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Abstract

Prediction of proteasomal cleavage sites has been a focus of computational biology. Up to date, the predictive methods are
mostly based on nonlinear classifiers and variables with little physicochemical meanings. In this paper, the physicochemical
properties of 14 residues both upstream and downstream of a cleavage site are characterized by VHSE (principal component
score vector of hydrophobic, steric, and electronic properties) descriptors. Then, the resulting VHSE descriptors are
employed to construct prediction models by support vector machine (SVM). For both in vivo and in vitro datasets, the
performance of VHSE-based method is comparatively better than that of the well-known PAProC, MAPPP, and NetChop
methods. The results reveal that the hydrophobic property of 10 residues both upstream and downstream of the cleavage
site is a dominant factor affecting in vivo and in vitro cleavage specificities, followed by residue’s electronic and steric
properties. Furthermore, the difference in hydrophobic potential between residues flanking the cleavage site is proposed to
favor substrate cleavages. Overall, the interpretable VHSE-based method provides a preferable way to predict proteasomal
cleavage sites.
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Introduction

The ubiquitin-proteasome pathway (UPP) of protein degrada-

tion plays important roles in the cytosol and nucleus of eukaryotic

cells e.g. removing misfolded, mutant, and damaged proteins [1],

regulating the concentrations of regulatory proteins [2,3], digest-

ing foreign and native proteins into small peptides and then

participating in the initiation of adaptive immune response [4].

In eukaryotic cells, the most common form of proteasome is

known as the 26S proteasome, which is composed of a 20S core

particle capped by a 19S regulatory particle at one or both ends

[5]. The 20S core particle is a stack of four heptameric rings,

which are assembled to form a cylindrical structure [6]. The outer

two rings are made of a subunits (a1,a7), which provide anchor

sites for the 19S regulatory particle. The inner two rings are

composed of b subunits (b1,b7), which form proteolytic active

sites in a central cavity. Three catalytic activities located in b1, b2,

and b5 subunits are identified: peptidylglutamyl-peptide hydrolytic

activity (cleavage after acidic residues); trypsin-like activity

(cleavage after basic residues); and chymotrypsin-like activity

(cleavage after hydrophobic residues) [7]. When cells are

stimulated with pro-inflammatory cytokines, the b1, b2, and b5

catalytic subunits can be replaced by three new catalytic subunits:

b1i, b2i, and b5i, respectively. This new form of proteasome is

called immunoproteasome, as opposed to the constitutively

expressed proteasome [8].

In the process of antigen presentation, the proteasomes can

degrade proteins into peptides with 8,12 residues [9]. It has been

proved that in most circumstance, the cleavage by proteasomes

only generates the C-terminus of antigens, and the N-terminals of

antigens are mainly trimmed by the peptidases in cytosol or

endoplasmic reticulum (ER) [10,11]. Up to date, predictions of

proteasomal cleavage sites have attracted considerable interests in

computational biology. Three publicly available methods: PAProC

[12,13], MAPPP [14,15], and NetChop [16] have been developed

for predictions of proteasomal cleavage sites.

PAProC is a method for predicting cleavage sites by human

proteasomes as well as wild-type and mutant yeast proteasomes.

The influences of amino acids at different positions are assessed by

using a stochastic hill-climbing algorithm based on the experi-

mentally in vitro verified cleavage and non-cleavage sites; MAPPP

is a method that combines proteasome cleavage predictions with

MHC-binding predictions. FragPredict is a part of the MAPPP

package that deals with the proteasome cleavage predictions. It

consists of two algorithms. The first one uses a statistical analysis of

cleavage -enhancing and -inhibiting amino acid motifs to predict

potential proteasomal cleavage sites. The second one is based on a

kinetic model of the 20S proteasome and takes the time-dependent

degradation into account. This algorithm uses the results of the

first algorithm as an input, and predicts which fragments are most

likely to be generated. NetChop uses an artificial neural-network

model that was built upon 18-residue peptide fragments consisting
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of full-length MHC-I ligands (9 residues) and the most proximal 9

residues flanking the C-terminus. At present, NetChop is known as

the most successful method in cleavage site predictions. There are

two versions of NetChop available, i.e. 1.0 and 2.0, and the later

version is trained on a dataset 3 times larger than the 1.0 version.

By comparing the predictive performance of PAProC, MAPPP,

and NetChop, Saxova et al. [17] suggested that the predictions

can still be improved, particularly if more degradation data

become available.

Nussbaum et al. [18] demonstrated that certain amino acid

characteristics in the positions flanking a cleavage site guide the

selection of P1 residues by three active b subunits. Yael et al. [19]

suggested that each position near the cleavage site contributes

independently to the cleavage signal, and their contributions may

be added. In light of these two points, 2607 MHC-I ligands from

AntiJen database [20] and 489 in vitro digested data from IEDB

database [21], are employed to construct a sequence-based

prediction method. Characterized by VHSE amino acid descrip-

tors [22], the physicochemical features of 14 residues upstream

and downstream of the cleavage sites are used to establish

prediction models by support vector machine (SVM). The in vivo

and in vitro SVM models are further validated by two independent

datasets (231 CTL epitopes and 48 in vitro degradation data [17]),

respectively. The results show that the VHSE-based method is

significantly superior to the well-known PAProC, FragPredict, and

NetChop methods, in the consideration of predictive power and

interpretability.

Materials and Methods

MHC-I Ligand Dataset
7324 MHC-I ligands associated with 230 human MHC-I alleles

are extracted from the AntiJen database [20] (Dataset S1). The

source protein sequences of these ligands are queried from the

SWISS-PROT database [23]. The 7324 MHC-I ligands are

pretreated according to the procedure in Figure 1 and total 2607

cleavage samples are obtained. The residues from N-terminal to

C-terminal are denoted as Pn … P1 | P1’ … Pn’ (n = 14). The

symbol ‘‘|’’ represents a cleavage site and the C-terminal of each

MHC-I ligand is assigned as P1 position. In brief, the sequence

with a span of 614 residues from a cleavage site forms a cleavage

sample.

For each cleavage sample, the middle position of the MHC-I

ligand is assigned as a non-cleavage site. Thus, the sequence with a

span of 614 residues from this non-cleavage site forms a non-

cleavage sample. After removing sequences less than 28 residues,

total 2480 non-cleavage samples are obtained. Overall, total 5087

training samples comprising 2607 cleavage samples and 2480 non-

cleavage samples are then used for SVM modeling (Dataset S2).

In vitro Cleavage Dataset
857 in vitro cleavage products come from IEDB database [21]

(Dataset S3). These peptides with 8,11 amino acid residues are

mainly from human respiratory syncytial virus (RSV) and koi

herpes virus (KHV). The source protein sequence of each peptide

is queried from the NCBI database [24]. The pretreatment

method is the same as the MHC-I ligands. Finally, total 978 in vitro

training data comprising 489 cleavage samples and 489 non-

cleavage samples are obtained for SVM modeling (Dataset S4).

Test Datasets
Two datasets from Saxova et al. [17] are used to validate the

predictive power of the in vivo and in vitro SVM models,

respectively. The first dataset comprises 231 MHC-I ligands,

which are either known T cell epitopes or naturally processed

peptides eluted from MHC molecules (Dataset S5 and S6). The

second dataset includes 48 sequences which are digested from

SSX-2 [25], HIV-Nef [26], and RUI proteins [27] by the human

proteasomes (Dataset S7 and S8).

VHSE Structural Description
VHSE (principal component score vector of hydrophobic, steric,

and electronic properties), a set of amino acid descriptors comes

from Mei et al. [22]. A total of 18 hydrophobic properties, 17

steric properties, and 15 electronic properties of 20 natural amino

acids are used for constructing VHSE descriptors by principal

components analysis (PCA) [22], respectively. All physicochemical

properties are auto-scaled prior to PCA analysis (SPSS 10.0). For

the matrices of hydrophobic, steric, and electronic properties, the

first 2, 2, and 4 principal components account for 74.33, 78.68,

and 77.9% variances of original property matrices, respectively.

Figure 1. The pretreatments of the MHC-I ligands.
doi:10.1371/journal.pone.0074506.g001

Proteasomal Cleavage Sites Prediction Models
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These eight principal components can be used for characterizing

20 amino acids with less information loss. The eight score vectors

are so-called VHSE descriptors, in which VHSE1 and VHSE2 are

related to hydrophobic properties, VHSE3 and VHSE4 to steric

properties, and VHSE5,VHSE8 to electronic properties (Table 1).

In order to reduce the number of variables, only VHSE1,

VHSE3, and VHSE5, i.e. the first principal component score of

each matrix are used for structural characterizations of cleavage/

non-cleavage samples. For example, a sample with 14 residues on

either side of the cleavage site (614) can now be characterized by

2863 = 84 VHSE variables.

Support Vector Machine (SVM)
As a supervised learning method for classification, SVM [28,29]

was originally proposed for solving the classification problem of

linearly divisible samples. The core idea of SVM is to find an

optimal separating hyperplane, which maximizes the distance of

either class to this hyperplane, and minimizes the risk of

misclassification. For nonlinear classification problem, SVM

performs a nonlinear mapping from an input space to a high-

dimensional feature space, and then applies linear classification

techniques in this high-dimensional space. The nonlinear mapping

is accomplished by a kernel function: K(x,xi) = W(x)?W(xi). By

introducing kernel functions, SVM can effectively avoid the

problems of over-fitting, dimension disaster, and local optimum.

Below are some useful kernel functions:

Linear kernel function : K(x,xi)~x:xi ð1Þ

Polynomial kernel function : K(x,xi)~(a1x:xiza2)p ð2Þ

Radial basis kernel function RBFð Þ :

K(x,xi)~ exp ({c jj x{xi jj2)
ð3Þ

Sigmoid kernel function : K(x,xi)~ tanh (a1x:xiza2) ð4Þ

According to our experience and previous researches [30–32],

the RBF kernel is usually superior to other non-linear kernel

functions. Therefore, only linear and RBF kernels are used for

SVM modeling. In this paper, SVM is implemented by SVM_light

program [33]. Each VHSE variable is scaled linearly to [0, 1]

before SVM modeling. The optimal values of C, e and c are

determined by the results of 10-fold cross-validation.

Measures of Performance
The performance of SVM models is evaluated by accuracy (Acc),

sensitivity (Sen), specificity (Spe), and Matthew’s correlation

coefficient (MCC), the definitions of which are shown in Equation

5,8.

Acc~
TPzTN

TPzFPzTNzFN
|100% ð5Þ

Sen~
TP

TPzFN
|100% ð6Þ

Table 1. VHSE descriptors for 20 natural amino acids.

AA VHSE1 VHSE2 VHSE3 VHSE4 VHSE5 VHSE6 VHSE7 VHSE8

Ala A 0.15 21.11 21.35 20.92 0.02 20.91 0.36 20.48

Arg R 21.47 1.45 1.24 1.27 1.55 1.47 1.30 0.83

Asn N 20.99 0.00 20.37 0.69 20.55 0.85 0.73 20.80

Asp D 21.15 0.67 20.41 20.01 22.68 1.31 0.03 0.56

Cys C 0.18 21.67 20.46 20.21 0.00 1.20 21.61 20.19

Gln Q 20.96 0.12 0.18 0.16 0.09 0.42 20.20 20.41

Glu E 21.18 0.40 0.10 0.36 22.16 20.17 0.91 0.02

Gly G 20.20 21.53 22.63 2.28 20.53 21.18 2.01 21.34

His H 20.43 20.25 0.37 0.19 0.51 1.28 0.93 0.65

Ile I 1.27 20.14 0.30 21.80 0.30 21.61 20.16 20.13

Leu L 1.36 0.07 0.26 20.80 0.22 21.37 0.08 20.62

Lys K 21.17 0.70 0.70 0.80 1.64 0.67 1.63 0.13

Met M 1.01 20.53 0.43 0.00 0.23 0.10 20.86 20.68

Phe F 1.52 0.61 0.96 20.16 0.25 0.28 21.33 20.20

Pro P 0.22 20.17 20.50 0.05 20.01 21.34 20.19 3.56

Ser S 20.67 20.86 21.07 20.41 20.32 0.27 20.64 0.11

Thr T 20.34 20.51 20.55 21.06 0.01 20.01 20.79 0.39

Trp W 1.50 2.06 1.79 0.75 0.75 20.13 21.06 20.85

Tyr Y 0.61 1.60 1.17 0.73 0.53 0.25 20.96 20.52

Val V 0.76 20.92 0.17 21.91 0.22 21.40 20.24 20.03

doi:10.1371/journal.pone.0074506.t001
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Spe~
TN

TNzFP
|100% ð7Þ

MCC~
TP|TN-FN|FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TNzFN)(FNzTP)(TPzFP)(FPzTN)

p ð8Þ

Where TP is the number of true positives; TN is the number of

false positives; FP is the number of true negatives and FN is the

number of false negatives. The MCC is a balanced measure which

can be used even if the classes are of very different sizes [34]. The

area under receiver operating characteristics curve (AUC), a global

threshold-independent measure of performance, is also used for

model evaluations [35].

Results and Discussion

SVM Modeling
In order to examine the influence of sequence length on model

performance, training samples with a span of 66, 68, 610, 612,

and 614 residues from cleavage/non-cleavage sites are used to

construct SVM models, respectively. The performance of the

SVM models are shown in Table 2. For both in vivo and in vitro

datasets, the model performance increases with the sequence

length in the range of 66,610. However, the performance

begins to decrease when the sequence length is beyond 610

residues. The results imply that residues outside the range of 610

have little contributions to substrate cleavages. Meanwhile, no

significant difference is observed between linear and RBF kernels.

In the consideration of complexity and interpretability, the linear

SVM models are selected as the optimal models for both datasets,

denoted by SVMMHC-I and SVMVITRO, respectively.

The predictive power of SVMMHC-I and SVMVITRO are further

validated by two independent test sets provided by Saxova et al.

[17], respectively. The overall predictive accuracies for SVMMHC-I

and SVMVITRO model are 73.5% and 70.5%, respectively

(Table 3). It is clear to see that the predictive power of

SVMMHC-I and SVMVITRO are significantly better than that of

PAProC, MAPPP, NetChop 1.0 and 2.0, especially in the level of

MCC. Why our models generate more reliable predictions? There

are 3 main reasons. Firstly, more training samples are involved in

the SVM modeling. NetChop 2.0 is trained on 1110 MHC-I

ligands, whereas SVMMHC-I on 2607 MHC-I ligands. Secondly,

more residues, i.e. a span of 610 residues from the cleavage site,

are considered in our models. Lastly, SVMMHC-I and SVMVITRO

are established by SVM technique, which has better generalization

capability and extendibility than the artificial neural network

adopted by NetChop. However, the most important thing is that

SVMMHC-I and SVMVITRO outperform the other models in

model’s interpretability. Following is a detailed analysis of

proteasomal cleavage specificities based on SVMMHC-I and

SVMVITRO models.

Table 2. Performance of SVM models.

Dataset 1: MHC-I ligands

Sequence length Kernel MCC AUC Acc (%) Sen (%) Spe (%)

66 (12) Linear 0.5419 0.8457 77.11 78.86 75.28

RBF 0.5411 0.8459 77.07 78.85 75.20

68 (16) Linear 0.5677 0.8586 78.35 82.66 73.83

RBF 0.5676 0.8591 78.35 82.54 73.95

610 (20) Lineara 0.5905 0.8673 79.52 82.74 76.13

RBF 0.5902 0.8691 79.52 82.20 76.69

612 (24) Linear 0.5842 0.8701 79.22 81.78 76.53

RBF 0.6082 0.8809 80.42 82.93 77.78

614 (28) Linear 0.5803 0.8705 79.02 81.85 76.04

RBF 0.5896 0.8746 79.49 81.74 77.13

Dataset 2: in vitro cleavage data

Sequence length Kernel MCC AUC Acc (%) Sen (%) Spe (%)

66 (12) Linear 0.5099 0.8345 75.45 78.12 72.78

RBF 0.5162 0.8357 75.76 78.74 72.78

68 (16) Linear 0.5265 0.8380 76.27 79.34 73.20

RBF 0.5092 0.8364 75.44 75.86 75.03

610 (20) Linearb 0.5481 0.8310 77.39 76.68 78.09

RBF 0.5399 0.8318 76.98 76.88 77.08

612 (24) Linear 0.5174 0.8377 75.85 76.26 75.45

RBF 0.5338 0.8368 76.67 75.65 77.69

614 (28) Linear 0.5318 0.8354 76.57 75.86 77.29

RBF 0.5358 0.8392 76.79 77.10 76.48

doi:10.1371/journal.pone.0074506.t002

Table 3. The predictive power of SVMMHC-I and SVMVITRO in comparison with the other 4 models.

Test set 1: MHC-I ligands Test set 2: In vitro data

Model Acc(%) Sen (%) Spe (%) MCC Acc(%) Sen(%) Spe(%) MCC

aPAProC NAb 45.6 30.0 20.25 NA 46.4 64.7 0.10

aFragPredict NA 83.5 16.5 0.00 NA 72.1 41.4 0.12

aNetChop1.0 NA 39.8 46.3 20.14 NA 34.4 91.4 0.31

aNetChop2.0 NA 73.6 42.4 0.16 NA 57.4 76.4 0.32

SVMMHC-I 73.5 82.3 64.8 0.48

SVMVITRO 70.5 62.5 78.7 0.42

aThe predictive performance of PAProC, FragPredict, NetChop1.0 and 2.0 are cited from Saxova et al. [17].
bNot available.
doi:10.1371/journal.pone.0074506.t003
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In vivo Cleavage Specificities of Proteasome
From the sequence information of proteasomal degradation

products, it has become clear that the nature of the proteasome

target sites cannot explain the cleavage specificities alone and the

sequence context adjacent to a cleavage sites also play an

important role [36–38]. From the results of SVM modeling, it

can be indicated that 610 residues upstream and downstream of a

cleavage site contribute to both the in vivo and in vitro cleavage

specificities. The SVMMHC-I model is trained on naturally

processed MHC-I ligands, thus, it can reflect the in vivo cleavage

specificities of proteasomes. Figure 2 is the plot of weight

coefficients of VHSE variables involved in SVMMHC-I. For

convenience, the weight coefficients of VHSE1, VHSE3, and

VHSE5, which characterize hydrophobic, electronic, and steric

properties, are shown in Figure 2A, 2B, and 2C, respectively.

Overall, the hydrophobic, electronic, and steric properties of

residues are closely related to the cleavage specificities, especially

for P9, P8, P7, P4, P1, P3’, P4’, and P5’ positions.

As shown in Figure 2A, VHSE1 variable at the P1 position has

the largest positive weight coefficient (10.49). That is to say, the P1

position prefers hydrophobic residues. Falk et al. [39] found that

hydrophobic Leu, Ile, Val, Thr, and Ala are the most abundant

residues at the C-terminal (P1) of antigenic peptides. Earlier

researches also indicated that the degradation products with

hydrophobic C-terminal residues can be easily transferred to ER

and bind to MHC molecules [40,41]. These are consistent with

our results.

Besides P1 position, the weight coefficients of VHSE1 upstream

of the cleavage site are mainly positive, such as P2, P5, P7, P8, P9

and P10. However, the weight coefficients of VHSE1 variables

downstream of the cleavage site, except for P8’, are negative.

Namely, there is a significant difference in the weight coefficients

of VHSE1 between positions upstream and downstream of the

cleavage sites. So, it can be inferred that hydrophobic potential

flanking the cleavage site is beneficial for substrate hydrolysis.

In vitro experiments showed that Leu|Lys is a strong cleavage

site [38]. According to VHSE1 values of Leu (1.36) and Lys (21.17)

together with the weight coefficient for each position, it can be

inferred that Leu|Lys is a favorable combination for proteasomal

cleavage.

From Figure 2B, it can be seen that that the VHSE3 variables

(steric property) of P1, P5’, P4 and P9’ positions have more

influence on cleavage specificities. For P5’ and P4 positions with

negative VHSE3 weight coefficients, bulky residues are unfavorable

Figure 2. The weight coefficients of VHSE variables included in
SVMMHC-I model. A: VHSE1 (Hydrophobic property); B: VHSE3 (Steric
property); C: VHSE5 (Electronic property).
doi:10.1371/journal.pone.0074506.g002

Table 4. The profiles of in vivo cleavages.

Position Favoreda Unfavoredb

P9 F, W, L, M E, D, N, S

P8 F, W, L, I R, E, K, D

P7 F, W, L, I R, E, K, D

P4 G, A, S W, R, Y

P1 F, W, K, R, I E, D, N, T

P3’ R, E, K, D F, W, L, I

P4’ R, E, K, D F, W, L, I

P5’ E, D, N, T F, W, K, R, I

aThe residues in the corresponding positions are favorable to substrate
cleavages;
bThe residues in the corresponding positions are unfavorable to substrate
cleavages.
doi:10.1371/journal.pone.0074506.t004

Proteasomal Cleavage Sites Prediction Models
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to substrate cleavages. Nussbaum et al. [18] also proved that a

small Pro is the most preferred at the P4 position for wild-type

yeast 20S proteasome.

According to the weight coefficients of VHSE5 (Figure 2C),

electronic properties of residues at P1, P5’, P9, P8, and P7’ exert

more influence on the cleavage specificities. Nussbaum et al. [18]

observed that polar residues at P5’ and P3 positions are clearly

favored over non-polar ones for b5 active site, which is agreement

with our results.

In general, the VHSE weight coefficients of P1, P8, and P9

positions are very similar to each other. These three positions are

all inclined to select hydrophobic, bulky, and electro-positive

residues. Also, the VHSE weight coefficients are similar for P2’,

P3’, and P5’, which tend to select hydrophilic, small, and electro-

negative residues. Interestingly, the preferences of P2’, P3’, and

P5’ are directly opposite to that of P1, P8, and P9. The profiles of

in vivo cleavages are summarized in Table 4.

In vitro Cleavage Specificities of Proteasome
Compared with SVMMHC-I, the SVMVITRO model based on

experimental in vitro data reflects in vitro cleavage specificities of

proteasomes. Due to the differences between in vivo cellular

environment and in vitro cell-free system, the cleavage specificities

of proteasomes should be somewhat different. For reasons of

convenience, the weight coefficients of VHSE1, VHSE3, and VHSE5

for the SVMVITRO model are shown in Figure 3A, 3B, and 3C,

respectively.

As was the case with the in vivo SVMMHC-I model, P1 position

exerts the most important influence on the proteasomal cleavage,

as shown in Figure 3. It is clear to see that VHSE1 (hydrophobic) at

the P1 position is a dominant variable affecting proteasomal

cleavage. For P7, P8, and P9 positions, the VHSE1 variables have

relatively less influence on the proteasomal cleavage in comparison

with the case of SVMMHC-I. Except for P3’, the weight coefficients

of the VHSE1 variables downstream of the cleavage site are similar

to the case of SVMMHC-I. Taken as a whole, hydrophobic

potential difference flanking the cleavage sites is also beneficial to

the in vitro proteasomal cleavages.

The contribution of VHSE3 (steric) to the proteasomal cleavages

is less than that of VHSE1 (Figure 3B). Compared with the case of

SVMMHC-I (Figure 2B), no significant steric hindrance effect is

observed for residues in the vicinity of the cleavage site, which may

be caused by the absence of cell environment.

Significant difference in the weight coefficients of VHSE5

(electronic) is observed between the case of SVMVITRO

(Figure 3C) and SVMMHC-I (Figure 2C). Interestingly, the signs

of VHSE5 weight coefficients in SVMVITRO seem to vary in an

interval of 6 residual positions (Figure 3C). Compared with the

case of SVMMHC-I, the influence of VHSE5 at P1 and P5’ positions

on the substrate cleavages decreases significantly, while the

influence of P2, P3, and P2’ increases.

Overall, hydrophobic and electronic properties have more

impact than steric properties on selection specificities in the in vitro

system.

Conclusion
Based on SVM classification technology and VHSE description

method, QSAR models with excellent predictive power are

established for predicting proteasomal cleavage sites. The results

show that hydrophobic property of residues flanking the cleavage

site is a dominant factor affecting both the in vivo and in vitro

cleavage specificities, followed by electronic and steric properties.

The difference in hydrophobic potential between residues

upstream and downstream of the cleavage sites is proposed to

Figure 3. The weight coefficients of VHSE variables included in
SVMVITRO model. A: VHSE1 (Hydrophobic property); B: VHSE3 (Steric
property); C: VHSE5 (Electronic property).
doi:10.1371/journal.pone.0074506.g003
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favor the substrate cleavages, especially for in vivo cleavages. For

the in vivo SVMMHC-I model, the hydrophobic properties of the

P1, P8, P9, and P5’ play more important roles than that of other

positions. In addition, the electronic and steric properties of P1

and P5’ positions also have a great impact on the substrate

cleavages. In comparison with the case of SVMMHC-I, the

influence of residue’s hydrophobic and steric properties on

substrate cleavages seems to decrease in the case of SVMVITRO.

However, the contribution of residue’s electronic properties

increases significantly, probably due to the solvation effect of the

cell-free system.

In summary, compared to the well-known PAProC, FragPre-

dict, and NetChop methods, the SVMMHC-I and SVMVITRO

models are trained on larger datasets and have preferable

predictive performance and interpretability. The studies presented

in this paper would facilitate a deep understanding of the in vivo

and in vitro selective cleavages as well as the cleavage mechanisms

of the proteasomes.
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