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Amyotrophic lateral sclerosis (ALS) is an aggressive multifactorial disease converging
on a common pathology: the degeneration of motor neurons (MNs), their axons and
neuromuscular synapses. This vulnerability and dysfunction of MNs highlights the
dependency of these large cells on their intracellular machinery. Neuronal microtubules
(MTs) are intracellular structures that facilitate a myriad of vital neuronal functions,
including activity dependent axonal transport. In ALS, it is becoming increasingly
apparent that MTs are likely to be a critical component of this disease. Not only are
disruptions in this intracellular machinery present in the vast majority of seemingly
sporadic cases, recent research has revealed that mutation to a microtubule protein,
the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease.
In both sporadic and familial disease, studies have provided evidence that microtubule
mediated deficits in axonal transport are the tipping point for MN survivability. Axonal
transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle
and mRNA transport and limited signaling of key survival factors from the neurons
peripheral synapses, causing the characteristic peripheral “die back”. This disruption
to microtubule dependant transport in ALS has been shown to result from alterations in
the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage
of microtubule polymers. This is accomplished primarily due to aberrant alterations
to microtubule associated proteins (MAPs) that regulate microtubule stability. Indeed,
the current literature would argue that microtubule stability, particularly alterations in
their dynamics, may be the initial driving force behind many familial and sporadic
insults in ALS. Pharmacological stabilization of the microtubule network offers an
attractive therapeutic strategy in ALS; indeed it has shown promise in many neurological
disorders, ALS included. However, the pathophysiological involvement of MTs and their
functions is still poorly understood in ALS. Future investigations will hopefully uncover
further therapeutic targets that may aid in combating this awful disease.
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INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a late onset and ultimately fatal neurodegenerative
disease characterized by the loss of upper and lower motor neurons (MNs) from the nervous
system. Symptoms can be separated into bulbar (upper MN degeneration), or lumbar (lower
MN degeneration) onset, describing the spread of pathology from the initial site. In addition
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to variance in the spread of pathology, ALS heterogeneity
is further exacerbated by its representation as a spectrum
disorder, with a range of clinical manifestations from cognitive
dysfunction in frontotemporal dementia (FTD), pure motor
phenotype in classical ALS, or a combination of both cognitive
and motor dysfunctions (Ling et al., 2013). In ALS, cellular loss
results in atrophy of cortical and spinal structures, and a loss of
muscular innervation and associated muscle wastage (Mezzapesa
et al., 2013; Turner and Swash, 2015). Neuronal cell loss is
accompanied by reactive gliosis, and characteristic proteinacious
intracellular inclusions (Ilieva et al., 2009; Peters et al., 2015).

Neurons are highly refined communicating cells that receive,
process and relay information to their target cells, with
MNs being particularly vulnerable to ALS-associated pathology.
Factors contributing to the selective vulnerability of MNs in ALS
include their large cell size and therefore energy dependency,
their excitable nature coupled with a lack of buffering
capacity, and their intimate relationship with neighboring non-
neuronal cells. Many possible disease mechanisms have been
proposed to account for the development and progression of
ALS (reviewed in Peters et al., 2015). However, one such
mechanism, the impairment of the axonal transport system,
highlights the significance of the intracellular cytoskeleton,
particularly the microtubules (MTs), in the neurodegenerative
process.

MICROTUBULES ARE INTEGRAL TO
NEURONAL FUNCTION

Microtubules are structural cytoskeletal elements expressed in
all eukaryotic cells. Their composition and general function
are conserved between different cell types and organisms,
and is essential for cell division and motility. MTs are of
particular importance to neurons and are involved in a great
number of additional functions including the development of
neuronal cell polarity, the generation of neuronal compartments,
growth cone mechanics, neurite remodeling and intracellular
transport (Chen et al., 2006; Baas and Lin, 2011; Sakakibara
et al., 2013). Within neurons, MTs form protofilaments from
heterodimerized tubulin. These cylindrical structures are vitally
important for the function of long extending axons, which have
a high demand for intracellular transport of organelles, proteins
and RNA granules. Therefore, it can be said MTs are essential
to both the development and maintenance of the neuronal
circuitry.

MT protofilaments are comprised of dimers of α and
β-tubulin, which through lateral interactions, form the
characteristic MT structure (Desai and Mitchison, 1997).
MTs undergo bouts of assembly and disassembly from their
ends, a process termed dynamic instability (Mitchison and
Kirschner, 1984; Figure 1A). A slow growing α-tubulin ‘‘minus
end’’ and fast growing β-tubulin ‘‘plus end’’ (Allen and Borisy,
1974; Van Beuningen et al., 2015; Yau et al., 2016) can be
accounted for by the guanosine triphosphate (GTP) cap model.
GTP bound to β-tubulin confers plus end stability, and upon
hydrolysis, leads to MT depolymerization (Desai and Mitchison,
1997; Nogales and Wang, 2006). This directionality in MT

structure allows the formation of neuronal compartments and
therefore confers neuronal polarity. The axonal compartment
has exclusively distal facing positive polarity, or ‘‘plus end out’’
orientating MTs (Heidemann et al., 1981). Contrastingly, the
somatodendritic compartment contains a mixed orientation
of MT directions, with equal quantities of plus and minus end
facing MTs (Yau et al., 2016).

Neurons, being relatively long-lived and stable cells, require
a stable cytoskeleton. Neuronal MTs can be separated into
two domains: labile and stable (Baas and Black, 1990; Baas,
2013). While mature neurons have an MT network consisting
of both domains, the majority of the MTs are stable (Ferreira
and Cáceres, 1989; Lim et al., 1989). These domains cannot be
fully explained by the myriad of tubulin isoforms available in the
genome (Tischfield and Engle, 2010). This functional diversity
has instead been associated with domain-specific chemical
modification to tubulin subunits, which aid in increasing the
functionality of MTs, and in some cases, can impact upon
their stability (Baas, 2013; Janke, 2014). These modifications
to neuronal MTs include, but are not limited to, tubulin
tyrosination, acetylation, polyamination, glutathyonilation,
glutamylation and glycylation (reviewed previously in Janke
and Kneussel, 2010; Janke, 2014). These post-translational
modifications may confer stability to MT structure and alter
binding affinity of MT-associated proteins, thereby altering
their function. Although not being fully understood, these
chemical modifications can also be utilized as molecular
markers of MT network stability, and alterations to chemical
modifications are thought to be attractive therapeutic targets for
neurodegenerative disorders (d’Ydewalle et al., 2011; Taes et al.,
2013).

Perturbations in MT and microtubule associated protein
(MAP) functions have been implicated in a range of
neurodegenerative diseases (Dubey et al., 2015), including
Alzheimer’s disease (AD; Matsuyama and Jarvik, 1989),
Parkinson’s disease (PD; Ren et al., 2003; Cartelli et al., 2010),
Huntington’s disease (HD), various congenital developmental
disorders (Tischfield and Engle, 2010), schizophrenia (Morris
et al., 2003; Andrieux et al., 2006) and also ALS (Baird
and Bennett, 2013; Smith et al., 2014). Of note the MT
stabilizer, Tau (Drubin and Kirschner, 1986), is involved in
the pathophysiology of AD (reviewed in Hanger et al., 2014);
Mcmurray (2000); Stancu et al. (2014) as well as in other
neurodegenerative diseases (collectively tauopathies) such
as supranuclear palsy, corticobasal degeneration and Picks
disease (reviewed in Cairns et al., 2004). Alterations to proteins
involved in MT stability, dynamics and MT turnover also
occur in PD (Alim et al., 2004; Yang et al., 2005; Gillardon,
2009). Similarly, MT involvement has also been established
through 1-methyl-4-phenylpiridinium (MPP+; Cappelletti
et al., 2005) and Rotenone-mediated PD (Ren et al., 2005) in in
vitro models, with these found to destabilize the MT network.
Furthermore, it has been highlighted that perturbations to MT
dynamics also leads to MT-dependent transport impairment
in a model of PD (Cartelli et al., 2010). The gene disrupted-
in-schizophrenia-1 (DISC-1), whose mutations are associated
with familial forms of schizophrenia, has been suggested to
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FIGURE 1 | Modifications to neuronal microtubules (MT) in amyotrophic lateral sclerosis (ALS). (A) Normal microtubule +TIP dynamics and kinesin/dynein
transport, mRNA granule transport and chemical modifications. (B) Mutant superoxide dismutase 1 (SOD1) expression leading to microtubule hyperdynamics,
increased +TIP protein density, decreased transport, increased acetylation, phosphorylation of microtubule associated proteins (MAPs) and accumulation of
microtubule protein containing aggregates. A global decrease in Histone Deacetylase (HDAC) activity is also present. (C) Mutant TDP-43 (TARDBP) expression
causes dysfunction in mRNA granule transport. Decreased local translation of MAP mRNA is also implicated in TDP-43 mutants. (D) Mutant TUBA4A expression
alters microtubule dynamics and network stability, with unknown impact on +TIP proteins, transport or chemical modifications. Select mutations are incorporated
into intracellular aggregates. (E) Energy depletion and calcium dysregulation generates increased microtubule depolymerization, tubulin guanosine triphosphate
(GTP) cap hydrolysis, and increased MAP phosphorylation. (F) Neuronal oxidative stress leads to tubulin glutathionylation, increased microtubule depolymerization,
decreased axonal transport and alterations to MAPs, with unknown impact on classical chemical modifications or +TIP proteins.

associate and interact with MT components (Morris et al.,
2003; Callicott et al., 2005), further implicating MT alterations
as a causal factor in multiple neurodegenerative disorders.
Conversely, mutations to tubulin genes generally lead to
disorders associated with dysregulated neurogenesis, due
to abnormalities in neuronal migration, cellular division of
progenitor cells, neuronal differentiation and induction of cell
polarity. These disorders include lissencephaly, polymicrogyria,
mirocephaly, cerebellar dysplasia and some occulomotor
disorders (Francis et al., 2006; Guerrini et al., 2008; Tischfield
et al., 2011).

In ALS, the consequence of MT dysfunction has classically
been hypothesized as being due to the physical length of the axon
in affectedMNs, with alterations toMTs being thought to impact
on axonal transport (De Vos et al., 2007; Millecamps and Julien,
2013). However, evidence for MT dysfunction having a primary
role in ALS has significantly increased over the last 15 years.
The recent identification of tubulin rare variants and their

impact on MT function, specific interactions with mutant and
pathological proteins as well as altered function ofMT-associated
proteins and signaling pathways which affect MT dynamics, have
all been implicated in ALS pathogenesis. This review article will
consider the role MTs play in disease pathogenesis and potential
mechanisms that may have an impact on MT function in ALS.

THE GENETIC INHERITANCE OF ALS;
RECENT INSIGHTS INTO MICROTUBULE
FUNCTION

Familial genetics of ALS are being increasingly understood, in
both the context of the mechanisms through which they act,
as well as in the clinical phenotype presented (Marangi and
Traynor, 2015; Peters et al., 2015; Turner and Swash, 2015).
Moreover, the fact that MTs and their functions are a site of
pathological convergence for various ALSmutations is becoming
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increasingly appreciated. The first identified causative mutation
for ALS was in the gene coding for superoxide dismutase 1
(SOD1), which was also used to generate the first animalmodel of
the disease, the widely used SOD1G93A transgenic mouse (Rosen,
1993; Gurney et al., 1994). More than 160 different mutations
to the gene encoding for SOD1 have been reported (Rosen,
1993; Al-Chalabi et al., 2012), accounting for approximately
20% of all familial forms of ALS (FALS; Andersen and Al-
Chalabi, 2011; Robberecht and Philips, 2013). It has long been
established that SOD1 mutations can cause axonal transport
dysfunction, thus suggesting an interaction with the MT system
(Warita et al., 1999; Ligon et al., 2005; Bilsland et al., 2010;
Ikenaka et al., 2012). This has been reported to occur as
early as embryonic day 13 in the SOD1G93A mutant mouse
(Kieran et al., 2005). Recently, evidence has been published
supporting the hypothesis that alterations to MT dynamics are
driving MN dysfunction in these mice (Fanara et al., 2007;
Kleele et al., 2014; Figure 1B). Indeed, mutant SOD1 has
been implicated in the alteration of signaling cascades that
may affect proper MT functioning, however, this process is
still poorly understood (Evans et al., 2000; Nguyen et al.,
2001; Vadlamudi et al., 2005; Lopez-Fanarraga et al., 2007;
Ikeda et al., 2011; Zyss et al., 2011; Bunton-Stasyshyn et al.,
2015).

Similarly, discoveries of mutations in RNA-processing
proteins such as TDP-43 (TARDBP) and fused in sarcoma
(FUS) were both identified as a cause of FALS and FTD,
and subsequently used to generate further models of ALS
(Gitcho et al., 2008; Kabashi et al., 2008; Sreedharan et al.,
2008; Kwiatkowski et al., 2009; Vance et al., 2009). TDP-43
is associated with transcription repression (Ou et al., 1995),
the regulation of splice variants (Buratti and Baralle, 2001),
mRNA stability and/or transport (Tollervey et al., 2011). In
disease, both mutated and wild-type TDP-43 mislocalize from
the nucleus to the cytoplasm and form cytoplasmic inclusions
(Neumann et al., 2006). FUS is also a nuclear DNA/RNA
binding protein and is involved in various aspects of gene
expression through mRNA metabolism and mRNA transport.
Mutated FUS, similar to TDP-43, is mislocalized to the cytoplasm
due to a loss of nuclear import signaling (Dormann et al.,
2010). The similar function and mislocalization of these two
proteins, TDP-43 and FUS, indicates that familial insults
in neuronal degeneration may have common mechanisms.
It has been found that TDP-43 interacts with MTs in the
MT-dependant transport of mRNP granules (Kanai et al.,
2004; Alami et al., 2014; Figure 1C). This transport is
particularly important due to TDP-43’s role in local mRNA
translation of proteins in dendrites, axons and synapses, such
as the neuromuscular junction (NMJ; Kanai et al., 2004;
Belly et al., 2005; Fallini et al., 2012). Similarly, TDP-43
interacts directly with proteins involved in RNA transport
(Freibaum et al., 2010). Mutated TDP-43 has recently been
identified to impair axonal transport of mRNA in vivo, as
well as the induced pluripotent stem cell (iPSC) derived
MNs of patients with TDP-43 mutations (Alami et al., 2014).
mRNP granule transport defects were independent of other
transport reporter defects such as mitochondrial transport.

It was hypothesized that diminished transport of mRNA to
compartments such as the axon and NMJ may lead to a
decrease in proteins particularly important for NMJmaintenance
and survival (Polymenidou et al., 2011; Lagier-Tourenne et al.,
2012).

In 2009, two independent studies identified the
hexanucleotide repeat expansion of the non-coding region
of reading frame 72 on chromosome 9 (C9ORF72); a mutation
that occurs in both sporadic ALS (SALS) and FALS, also FTD,
at greater frequency than other, previously known mutations
(DeJesus-Hernandez et al., 2011; Renton et al., 2011). Initially it
was postulated that this abnormal repeat could be transcribed
andmay have some toxic function, however the exact mechanism
of pathogenesis remains unclear (DeJesus-Hernandez et al.,
2011). More recently it has been proposed that the presence of
the repeat expansion may result in ‘‘unconventional translation’’
(Ash et al., 2013; Todd and Petrucelli, 2016). This leads to five
dipeptide repeat proteins, which accumulate in neurons (Mori
et al., 2013). It is still unknown whether these repeat expansions
lead to a gain or loss of function mechanism, however support
for C9ORF72 gain of function is growing (Todd and Petrucelli,
2016). While function of this repeat expansion is still under
investigation, Droppelmann et al. (2014) have highlighted that
possible interaction with MTs may exist, due to the C9ORF72
homology to a guanine nucleotide exchange factor (GEF) that
signals Rab-GTPases. Rab-GTPases are involved in membrane
trafficking of proteins (Levine et al., 2013; Droppelmann et al.,
2014) and hence, may be dependent upon MTs.

Although the majority of FALS cases follow a dominant
pattern of inheritance, mutations to Alsin (ALS2) have been
found to exhibit a recessive pattern of inheritance (Hadano et al.,
2001). Mutations in the ALS2 gene have been associated with
the development of juvenile onset ALS, as well as a range of
other conditions such as primary lateral sclerosis and hereditary
spastic paraplegia (HSP; Eymard-Pierre et al., 2002; Panzeri et al.,
2006), with 12 different mutations identified to contribute to the
development of such conditions (Chandran et al., 2007). Many
of these mutations result in a premature stop codon, therefore
rendering the ALS2 protein non-functional (Yamanaka et al.,
2006). ALS2 is a GEF, which promotes guanosine diphosphate
(GDP) release and GTP binding onto target proteins, as well
as the stimulation certain signaling cascades (Tudor et al.,
2005). ALS2 mutations have been suggested to contribute to
the pathogenicity of ALS through the disruptions of Rab5-
dependent exocytosis, endosome trafficking and also glutamate-
associated excitotoxicity, which is considered a hallmark of
ALS pathology (Devon et al., 2006; Hadano et al., 2006; Lai
et al., 2006). Indeed, ALS2 acts through signaling cascades that
impact MTs, and whose loss of function may generate MT
dysfunction; a process that requires further research (Tudor et al.,
2005).

Vascular endothelial growth factor (VEGF) is a polymorphic
risk factor for ALS, and its expression is reduced in
patients (Brockington et al., 2006, 2010). A mouse model
that produces decreased levels of VEGF develops a motor
neurodegenerative phenotype, with behavioral deficits and
cellular loss (Oosthuyse et al., 2001). VEGF mice show

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 September 2016 | Volume 10 | Article 204

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Clark et al. Microtubule Dysfunction in ALS

decreased expression of the MAPs tau, MAP1b and MAP6,
which has implications for stability of both the stable
and labile domains of MTs in ALS (Brockington et al.,
2010). Furthermore, genes relating to transport and dynein
complex cargo loading are also down regulated. This occurs
well before MN loss, but at the time of motor behavior
phenotype generation. This may highlight a link between
dysfunction of MTs and other identified genes, leading to MN
dysfunction, followed by cellular demise (Brockington et al.,
2010).

MICROTUBULE PROTEIN MUTATIONS:
A PRIMARY CAUSE OF ALS

Recent research has highlighted that mutations to MTs can
also initiate adult onset MN dysfunction, suggesting that MTs
may be a primary driver for ALS pathophysiology (Al-Chalabi
et al., 1999; Puls et al., 2003; Gros-Louis et al., 2004; Wu
et al., 2012; Smith et al., 2014). Smith et al. (2014) found
dominant negative mutated variants in the TUBA4A gene
on chromosome 2 in FALS patients. These mutations were
reported to cause classical spinal onset ALS, with upper and
lower MN loss (Smith et al., 2014), and in some cases, FTD-
like symptoms. The mutated region normally interacts with
β-tubulin and the motor domain of kinesins and other MAPs
(Liu et al., 2012; Howes et al., 2014). These variants were further
shown to ineffectively form tubulin dimers and displayed a
decreased incorporation into protofibrils, inhibitingMT network
stability (Figure 1D). Similarly, other mutations affecting the
conformation of tubulin proteins may subsequently alter the
assembly of tubulin, resulting in an unstable MT structure
(Tischfield et al., 2011).

TUBA4A is ubiquitously expressed in all cell types, but
at high levels in the nervous system (Rustici et al., 2013;
Smith et al., 2014). The expression of TUBA4A also increases
over time, possibly illuminating why mutations in these
genes cause later age disease phenotypes, unlike congenital
tubulin mutations, which generate developmental disorders
(Tischfield et al., 2011; Hersheson et al., 2013). Further
supporting this, and as highlighted by Smith et al. (2014)
expression of the β-tubulin subunit, TUBB4A, whose mutations
cause adult onset disease Torsion Dystonia Type 4, increases
over time, similar to the expression pattern of α-tubulin
TUBA4A (Hersheson et al., 2013). Further impacts of tubulin
alterations in ALS can be shown in SALS patients, where
there is a down regulation of α-tubulin subunit genes (Jiang
et al., 2005). However, how MT dynamics and transport
are impacted as a result of TUBA4A mutations are still
not clear. Future animal models of TUBA4A mutations
will allow for the identification of its role in pathogenesis,
particularly focusing on its age-dependant expression
pattern.

Collectively, disease-causing mutations have shed light on an
integral role for MTs in ALS. However, with the majority of
ALS cases still seemingly sporadic, it remains unclear if altered
MT function is the cause, or consequence, of upstream initiating
pathogenic mechanisms.

PATHOGENIC ALS MECHANISMS IMPACT
ON MICROTUBULE STRUCTURE AND
FUNCTION

Many mechanisms and molecular pathways involved in both the
initiation and maintenance of ALS have been identified (Van
Damme et al., 2005; Ferraiuolo et al., 2011; Peters et al., 2015).
These include, but are not limited to, mitochondrial-dependant
energy depletion, excitotoxicity and calcium dysregulation and
cellular oxidative stress. The interplay between these disease
mechanisms and insults to MTs are not well understood,
however, it is becoming increasingly appreciated that MTs may
act as a site for mechanistic convergence, as they are impacted
by various pathogenic molecular mechanisms associated
with ALS.

Motor Neurons are Metabolically
Demanding
One such pathological mechanism is mitochondria-dependant
energy depletion. A study conducted by Park et al. (2013)
highlighted that energy depletion itself could be a cause of
MT depolymerization, which may in turn further promote
energy depletion through the inability of the MTs to
facilitate movement of mitochondria (Park et al., 2013;
Figure 1E). Interestingly, MT pathology was identified
prior to alterations to mitochondrial swellings, suggesting
it may be a primary event in energy depletion and axon
degeneration. This inability to recycle mitochondria may
contribute to the abnormal accumulations of these organelles
as observed in mutant SOD1 transgenic mice (Sotelo-Silveira
et al., 2009). However, aberrant calcium dysregulation as
a result of mitochondrial energy depletion, an identified
toxic mechanism in ALS, does not seem to directly be
a cause of MT dysfunction, suggesting that other, as yet
unidentified, mechanisms may be at play (Park et al.,
2013).

Excitotoxicity and Calcium Dysregulation
Affects Microtubules
Excitotoxicity has also been identified as a primary mechanism
in the initiation and maintenance of ALS (Van Damme
et al., 2005; Blizzard et al., 2015). Excessive influx and
concentrations of intracellular Ca2+, whether from damaged
mitochondria (Jaiswal, 2014), glutamatergic over stimulation,
lack of glutamate clearance or a loss of Ca2+ buffering
capacity, can lead to MN death (Heath and Shaw, 2002). Ca2+

concentrations also have an effect on MT-based transport of
mitochondria through inhibition of attachment of kinesins to
MTs (Wang and Schwarz, 2009). Indeed, excessive intracellular
Ca2+ can lead to aberrant cyclin-dependent kinase 5 (CDK5)
activity, which is particularly prominent in the SOD1 mouse
model of ALS (Patzke and Tsai, 2002). Moreover, Ca2+

can interact directly with MTs, altering their dynamics
(O’Brien et al., 1997; Figure 1E). Interestingly, heightened
Ca2+ concentrations are sufficient to cause MAP containing
MT preparations to depolymerize, due to an increase in
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β-tubulin GTP cap hydrolysis. Furthermore, Ca2+ can cause
MAP2 loss and MT depolymerization in dendrites treated
with NMDA, through calpain proteolysis of MAP2; however,
it remains unclear if MT destabilization occurs prior to
MAP2 loss (Hoskison et al., 2007). Excitotoxicity has also
been shown to have an impact on retrograde transport
machinery (Fujiwara and Morimoto, 2012). Indeed, this insult
leads to caspase activation and subsequent cleavage and
disintegration of the cytoskeleton, reported to be downstream
of MT events (King et al., 2013). However, investigation of
low dose, long lasting, chronic excitotoxic effects on both
MT dynamics and transport are yet to be completed, as
recognized ALS insults are chronic or accumulative in their
nature. Investigations such as these will identify whether
biologically relevant levels of neuronal excitotoxicity alter
MT dynamics and transport first, or contrastingly activate
the CDK5-p25 and caspase pathways, which lead to cellular
pathology.

Oxidative Stress and The Effects on
Microtubules
Oxidative stress occurs due to the build-up of oxidative
species, which while being a process of general aging of an
organism, can cause uncontrollable oxidation of proteins
or molecules, leading to cellular dysfunction. Therefore,
homeostatic control of reactive oxygen species (ROS) is
required for proper cell function. Uncontrollable ROS
production and cellular oxidation leads to a number of
neurodegenerative diseases (Andersen, 2004). Relevant to ALS,
and in addition to Ca2+ toxicity, dysfunctional mitochondria
can also drive uncontrollable ROS production (Tahara et al.,
2009). While ROS are required for cytoskeletal remodeling
and during axonal growth (Munnamalai and Suter, 2009;
Wilson and González-Billault, 2015), aberrant ROS and an
increased oxidative environment can lead to deleterious
impacts on MTs, particularly oxidation of tubulin and
selected MAPs (Landino et al., 2004). Although still poorly
understood in neurons, increasing ROS in myocytes increase
MT depolymerization (Drum et al., 2016). Both α- and β-
tubulin contain Cys residues that have the capacity to oxidize
(Landino et al., 2007; Wilson and González-Billault, 2015).
Oxidative species added to purified tubulin preparations
can cause a reduction in polymerization, and increase MT
depolymerization, similar to that of increased Ca2+ levels
(Landino et al., 2007; Figure 1F). Moreover, it has been
established that oxidative stress affects MT integrity; this
is evidenced by the presence of methionine sulphaoxides
in the β-III tubulin in the brain of AD patients (Boutte
et al., 2006). Furthermore, glutathionylation of tubulin,
particularly in MNs, occurs during oxidative phases, altering
MT dynamics and structure (Carletti et al., 2011). Indeed,
the MAPs tau and MAP2 contain Cys residues, which when
oxidize, impede MAP function, thus causing MT stability
issues (Landino et al., 2004). Others have identified that
recapitulating neuronal oxidative stress through the addition
of hydrogen peroxide inhibits axonal transport, prior to

mitochondrial dysfunction or axonal degeneration (Fang et al.,
2012).

ALTERED REGULATION OF
MICROTUBULE DYNAMICS HAS BEEN
ASSOCIATED WITH ALS

Changes to microtubule dynamics in ALS have also been
reported, particularly increases to MT dynamic instability.
Fanara et al. (2007) identified that hyperdynamic MTs were
present in the SOD1G93A mouse model of ALS, and modulation
of MT dynamics can ameliorate disease progression. A
subsequent study found that MTs are indeed more dynamic,
with an increase in end binding-protein 3 (EB3) +TIP comets on
sciatic nerve axonal MTs in the SOD1G93A mouse in comparison
to unmutated individuals (Kleele et al., 2014). EB proteins are
+TIP MAPs that bind to the growing phase of the labile domain
of MTs, aiding in both dynamics and microtubule interactions
with other intracellular objects. Increases in +TIP comets signify
that the microtubule network is hyperdynamic. It was found that
increased MT dynamics consequently slowed axonal transport,
occurring presymptomatically (Fanara et al., 2007; Bilsland
et al., 2010). Axonal transport dysfunction is then followed by
an increase in neuronal pathology and subsequent mortality
(Collard et al., 1995; Sasaki and Iwata, 1996; Williamson
and Cleveland, 1999; Sasaki et al., 2004). Pharmacological
amelioration of MT hyperdynamics not only reverses axonal
transport deficits, but also improves clinical symptoms and
survival (Fanara et al., 2007). This hints that hyperdynamics can
indeed drive transport deficits, followed by cell demise; however,
this process is still poorly understood. A possible mechanism
through which SOD1 mice develop MT hyperdynamics may be
through the interaction of mutant SOD1 and tubulin (Kabuta
et al., 2009). Interestingly mutant SOD1/tubulin interactions
do not diminish the free tubulin pool; however, it generates a
destabilizing effect on MT.

Kabuta et al. (2009) suggest that homology exists between the
site of mutant SOD1 binding to tubulin and the binding site of
MT destabilizing agents such as colchicine and nocodazole. This
may indicate that mutant SOD1 interacts in a similar manner to
the MT destabilizing agents, increasing the dynamic instability
of MT labile domains, leading to a reactive, hyperdynamic
phenotype. A phenomenon less often considered in ALS research
is the impact that intracellular aggregates, consisting of proteins
such as misfolded SOD1 and neurofilaments (NFs), may have on
microtubule dynamics. Indeed, these aberrant structures have the
propensity to incorporate many different cytosolic proteins into
the aggregate mass, with MT proteins being particularly prone
in aggregate localization. This may be an interesting avenue
of research as a recent study showed that decreasing the NFs
in a pmn mice improves aberrant microtubule dynamics and
instability that is associated with this model (Yadav et al., 2016).

An increasing and popular notion is that alterations to
transport proteins, tubulin, other MAPs or the dysregulation of
MT dynamics can result in aberrant MT structure and function,
leading to either developmental disorders or degenerative
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phenotypes, such as that in ALS (Dubey et al., 2015).
Mechanisms driving these alterations in MT dynamics are not
well understood, nor are the hypothesized subsequent transport
dysfunctions. Identification of whether dysfunction of MT
dynamics is a common pathology between familial mutations
and sporadic disease is paramount to understanding both disease
onset and also its maintenance.

COULD MOTOR PROTEIN DYSFUNCTION
DRIVE ALS PATHOLOGY?

Intracellular transport is a major function of neuronal MTs,
with alterations in transport associated with a number of
neurodegenerative diseases (reviewed in Millecamps and Julien,
2013). Cortical and spinal MNs are thought to be particularly
vulnerable to transport dysfunction, due to their axonal length.
It is becoming increasingly appreciated that alterations to
MT dynamics precede, and thus may aberrantly affect, axonal
transport, and that the resultant transport defect can have
deleterious effects on neuronal function (Hurd and Saxton, 1996;
Fanara et al., 2007; Bilsland et al., 2010; Cartelli et al., 2010;
Dubey et al., 2015). The transport MAPs, kinesin and dynein,
act as carriers for organelles, proteins and other cellular cargo
in a directionally-dependant manner. Kinesin motor proteins
transport cell cargo toward the plus end of theMT (anterograde),
whereas dynein transport in the minus end direction (retrograde;
Maday et al., 2014). Kinesin can have an impact on the stability
of MTs, and expression of KIF5, a kinesin motor protein
isoform, has been found to be decreased in the spinal cord
and sciatic nerves of a mutant SOD1 mouse model (Maximino
et al., 2014). This indicates that altered MT-dependent transport
may be depleting MNs via the generation of an energy and
signaling deficit. This is also substantiated in a study by Tateno
et al. (2009), who showed that kinesin-associated protein 3
(KAP3), a kinesin subunit responsible for binding cargo such
as choline acetyltransferase (ChAT), was selectively vulnerable
to co-aggregation with misfolded SOD1 (Tateno et al., 2009).
This phenomenon was also reported to occur in human SOD1
FALS patients, possibly illuminating a further source of MN
vulnerability to dysfunctional transport of specific cargos in ALS.

Dynein, in conjunction with its molecular binding partner
and activator, dynactin (DCTN1), is also vulnerable, both as
a primary driver of ALS and also as a site of convergence
of ALS insults (Ligon et al., 2005). Dynein interacts with
mutant SOD1 and is located in proteinacious aggregates in
SOD1 mice (Ligon et al., 2005; Figure 1B). Mutant SOD1
also interacts directly with the assembled dynein-dynactin
complex, occurring prior to disease onset, at a similar age when
retrograde dynein-mediated axonal transport dysfunction occurs
in SOD1G93A mice (Zhang et al., 2007; Bilsland et al., 2010).
The functional consequence of this is yet to be determined,
however detrimental impacts of transport dysfunction on the
ubiquitin-proteasome system and protein autophagy may create
a positive feedback loop, whereby proteins are caught in the
incorrect cellular compartment, which compounds aggregation
(Goldberg, 2003; Ström et al., 2008; Takalo et al., 2013).
Similarly, bidirectional transport of mitochondria is affected

presymptomatically, highlighting the cargo and directional
specificity of axonal transport dysfunction in this model;
however, the exact mechanism is not well understood (Bilsland
et al., 2010). Mutations to the p150Glued subunit of DCTN1
are associated with MN degeneration and ALS (Münch et al.,
2004, 2005; Levy et al., 2006; Laird et al., 2008). The mutation
distorts the folding of the MT-binding domain. An autosomal
dominant variant has also been reported to concurrently cause
FTD (Münch et al., 2005), highlighting the role of motor proteins
in other neurodegenerative diseases.

Expressions of motor protein genes are altered in SALS
patients and in mutant SOD1 mouse models. A reduction in
dynactin-1 expression is observed, in the absence of alterations
to kinesin and dynein expression; down regulation occurs prior
to the deposition of NF protein aggregates (Jiang et al., 2007;
Rustici et al., 2013). Furthermore, a polymorphism and reduced
expression in kinesin-associated protein 3 (KIFAP3) correlates
with an extended life span in SALS patients (Landers et al., 2009);
however, how this affects transport is unknown. Interestingly,
in mutant SOD1 mice, KIFAP3 expression in increased early
in the diseases clinical course (Dupuis et al., 2000). Similarly,
a number of cytoskeletal genes are altered in the SOD1G93A

mouse spinal cord and sciatic nerve, dependant on both age
and MN sub compartment evaluated (Maximino et al., 2014).
Similar gene expression changes were found in SALS patients,
having a decrease in MAP2, MAP1b and tau protein expression,
which is also seen in the mutant SOD1G37R mouse model
(Farah et al., 2003; Jiang et al., 2007). Motor proteins are
also susceptible to alterations in tau levels, as observed in
tauopathies, which retard anterograde motor transport (Ebneth
et al., 1998). Tau alters the flux at which kinesin and dynein
motor complexes bind to the MTs, but not the speed at which
they travel the MT tracks (Trinczek et al., 1999), suggesting
alterations to tau levels on MTs may impact transport where
tau pathology and dysfunction is present. Indeed, multiple
upstream effectors such as altered dynamics, MAP dysfunction
and protein-protein interactions can produce aberrant axonal
transport.

MICROTUBULE ASSOCIATED PROTEIN
ALTERATIONS ALSO CONTRIBUTE TO
ALS PATHOLOGY

MAPs facilitate MT functions such as cytoskeletal interactions,
intracellular signaling and modification of MT dynamics
and stability. Indeed, MAPs are thought to ‘‘tune’’ MT
dynamics through both direct and indirect interactions
(Tortosa et al., 2013; Sayas et al., 2015). Alterations to MAPs
are observed in ALS, and are mainly due to the impact
of dysregulated signaling and aberrant phosphorylation
events. Indeed, MAP dysfunction is a downstream effect of
many ALS-related pathological mechanisms. Aberrant hyper-
phosphorylation and mutations to the MAP tau are associated
with neurodegenerative disorders, such as AD, tauopathies
and ALS/FTD (Hanger et al., 2014; Stancu et al., 2014; Huang
et al., 2015; Baas et al., 2016). Tau is an axonal specific MAP
that localizes to labile domains of MTs (Black et al., 1996).
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It is found throughout the axonal MT network. Tau alters
MT dynamics by increasing the stability of the labile domain,
preventing its depolymerization, while promoting assembly
(Brandt and Lee, 1993; Panda et al., 1995). Tau influences
MT dynamics, as it interacts directly with EB proteins and is
required for the localization and density of EB proteins to the
plus ends of MTs (Sayas et al., 2015). Another means by which
tau mediates MT stability is its role in protecting MTs from
the enzymatic severing by katanin (Kempf et al., 1996; Qiang
et al., 2006), a process that is thought to be impacted upon in
AD and tauopathies, due to the loss of tau-MT localization
when tau is phosphorylated (Sudo and Baas, 2011). There are
reports of hyper phosphorylated and insoluble tau deposits
in cortical neurons of sporadic ALS patients (Strong et al.,
2006). Furthermore, mouse models of mutant SOD1 show
increased tau phosphorylation (Nguyen et al., 2001); and
SOD1 Drosophila models show increased tau toxicity and
neuronal degeneration attributed to by tau phosphorylation
(Huang et al., 2015). Moreover, mouse models generating
hyper activated CDK5, a kinase that causes aberrant tau
phosphorylation, show increases in cytoskeletal disintegration
and axonal swellings (Ahlijanian et al., 2000). Interestingly,
lowering the expression of tau does not improve the phenotype
of mutant SOD1 mice, suggesting that while it may play a
role in disease progression, it is not necessary for neuronal
pathogenesis (Taes et al., 2010). However, identification
of tau-mediated alterations to microtubule dynamics in
ALS are yet to be completed, and is a necessary avenue of
research.

Another MAP that may play an important role in ALS is
MAP1b. MAP1b has been shown to play a role in neurite
and dendritic spine dynamics, having been identified to be
enriched in zones of high MT dynamic instability, such as axonal
growth cones and branch points and dendritic spines (Gonzalez-
Billault et al., 2001; Tortosa et al., 2011; Villarroel-Campos and
Gonzalez-Billault, 2014; Ketschek et al., 2015). Furthermore,
MAP1b function can be regulated by phosphorylation at specific
sites, which alters its interactions with other cytosolic proteins
(Lucas et al., 1998; Villarroel-Campos and Gonzalez-Billault,
2014). MAP1b preferentially binds to, and stabilizes, the labile
domain of MTs. MAP1b has recently been implicated in mutant
TDP-43 pathology (Feiguin et al., 2009; Alami et al., 2014;
Coyne et al., 2014). It was identified that mutated TDP-43
leads to a reduction in local NMJ translation of the MAP1b
homolog futsch in a Drosophila model of ALS (Coyne et al.,
2014). MAP1b also sequesters the plus TIP binding protein
EB3 from the growing plus ends of MTs (Tortosa et al., 2013).
MAP1b over expression leads to a loss of EB3 colocalization,
and down regulation leads to an increase in EB3 binding to
the MT, inducing MT stability defects and aberrant growth
(Tortosa et al., 2013). This may not only be in part due to
the physical interactions of MAP1b with EB3, but also due to
MAP1b’s role in certain signaling cascades, in which end binding
proteins and MT dynamics can be affected (Montenegro-
Venegas et al., 2010; Villarroel-Campos and Gonzalez-Billault,
2014; Ketschek et al., 2015). Therefore, MAP1b, throughmultiple
mechanisms, affects dynamic pools of MTs due to roles in

signaling and by direct physical interactions (Tymanskyj et al.,
2012).

Histone Deacetylase 6 (HDAC6) deacetylates lysine 40 on
α-tubulin, which is the hallmark of MT stability. Alterations
to the function and expression of HDAC6 therefore have
implications for MT transport (Reed et al., 2006). Indeed, this is
found to be the case in SOD1 mouse models of ALS. Interactions
between HDAC6 and mutant SOD1 lead to the development
of intracellular aggregates containing HDAC6 in vitro and
consequently result in the inhibition of HDAC6 deacetylase
activity (Gal et al., 2013). This sequestering of HDAC6
reduces its deacetylating action, resulting in greater tubulin
acetylation. Furthermore, HDAC6 facilitates the degradation
of poly-ubiquinated proteins, such as SOD1 and TDP-43,
through the autophagosome (Kawaguchi et al., 2003; Lee et al.,
2015). Permanent binding of HDAC6 to mutant SOD1 may
account for the loss of deacetylase activity and the increase
in SOD1 aggregates due to ineffective action of HDAC6 in
protein degradation pathways, effectively providing a double-
hit mechanism (Gal et al., 2013). Gal et al. (2013) hypothesized
that the described SOD1-HDAC6 model leads to an increase in
axonal transport in mutant SOD1 mice; therefore increasing the
transport, spread and deposition of misfolded SOD1 aggregates.
Deletion of HDAC6 in vivo delays disease progression in
SOD1G93A mice, highlighting a possible non-cell autonomous
action of HDAC6 that may add to the diseases phenotype,
or the gain of function of the SOD1-HDAC6 complex in
these mice (Taes et al., 2013). However, the increase in
acetylation in mutant SOD1 models is counter-intuitive to
the identified increase in microtubule dynamics: acetylation
is a marker of stable microtubule domains, highlighting the
need for further research (Fanara et al., 2007; Gal et al.,
2013; Kleele et al., 2014). Furthermore, HDAC6 has been
identified as a substrate of TDP-43; TDP-43 and FUS act
in a complex to regulate HDAC6 expression (Fiesel et al.,
2010; Kim et al., 2010), indicating that a number of mutations
may impact HDAC6 activity, although, these are yet to be
explored.

Stable, polyaminated domains of neuronal MTs are associated
with MAP6 (originally stable-tubule-only-peptide—STOP), a
protein that confers cold stability on MTs. MAP6 also prevents
destabilization of MTs by pharmacological means (Slaughter and
Black, 2003; Baas et al., 2016). Microtubule dysfunction as a
primary driver of neurological pathology has been highlighted
by the development of the MAP6 knockout mouse model.
Interestingly, MAP6 knockout mice develop a schizophrenic-
like phenotype, which can be rescued by pharmacologically
increasing MT stability (Andrieux et al., 2006). This is also
associated with transport deficits, with evidence suggesting it
may be driven by a loss of network stability; pharmacologically
increasingMT stability ameliorates this phenotype (Daoust et al.,
2014). Of further interest is the identified localization of MAP6
to NF spheroids in the cortex and spinal cord of ALS patients
(Letournel et al., 2003). However, the exact impact this has on
disease is still not understood. In addition, MAP6 has been
found to impact dendritic lysosome transport and trafficking,
which can be impaired by the expression of an FTD risk
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factor with TDP-43 pathology (Kim et al., 2010; Schwenk et al.,
2014).

MTs also interact with other cytoskeletal networks, such as
the neuronal microfilament actin, and the neuronal specific
NFs and are known to influence MT structure and function.
Although current understanding of the interactions between
these filaments is not fully appreciated, shared signaling
cascades (Wittmann and Waterman-Storer, 2005) and shared
associated or connecting proteins (Goryunov and Liem, 2016)
are potential mechanisms underlying this communication.
Cytoskeletal elements may affect one another in a more direct
mechanism. This is evidenced by key proteins associated with
actin assembly, such as formins, which bind to and regulate
MT dynamics (Bartolini et al., 2008). Alternately, the MT TIP
protein EB1 also has binding sites on actin, but this binding is
mutually exclusive, and therefore competitive exclusion affects
the stability neuronal MTs (Alberico et al., 2016). Importantly,
NF accumulations are present in several neurodegenerative
diseases, including ALS, and reviewed previously (Vickers et al.,
2009). It has been suggested that accumulation of NF contributes
to axonal degeneration by impeding axonal transport, causing
defects in the cells’ ability to maintain the synapse (Collard
et al., 1995). Depletion of NFs has been observed to increase
lifespan and improve the phenotype of SOD1 mice (Williamson
et al., 1998). While aggregation of misfolded proteins such as
SOD1 and NF in ALS has been suggested to cause axonal
transport dysfunction, the sequestration of toxic, misfolded
protein or hyper phosphorylated proteins into subcellular
compartments may in turn be neuroprotective (as previously
reviewed in Patzke and Tsai, 2002; Takalo et al., 2013). This
sequestration potentially reduces toxic oligomer interaction
with endogenous proteins required for cellular function, or
may act as a ‘‘sink’’ for aberrant phosphorylation; and
therefore may extend the life of the cell. Alternately, this
compartmentalization may detrimentally cause the sequestration
of endogenous proteins that preferentially bind to aggregate
proteins, and is still a cause for debate (Tateno et al.,
2009).

Collectively, accumulating evidence indicates that MTs and
their associated proteins may play an important role in both
the initiation and progression of ALS. MT dysfunction may
sit on a pathological continuum, whereby MTs can act as the
primary driver of MN degeneration, or where other genetic
or molecular mechanisms converge to cause MT pathology.
Indeed, MT dysfunction in ALS points to aberrant alterations in
dynamics, with resultant dysregulated axonal transport driving
disease pathogenesis and ultimately cytoskeletal and cellular
destruction. Thus these disease processes offer attractive targets
for therapeutic intervention.

TARGETING NEURONAL MICROTUBULES
FOR THERAPY: AN APPROACH FOR ALS

The only available treatment for ALS is the anti-excitotoxic
drug, Riluzole. Riluzole acts on the presynaptic neuron to
limit the release of glutamate into the synapse therefore
reducing the excitotoxic effect of glutamate on the postsynaptic

cell (Bensimon et al., 1994). Notwithstanding the reduction
in excitotoxicity, treatment strategies involving riluzole have
limited effectiveness, and are only able to extend patient life
by approximately 3–6 months (Gurney et al., 1998). ALS is a
multi-factorial disease, with many cellular components affected;
therefore there are a range of available targets for therapy,
however many of them have had limited success (Turner
and Talbot, 2008). This review has discussed MT involvement
in ALS and in particular how dynamics and function are
impaired in disease states. Pharmacological manipulation of
MTs to improve disease phenotype offers an attractive target
in ALS. Indeed, this therapeutic approach has previously
been undertaken in multiple neurodegenerative disease models,
including ALS.

Fanara et al. (2007), established that hyperdynamic neuronal
MTs were present in a SOD1 mouse model of ALS and
administered the MT modulating agent noscapine to attenuate
this phenotype. Noscapine, which can cross the blood brain
barrier (BBB) effectively dampens hyperdynamics, leading to less
depolymerization and polymerization events from occurring at
the growing plus tip of the MT (Landen et al., 2002, 2004).
Noscapine treatment extended lifespan, attenuatedMT dynamics
and normalized aspects of axonal transport. This in itself gives
evidence for hyperdynamics driving transport deficits in these
mice. However, more cargo-specific and rate-specific transport
assays are required to identify if this is the case. Moreover, this
study provides supporting evidence for the use of MT stabilizing
agents in the treatment of ALS.

HDAC6 inhibitors and HDAC knockout mice have also
been trialed to improve outcomes in ALS models, with the
intention of increasing the acetylation of stable MTs to improve
stability and axonal transport. The inhibition or removal of
HDAC6 was found to improve the phenotype of mutant
SOD1 mice (Taes et al., 2013). However, axonal transport
was not directly measured. A similar study utilizing HDAC6
inhibition in Charcot-Marie-Tooth (CMT) disease showed an
improvement in axonal mitochondrial transport, supporting
HDAC6 inhibition as a candidate therapeutic for multiple
neurodegenerative diseases (d’Ydewalle et al., 2011).

Direct MT stabilizing agents have been previously used
in the medical setting in the treatment of cancers, as the
addition of these agents perturb the formation of the mitotic
spindle and therefore inhibit cell division (Schiff et al., 1979).
The most studied MT targeting agent taxol has, in the last
decade, developed a newfound use in modulating MTs in
neurodegenerative diseases (Michaelis et al., 2006; Brunden
et al., 2011; Das and Miller, 2012; King et al., 2013). At
high doses, taxol treated systems develop over-stabilized MTs,
preventing cell division in cancer cells; however, this can
generate a painful peripheral neuropathy (Reyes-Gibby et al.,
2009). At lower doses taxol has been found to limit MT
depolymerization and stabilize the MT network in a number
of neurodegenerative models (Michaelis et al., 2006; Brunden
et al., 2011; Das and Miller, 2012; King et al., 2013). Indeed,
treatment of an in vivo tauopathy model with taxol improves
MN fast axonal transport, highlighting the therapeutic potential
of taxol for disorders effecting MNs (Zhang et al., 2005).
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The range of taxol concentrations which yield beneficial
effects on neurodegeneration are very narrow (Shemesh and
Spira, 2011). Coupled with the off target effects identified
due to taxol therapy, limited crossover at the BBB and
the dramatic alterations to MT stability that it delivers, the
benefits of taxol administration in neurodegenerative disease
have been brought into question (Baas and Ahmad, 2013;
Baas, 2014). In relation to ALS, taxol has been shown to
reduce MT disintegration in an in vitro kainic acid excitotoxic
model of ALS (King et al., 2013). Excitotoxicity exposure
was reported to induce MT instability upstream of caspase-3
activation, which is mitigated with taxol treatment. However,
as characterization of MT dynamics has not been completed
with regard to excitotoxicity due to kainic acid exposure,
it is difficult to assess whether taxol is indeed limiting
the hypothesized dynamic instability of MTs, or preventing
the breakdown of the MT network. Indeed, inhibition of
caspase-3 activation in other excitotoxicity models reports
neuroprotection and increased cell survival (Chen et al., 2001).
However, it is important to note that Taxol derivatives, which
exhibit higher BBB permeability, need to be investigated to
determine if this form of MT stabilization is a viable treatment
for ALS.

CONCLUSION

MTs play a fundamental role in normal neuronal functions.
MT dysfunction has been implicated in the pathogenesis
of a number of neurodegenerative diseases including ALS,
however, the precise mechanisms underlying this dysfunction
are not fully understood. Currently our understanding of MT
involvement in ALS suggests that generation of hyperdynamic
MTs, transport dysfunction and alterations to cytoskeletal gene
and protein expression may help drive disease pathogenesis.
Identification of the chain of events, which lead to the
dysfunction of the MT network in ALS, is paramount to

our understanding of how MTs are involved in disease
initiation and maintenance. Indeed, increasing evidence suggests
that MT dysfunction is both a primary driver of pathology,
and also a site for pathological convergence from associated
familial and molecular ALS mechanisms. Modulation of
these events and MT structural integrity is an attractive
therapeutic target, with benefits to this approach being shown
in other models of disease. Increasing our knowledge of the
mechanisms behind MT dysfunction in ALS will hopefully
uncover many more targets to manipulate pharmacologically
to extend life or cure this debilitating and ultimately fatal
disease.
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