over 50 replications of bacterial inactivation with average of initial cell numbers
of 101, 102, and 103 and growth with average of initial cell numbers of 10−1, 100, and
101. The accuracy of the developed model revealed that more than 90% of the observed
cell numbers except for growth with initial cell numbers of 101 were within the 95%
prediction interval. In addition, parameter uncertainty could be expressed as an arbitrary
probability distribution. The analysis procedures can be consistently applied to the
simulation process through fitting. The Bayesian inference method based on the GLM
clearly explains the variability and uncertainty in bacterial population behavior, which can
serve as useful information for risk assessment related to food borne pathogens.

Keywords: parameter estimation, Bayesian inference, generalized linear model, poisson distribution, negative
binomial distribution, model residual

INTRODUCTION

Predictive microbiology models explain bacterial number variations over time and how
growth/inactivation rates are affected by environmental conditions (Lammerding and Fazil, 2000).
In the development process of mathematical or statistical models, experimental data are collected,
a model is selected, and curve fitting is applied to the data for parameter estimation. Least-squares
estimation has been the most widely used curve fitting procedure (Gil et al., 2017). The least-squares
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methods in frequentist statistics assume that the experimental
error follows a normal distribution, and studies conducted
thus far have described the experimental error using a normal
distribution (van Boekel, 2020). In the case of bacterial growth
or inactivation kinetics, the model residual with respect the
logarithmic number of cells has been assumed to follow a normal
distribution (Ratkowsky et al., 1996), though the reason for
this assumption is unclear given the variability and uncertainty
in bacterial population behavior. The current model residual
based on the normal distribution cannot clarify the origin of
the error, which means that we need to identify what type of
error is included, how the error can be separated, and how
large the error is.

A predictive model has been employed for exposure
assessment in risk assessment to quantify the changes in the
number of bacteria along the farm-to-fork chain. Exposure
assessment is necessary to qualitatively and/or quantitatively
assess the likelihood of ingestion of pathogens (FAO/WHO,
2008). A quantitative exposure assessment requires the
development of a model that mathematically describes all
the relationships between the factors influencing the exposure
(FAO/WHO, 2008). Since point estimation is performed using
the mean values in the kinetic model (FAO/WHO, 2008), it
is difficult to appropriately estimate the changes in bacterial
behavior characterized by individual cell variation. To describe
the variation in bacterial behavior considering the variability
and uncertainty, the need to distinguish between variability and
uncertainty has been pointed out (Nauta, 2000).

The generalized linear model (GLM) is an approach
incorporating various probability distributions into a fitting
procedure to describe variability. The GLM, introduced by
Nelder and Wedderburn (1972), has been used to describe
variabilities, including discrete count data. Because a normal
distribution is continuous and can take negative values, it is
inappropriate for count data, which are discrete and can only
take zero and positive integers, such as bacterial cell numbers.
A discrete probability distribution integrated into the GLM
would be suitable for expressing biological count data instead
of a continuous distribution such as a normal distribution. The
Poisson distribution is often used to describe death events at
certain time intervals in survival analyses (Dickman et al., 2004;
Dickman and Coviello, 2015). A negative binomial distribution
is used for over dispersal count data in the field of ecology
(Ver Hoef and Boveng, 2007). The GLM can be handled by
both frequentist statistics and Bayesian inference. A GLM with
Bayesian inference is often used to avoid over fitting (Dey et al.,
2000). A Bayesian GLM can flexibly integrate various probability
distributions as model residuals and parameter uncertainty.

Another problem in the current frequentist statistical fitting
procedure is the point estimation of a model parameter. The
model parameters in frequentist methods, such as the least-
squares method and maximum likelihood, are often estimated by
fitting the model to the data. The parameters are determined at
one point in the estimation. However, because the experimental
data are uncertain in a real situation, the obtained parameters are
also uncertain (Garre et al., 2020; van Boekel, 2020). Therefore,
the estimated parameters exhibit unexplained fluctuations (van

Boekel, 2020), and parameter estimation requires considering
parameter errors (Dolan and Mishra, 2013). Furthermore, many
types of uncertainties exist, such as model uncertainty and
parameter uncertainty (FAO/WHO, 2008). In previous studies,
model parameters were estimated using Bayesian inference
(Jaloustre et al., 2011; Koyama et al., 2019; van Boekel, 2020).
Bayesian inference has been used as a means to quantitatively
estimate parameter uncertainty (Pouillot et al., 2003; Crépet et al.,
2009; Koyama et al., 2019).

In the present study, a Bayesian GLM was introduced
to fit observed bacterial inactivation data and growth data,
and simulate bacterial behavior considering variability and
uncertainty. Two types of bacteria were investigated to show
applicability of the model to spoilage and pathogenic bacteria.
For the inactivation data, we used datasets published in literature
pertaining to the thermal inactivation of Bacillus simplex.
As the growth data, the data obtained by investigating the
growth of Listeria monocytogenes at 25◦C were used. The data
used contained three observed colony count replications for
developing kinetic models, and over 50 observed colony count
replications for validating bacterial behavior with small initial cell
numbers. Individual cell heterogeneity and initial cell numbers
were considered as variability and described using several
probability distributions integrated into the model residual. The
parameter uncertainty was obtained by Bayesian inference. From
fitting to prediction, we consistently consider the variability
in bacterial behavior. The modeling procedure considering the
variability and uncertainty can contribute to improving risk-
based processing design and exposure assessment.

MATERIALS AND METHODS

Dataset
Inactivation Dataset
The data reported by Abe et al. (2019) were used in this study.
In their study, Bacillus simplex, which is a psychrophilic spore-
forming bacterium, originating from pasteurized milk acquired
from Hokkaido Research Organization (Japan). The strain was
cultured in Nutrient Agar (Eiken, Tokyo, Japan) with some
components and then in Nutrient Broth (Merck) with some
components at 30◦C for 24 h, respectively. Bacillus simplex spores
were obtained by culturing in Spo8-agar (Faille et al., 2007;
Helmond et al., 2017). The Bacillus simplex in the suspension with
105 cells was thermally inactivated at 94◦C for kinetic evaluation.
Viable counts were estimated by plating onto nutrient agar
(Eiken, Tokyo, Japan) at 30◦C after 2 days. Three independent
trials were conducted. Furthermore, 60 replications of bacterial
inactivation with an initial cell number of 10n (n = 1–3) were used
to observe the variation in bacterial inactivation.

Growth Dataset
Bacterial Strain and Inoculum Preparation
Listeria monocytogenes (ATCC 19118) was used in the present
study. The bacteria was maintained at –80◦C in tryptic soy broth
(TSB; Merck, Darmstadt, Germany) containing 10 vol/vol%
glycerol. The strain was activated by incubating the cells at 37◦C
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for 24 h on tryptic soy agar (TSA; Merck) and twice at 37◦C
for 24 h in 5 mL of TSB to obtain a homogeneous and stable
cell population. The cells were then collected by centrifugation
(3,000× g for 10 min). The resulting pellet was washed twice with
TSB and re-suspended in 5 mL of TSB before the experiments.

Kinetic Evaluation of Bacterial Growth
Bacterial growth was investigated by colony counting methods.
The inoculum [1 × 105 colony-forming units (CFU)/mL] was
prepared by series 10-fold dilutions in TSB. Aliquots (100 µL)
were dispensed into the wells of 8-well polymerase chain reaction
(PCR) microplates for cell concentration of 104 CFU/100 µL
per well. The high initial cell concentration was investigated
for kinetic evaluation to avoid interference of variability derived
from low cell concentrations. The microplates were incubated
at 25◦C. Samples were withdrawn at regular intervals to obtain
kinetic data of microbial growth. At each sampling time, 8-
well PCR microplates were incubated at 5◦C to prevent further
bacterial growth. The entire sample (100 µL) from each well
was diluted by serial 10-fold dilution in TSB. The bacterial
cell number was determined by plating 100 µL of the diluted
suspensions on TSA plates, which were then incubated at 37◦C
for 24 h. The experiment was repeated independently three times.

Stochastic Evaluation of Bacterial Growth
Bacterial growth with a small number of initial cells (n = 50) were
examined to evaluate the variation in cell growth. Suspensions
with average of 10n (n = −1−1) CFU/100 µL were prepared
by 10-fold dilution in TSB. Aliquots (100 µL) from the same
inoculum culture were dispensed into wells of an 8-well PCR
microplate by using an 8-channel micropipette. Cell growth
(n = 50 replicates) was independently assessed in 50 wells
of multiple 8-well PCR microplates. The microplates were
incubated at 25◦C. Samples were withdrawn at regular intervals
to obtain probabilistic data of microbial growth. At each sampling
time, the 8-well PCR microplates were incubated at 5◦C to
prevent further bacterial growth. The bacterial cell numbers were
determined by direct plating of 100 µL of the culture onto TSA
plates without dilution (average of initial cell numbers of 0.1:
examined after 0–10 h; 1: 0–6 h; and 10: 0–4 h) or after diluting (1
cells: 8 and 10 h; 10 cells: 6, 8, and 10 h). The plates were incubated
at 37◦C for 24 h. Fifty independent replicates were analyzed.

Modeling
We introduced a Bayesian GLM instead of the currently
used least-squares method. The Bayesian GLM can flexibly
integrate various probability distributions as model residuals
and parameter uncertainties, unlike the least-squares method.
Figure 1 shows a conceptual diagram of the fitting procedure.
Because the number of bacteria is count data, we used the
Poisson distribution and negative binomial distribution as model
residuals instead of the normal distribution.

Bayesian GLM for Inactivation Dataset
Figure 2A shows the conceptual diagram of the inactivation
model. In the least-squares method used in frequentist statistics,
the error in the logarithmic number of cells is assumed to follow a
normal distribution (Figure 2A). In contrast, the error is assumed

to follow a Poisson distribution in the inactivation process when
using the GLM (Figure 2B).

First, we show a kinetic model based on the least-squares
method. The data with 105 inactivated cells were fitted to the
Weibull model. The Weibull model was fitted to the inactivation
data, and the Weibull model is described in Equation (1):

log10
Nt

N0
= −

(
t
δ

)p
(1)

where t, Nt , N0, p, and δ denote the inactivation time, bacterial
population at time t, initial number of cells, shape parameter,
and scale parameter, respectively. Curve regression to the Weibull
model was conducted using a non-linear least-squares method.

Next, we construct the GLM. Equation (1) can be transformed
into Equation (2):

Nt = N0 × 10−(t/δ)p (2)

Here, the bacterial cell number experimentally obtained via a
dilution series was assumed to follow a Poisson distribution
(Koyama et al., 2016). Therefore, it can be assumed that the
initial cell data follow a Poisson distribution. In addition, we
assumed that the inactivation rate of each cell was equal and that
a cell inactivation event was independent of another event. The
number of surviving cells can also follow a Poisson distribution
under the assumption that the initial cells (which follow the
Poisson distribution) die at random (Aguirre et al., 2009).
Therefore, it can be assumed that the observed values of the
number of surviving bacteria obtained at each time are taken
from a Poisson distribution with an average of N0 × 10−(t/δ)p ,
and the bacterial population at time t (Nt) can be described as
in Equation (3):

Nt ∼ Poisson
(
N0 × 10−(t/δ)p

)
(3)

In this study, the parameters (δ and p) and the initial bacterial
count (N0) were estimated from the heating time (t) and the
number of surviving bacteria at each time (Nt). The random
variable in the number of cells is Poisson-distributed, which is
equivalent to the model residual of the dependent variable in the
GLM. The Bayesian GLM is constructed using Equation (3).

Bayesian GLM for the Growth Dataset
Figure 3 shows a conceptual diagram of the growth model. In
the least-squares method used in frequentist statistics, the error
in the logarithmic number of cells is assumed to follow a normal
distribution (Figure 3A). In contrast, the error in the initial cell
number is assumed to follow a Poisson distribution, and the
error in the number of divisions during the exponential phase is
assumed to follow a negative binomial distribution (Figure 3B).

First, we show a kinetic model based on the least-squares
method. The growth model used in this study was based on a
three-phase linear model (Buchanan et al., 1997; McKellar and
Lu, 2003) without a stationary phase. In this study, to simplify
the calculation, the stationary phase was not included in the data
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FIGURE 1 | Comparison of frequentist and Bayesian statistical modeling. Bayesian statistics allows the use of parameters as random variables. The generalized
linear model allows to use model residuals with various probability distributions.

FIGURE 2 | Comparison of the differences in the probability distributions assumed to represent bacterial variation during the inactivation process. Each graph shows
changes in the probability density of the survival cell number with δ = 1, p = 1.2, and N0 = 103 cells (Equations 1 and 3). The solid line and points represent the
inactivation kinetic and mean value of the probability distribution, respectively. The logarithmic survival cell number is assumed to follow a normal distribution (A),
whereas the survival cell number is assumed to follow a Poisson distribution (B).

used for the analysis. The kinetic model is described in
Equation (4):

log10Nt = log10
(
N0 × exp (µ× (t − λ))

)
(t > λ) (4)

log10Nt = log10N0 (t ≤ λ)

where t, N0, Nt , µ, and λ denote the incubation time, initial cell
number, number of bacteria, maximum growth rate, and lag time,
respectively. Curve regression to the growth data was conducted
using the least-squares method, and µ and λ were estimated.

Next, we construct the GLM. Here, as with the inactivation
model, since the initial cells were experimentally obtained using
a dilution series, the initial cells were assumed to follow a Poisson
distribution. In addition, we assumed that the exponential growth
rate of the individual cells is equal and that cell division is

independent of another event (Coleman and Marks, 1999). Under
these assumptions, a pure birth process is used to calculate
the stochastic growth of bacteria (Renshaw, 1993; Coleman and
Marks, 1999). In the pure birth process, the number of divisions
can be described as a negative binomial distribution, as in
Equation (5):

Dt ∼ Negbin
(
N0, exp (−µ× (t − λ))

)
(t > λ) (5)

N0 ∼ Poisson (N0)

Dt = 0 (t ≤ λ)

Nt = N0 + Dt
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FIGURE 3 | Comparison of the differences in the probability distributions assumed to represent bacterial variation during the growth process. Each graph shows
changes in the probability density of the cell number with µ = 2.5, λ = 0.7, and N0 = 3 cells (Equations 4 and 5). The solid line and points represent the growth
kinetics and mean value of the probability distribution, respectively. The logarithmic cell number is assumed to follow a normal distribution at all times (A). The initial
cell number is assumed to follow a Poisson distribution, and the growth number of divisions is assumed to follow a negative binomial distribution (B).

where t, Dt , N0, Nt , µ, and λ denote the incubation time, a total
number of cell divisions in bacterial population up to time t,
number of initial cells, number of bacteria, maximum growth
rate, and lag time, respectively. In this study, Bayesian inference
was conducted using the growth dataset in both the lag and

FIGURE 4 | Survival kinetics of Bacillus simplex with a population of 105 cells,
heated at 94◦C. Each time has three replications. No colonies are detected at
the time indicated by a cross (×). The dashed line indicates the fitted Weibull
model by the least-squares method. The solid line indicates the median of the
fitting by Bayesian inference.

exponential phases. The parameters (µ and λ) were estimated
from the incubation time (t) and the number of bacteria
at each time point (Nt). The Bayesian GLM is constructed
using Equation (5).

Computation
In this study, the parameters were estimated using Bayesian
inference. In Bayesian inference, the obtained data were
considered to have been generated from a probability
distribution, and all the parameters were estimated as a
probability distribution. Bayesian inference can combine priors,
even if no prior information is available. In this study, we used
a uniform distribution as a non-informative prior distribution
because there was no prior information. For each model,
inferences were made on 104 iterations with four independent
chains. The first 5,000 iterations of 104 iterations were removed
as a warm up period and the rest 5,000 iterations were used as
posterior parameters estimation. Convergence was verified by
both visually checking the Markov Chain Monte Carlo chain
traces and examining the Gelman and Rubin diagnostic called
R-hat. The R-hat value should be close to 1.0. Computations were
performed using PyStan and Python (version 3.7.7).

Simulation
Inactivation Dataset
Two parameters (δ and p) were obtained in pairs, and 2 × 104

sets (5,000 iterations × 4 chains) were obtained by conducting
Bayesian inference. We simulated the inactivation behavior with
average of initial cell numbers of 10n (n = 1–3) using 2× 104 sets
of parameters. We assumed that the initial cell number and the
survival cell number at each time followed a Poisson distribution.
The time t (min) was set from 0 to 6 at 0.05 (min) intervals. The
time and parameter values were substituted into Equation (2),
and the survival cell numbers (Nt) were calculated corresponding
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to each time and each parameter. We generated random numbers
as many as 2 × 104 sets from the Poisson distribution with
mean N0 × 10−(t/δ)p . The number obtained here was defined
as the number of surviving cells at that time. The 2 × 104

predicted results were arranged in an ascending order, and the
points corresponding to the top 2.5% and the bottom 2.5%
were plotted. These lines were set as the 95% predicted interval,
and the predicted results were compared with the observed
values for 10n (n = 1–3) cell inactivation. The procedure for
evaluating the predicted results was mostly based on a previous
study (Hiura et al., 2020). The 2 × 104 prediction results at
each time points were arranged in ascending order. If observed
colony count was greater than the prediction corresponding to
the lower 2.5% and less than the prediction corresponding to
the upper 2.5%, the observed colony count was considered to be
within the prediction range. The ratio of the number in the 95%
prediction interval among the 60 observed values was calculated
as the accuracy.

Growth Dataset
The parameters obtained in section “Computation” were used to
predict the growth behavior with average of initial cell numbers
of 10n (n = −1−1). We predicted the growth behavior at
10n (n =−1−1) initial cells using 2× 104 sets of parameters.

(1) Simulation of initial bacterial number

The initial number of bacteria was assumed to follow a Poisson
distribution. We generated random numbers as many as 2× 104

sets from the Poisson distribution with mean N0. The number
obtained here was set as the number of initial cells.

(2) Simulation of the growth number of cells

The estimated parameters (µ and λ), the initial number of
bacteria, and the time (ti) to predict the number of bacteria
were substituted into Equation (5), and the random number
following a negative binomial distribution was generated. At the
desired time (ti), if ti ≤ λ, the bacterial population could not
grow. When ti > λ, we generated a random number following
a negative binomial distribution. The obtained value was the
division number at each time. The number of bacteria at each
time point was predicted by adding this division number and the
initial cell number.

The 2 × 104 simulated results obtained by the above
procedure were arranged in an ascending order, and the points
corresponding to the top 2.5% and the bottom 2.5% were plotted
at each time. These lines were set at 95% predicted intervals, and
the simulated results were compared with the observed values
for 10n (n = −1−1) cell growth behavior. The procedure for
evaluating the predicted results was as with section “Inactivation
Dataset.” The ratio of the number in the 95% prediction interval
among the 50 observed values was calculated as the accuracy.

RESULTS

Bayesian Inference and Prediction of
Bacterial Behavior in the Inactivation
Process
Figure 4 shows the dataset of the inactivation of B. simplex
with 105 cells, and the fitted results by the least-squares method
and Bayesian inference. Both kinetic and Bayesian fitting yielded
similar results. As a regression to the Weibull model using the
least-squares method in frequentist statistics, δ and p were 1.58
(standard deviation was 0.12) and 1.26 (standard deviation was
0.09), respectively. The root-mean-square error as a goodness-
of-fit index was 0.18, which indicates a good fit. Figure 5
shows the posterior distributions of the parameters δ and
p with Bayesian inference. Bayesian inference was conducted
using data with a survival cell count of 0 colony forming unit
(CFU). The R-hat value was 1.0 for each parameter, which
indicates a good convergence. The mean values of δ and p
were 1.59 (standard deviation was 0.11) and 1.21 (standard
deviation was 0.15), respectively. The correlation coefficient
between parameters δ and p was 0.18, indicating a poor positive
correlation. The average values of the parameters estimated by
Bayesian inference were comparable to the results estimated by
the least-squares method used in frequentist statistics. However,
the parameters were narrowed down to one point in the least-
squares method, whereas the parameters were estimated as
probability distributions in Bayesian inference.

Figure 6 shows a comparison between the observed data and
the simulated results by the model. The rates of validity of the

FIGURE 5 | Histograms (on the diagonal), correlation plots (under the
diagonal), and correlation coefficients (over the diagonal) of the estimated
parameters δ and p resulting from Bayesian inference.
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FIGURE 6 | Comparison between observed and simulated Inactivation of Bacillus simplex with initial cell numbers of 103 (A), 102 (B), and 10 cells (C). The solid and
dashed lines indicate the median of the prediction and the 95% predicted interval, respectively. Observed data are indicated by a circle.

number of cells within the 95% prediction band were 96, 99, and
96% for initial cell numbers of 850, 90, and 8, respectively. This
result indicates that the simulation by this model covers almost
the entire variation in the inactivation behavior.

Bayesian Inference and Simulation of
Bacterial Behavior in the Growth Process
Figure 7 shows the dataset of the growth behavior of
L. monocytogenes with a population of 104 cells incubated at
25◦C, and the fitted results by the least-squares method and
Bayesian inference. Both kinetic and Bayesian fitting yielded
similar results. As a regression to the kinetic model using the
least-squares method, µ and λ were 0.68 (standard deviation was
0.01) and 2.18 (standard deviation was 0.15), respectively. The
RMSE was 0.05. Figure 8 shows the posterior distributions of
the parameters µ and λ with Bayesian inference. The R-hat value
was 1.0 for each parameter, which indicates a good convergence.
The mean values of µ and λ were 0.71 (standard deviation
was 0.14) and 2.72 (standard deviation was 0.01), respectively.
The correlation coefficient between the parameters µ and λ was
0.69, indicating a positive correlation. The average values of the
parameters estimated by Bayesian inference were comparable
to the results estimated by the least-squares method used in
frequentist statistics.

Figure 9 shows a comparison between the observed data and
the results simulated by the model. The rates of validity of the
number of cells within the 95% predicted interval were 80, 94,
and 96% for average of initial cell numbers of 24, 2, and 0.3 cell,
respectively. For 0.3 and 2 cell, the accuracy was calculated for
observed values greater than 0 CFU. This result indicates that the
model simulation covers almost the entire variation in the growth
behavior of the small initial cell number.

DISCUSSION

In the present study, we introduced Bayesian GLM to
incorporate the variability and uncertainty into a predictive

model. The estimated results of the parameter uncertainty by
both the inactivation and growth models were represented
in the form of a probability distribution (Figures 5, 8),
which has not been considered in the conventional least-
squares method. The estimated parameters enabled to predict
the inactivation behavior at various initial cell numbers,
such as 103, 102, and 10 cells, with an accuracy of over
90% (Figure 6). The estimated parameters of the growth
model enabled to predict the growth behavior at various

FIGURE 7 | Growth kinetics of Listeria monocytogenes with a population of
104 cells incubated at 25◦C. Each time has three replications. The dashed line
indicates the growth kinetics fitted by the least-squares method used in
frequentist statistics. The solid line indicates the median of the fitting by
Bayesian inference.
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FIGURE 8 | Histograms (on the diagonal), correlation plots (under the diagonal), and correlation coefficients (over the diagonal) of the estimated parameters µ and λ

resulting from Bayesian inference.

FIGURE 9 | Comparison between observed and simulated growths of Listeria monocytogenes with average of initial cell numbers of 10 (A), 1 (B), and 10−1 cell (C).
The solid and dashed lines indicate the median of the simulation and the 95% predicted interval, respectively. Observed data are indicated by a circle.

initial cell numbers, such as 24, 2, and 0.3 cell (Figure 9).
In particular, for less than 2 cells, the growth behavior
was predicted with a high accuracy of over 90%. The
present model expresses the variation in the bacterial behavior
at low cell concentrations, which is remarkable given the
individual cell heterogeneity (Koutsoumanis and Lianou, 2013;
Aspridou and Koutsoumanis, 2015). The Bayesian GLM was able
to fit the inactivation and growth of the bacterial population
and predict the bacterial behavior considering variability and
uncertainty. This modeling procedure allows to consistently
consider the variations in the actual bacterial behavior, from
fitting to prediction.

As a means of expressing the variation in bacterial behavior,
a stochastic model has been developed, that expresses the
variability in bacterial behavior with a probability distribution
(FAO/WHO, 2008). Several models that can represent variability
in bacterial behavior have been developed. Previous studies have
clarified that variability due to individual cell heterogeneity can
be expressed using a probability distribution and Monte Carlo
simulation (Poschet, 2003; Aspridou and Koutsoumanis, 2015).
Others have suggested combining kinetic models with computer
simulations to demonstrate variability in bacterial behavior (Abe
et al., 2019; Hiura et al., 2020). Even if the variability is expressed
by a Monte Carlo simulation after fitting the model, such
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a method is mathematically inappropriate because there are
discrepancies in the model residuals during and after fitting.
Therefore, in the present study, a consistent procedure, from
fitting to prediction, was implemented by introducing the GLM
and model fitting to the data considering the variability due to
individual cell heterogeneity. The model fitting to the data and
the bacterial behavior simulation can be conducted under the
assumption of the same probability distribution in the process of
fitting the model to the data and the simulation (Equations 3 and
5). It is reasonable to consider variability and uncertainty while
fitting to the data instead of doing so after the fitting.

In the least-squares method, the logarithmic number of
bacterial populations is treated as a continuous number because
a normal distribution is used as the error distribution. The
cell count is logarithmically analyzed in data analyses in the
field of microbiology. Because the logarithm cannot be taken
for 0 CFU, the count of 0 CFU is omitted from the dataset.
O’Hara and Kotze (2010) suggested that distributions designed
to deal with counts, such as the Poisson distribution or negative
binomial distribution, should be used to fit count data instead
of using a continuous distribution such as a normal distribution.
O’Hara and Kotze (2010) also insisted that a log-transformation
of count data should be considered when dealing with zero
observations. With a discrete distribution, it is possible to make
fitting and predictions, including for data with a cell number
of 0 CFU. Therefore, in the present study, the number of
bacteria was treated as a discrete number when fitting using
the GLM (Equations 3 and 5). We expressed the variability in
the bacterial cell number by introducing a discrete distribution,
i.e., a Poisson distribution (Equations 3 and 5), and a negative
binomial distribution (Equation 5). We were able to use data
with a survival cell count of 0 CFU for parameter estimation
(Figure 4) and prediction, since the Poisson distribution was
used as the error distribution of the cell count. With the use of
discrete distributions, the data of bacterial counts, including 0
CFU, can be used for analyses. Thus, data loss during analysis
can be prevented. A discrete probability distribution is useful for
expressing the number of bacteria counts, particularly in the case
of a low dose, including zero.

Variability and uncertainty simultaneously appear
experimentally (Poschet, 2003; Park and Lee, 2008). It is
necessary to consider both these factors when conducting
exposure assessments (FAO/WHO, 2008). Bacterial behavior
is characterized by variability and uncertainty, and the need to
consider both has been pointed out (Nauta, 2000). It is relatively
easier to define variability using an equation than uncertainty,
since variability is derived from some exact factors such as
individual cell inactivation time as individual cell heterogeneity
(Aspridou and Koutsoumanis, 2015). Therefore, the definition
of variability such as individual cell inactivation time and
between-strains is an important first step, since understanding
variability can help determine the degree of uncertainty. The
better we know the variability, the clearer the uncertainty. We
defined the variability in the number of bacteria during the
inactivation and growth processes using the Poisson distribution
and negative binomial distribution (Equations 3 and 5), which
can be a fundamental assumption for the further analysis of the
variability and uncertainty in bacterial behavior.

Some other distributions such as Poisson-lognormal and
Poisson-gamma distributions were used to describe number
of cells in food production, where many factors affect the
heterogeneity of microbial numbers among food units (Gonzales-
Barron and Butler, 2011). Poisson-lognormal and Poisson-
gamma distributions are used to describe over dispersion of count
data (Congdon, 2006). These probability distributions may be
possible choice to predict bacterial population behavior in food.

Only colony count data have been used for constructing
kinetic models in Bayesian GLM that considers variability and
uncertainty in bacterial behavior. Colony count data can be found
not only in literature but also in databases such as ComBase1.
So far, risk related to food borne pathogens has been assessed
using these accumulated data. The model proposed in the
present study can help represent the variability and uncertainty
in bacterial behavior using existing published data, providing
a more realistic quantitative exposure assessment compared
to using the conventional least-squares method. The proposed
modeling procedure can help account for the variability and
uncertainty in risk-based modeling.

CONCLUSION

The present study illustrated the construction of a Bayesian
GLM considering the variability and uncertainty in bacterial
inactivation and growth behavior. This modeling procedure
allowed to consistently assume a probability distribution
representing the variation in bacterial behavior throughout the
fitting process for simulating bacterial behavior. The developed
models enable a more explicit illustration of the variation
in bacterial behavior via probability distributions, because the
models are based on probabilistic theory. For example, the
variation in bacterial numbers following a Poisson distribution
was derived from experimentally prepared bacterial cells via
a dilution process. In addition, the probability distributions
of the growth or inactivation processes were assumed to
be independent of other biological events. Thus, the models
developed in the present study provide a reliable foundation for
representing the variability and uncertainty. The Bayesian GLM
can separately describe the variability and uncertainty, which
cannot be done using the conventional least-squares methods
used in frequentist statistics.
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