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Abstract: Effective therapies for COVID-19 are still lacking, and drug repositioning is a promising
approach to address this problem. Here, we adopted a medical informatics approach to reposition-
ing. We leveraged a large prospective cohort, the UK-Biobank (UKBB, N ~ 397,000), and studied
associations of prior use of all level-4 ATC drug categories (N = 819, including vaccines) with
COVID-19 diagnosis and severity. Effects of drugs on the risk of infection, disease severity, and
mortality were investigated separately. Logistic regression was conducted, controlling for main
confounders. We observed strong and highly consistent protective associations with statins. Many
top-listed protective drugs were also cardiovascular medications, such as angiotensin-converting
enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), calcium channel blocker (CCB), and
beta-blockers. Some other drugs showing protective associations included biguanides (metformin),
estrogens, thyroid hormones, proton pump inhibitors, and testosterone-5-alpha reductase inhibitors,
among others. We also observed protective associations by influenza, pneumococcal, and several
other vaccines. Subgroup and interaction analyses were also conducted, which revealed differences
in protective effects in various subgroups. For example, protective effects of flu/pneumococcal
vaccines were weaker in obese individuals, while protection by statins was stronger in cardiovascular
patients. To conclude, our analysis revealed many drug repositioning candidates, for example several
cardiovascular medications. Further studies are required for validation.

Keywords: COVID-19; drug repositioning; UK Biobank; vaccine

1. Introduction

Coronavirus disease 2019 (COVID-19) has resulted in a pandemic affecting more
than a hundred countries worldwide [1–3]. More than 220 million confirmed infections
and 4.56 million fatalities have been reported worldwide as of 6 September 2021 (https:
//coronavirus.jhu.edu/map.html, accessed on 6 September 2021). Besides the burden
due to the disease itself, COVID-19 has created heavy burdens on the medical systems
in many countries and has led to delays in the diagnosis and treatment of other types of
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diseases [4,5]. Therefore, it is of urgent public interest to gain deeper understanding into
the disease, including identifying risk factors (RFs) for infection and severe disease, and
uncovering new treatment strategies.

Although vaccines have been developed for COVID-19, its distribution is highly
uneven and only a small proportion of the world’s population has been fully vaccinated
so far. In addition, vaccine hesitancy remains a major issue that has led to suboptimal
vaccination coverage [6,7]. Inadequate knowledge and awareness of COVID-19, especially
among the younger population, may also contribute to the continuous rise in the number of
cases [8]. Coupled with viral variants that may be associated with increased transmission
and reduced vaccine effectiveness [9], the search for drugs that may reduce susceptibility
to disease and/or disease severity remains highly important.

A number of clinical risk factors (e.g., age, obesity, cardiometabolic disorders, renal
diseases, presence of multiple comorbidities) [10–15] have been found to increase the risk
of infection or complications. However, it is less well-known how different drugs may
affect the risks of COVID-19 or its severity. Importantly, drugs with protective effects may
be potentially repurposed for the prevention or treatment of the disease, as development
of a new drug is often extremely lengthy and costly.

Drug repositioning by computational or statistical approaches for COVID-19 is an area
of intense interest. Please refer to other reviews (e.g., [16–18]) for an overview of recent
studies. For instance, one widely used methodology is the network-based approach, which
can integrate different data sources, including omics data and drug–protein–disease inter-
action networks [16,19–21]. Another methodology is the structure-based approach, which
enables a large number of compounds to be screened for their ability to bind to known or
predicted molecular targets for COVID-19 treatment [16,22–25]. These methodologies are
promising but may have their limitations. For example, they generally do not provide direct
evidence for the candidates’ effectiveness in real-world or clinical settings. In addition,
these approaches may be limited by inadequate knowledge of the pathophysiology and
molecular basis of COVID-19. Another limitation is that most drug repositioning studies
did not consider patient characteristics; for example, a drug may be more effective within a
certain age group or in those with a certain comorbidity. In addition, the effect size (e.g.,
relative risk reduction) of individual drugs and the level of statistical significance usually
cannot be easily estimated by network/structure-based approaches.

Here, we employed a different methodology not previously applied to drug reposi-
tioning studies for COVID-19. We adopted a medical informatics approach which involves
screening a large number of drugs for their associations with the disease, leveraging a large-
scale population cohort. In brief, we performed a comprehensive study on all Anatomical
Therapeutic Chemical Classification System (ATC) level-4 drug categories (N = 819) and
assessed their associations with susceptibility to, and severity of, COVID-19 in the UK
Biobank (UKBB), controlling for possible confounders. Vaccines were also included for
analysis. To our knowledge, this is the most comprehensive analysis to date to screen
for drug associations and repositioning candidates for COVID-19, leveraging real-world
population data.

While pharmacoepidemiology studies are typically focused on one or a few drugs,
COVID-19 is a new disease, and we still have limited understanding of its pathophysiology
and treatment. As a result, a hypothesis-driven approach may have important limitations
of missing potential drug associations and new repositioning candidates. In the field of
genetic epidemiology, it has been observed that hypothesis-driven candidate gene studies
are not as reliable as genome-wide association studies (GWAS) [26] which are relatively
unbiased, indicating merits of the latter approach. In the same vein, here we adopted
a “drug-wide” association study approach, which provides a systematic and unbiased
assessment of drug associations and repositioning candidates. This approach has also been
advocated before [27].

In the present study, we performed rigorous analyses on the impact of medica-
tions/vaccinations on the risk of infection, disease severity, and mortality. Analyses
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were also conducted within infected patients, tested subjects, and the whole population
respectively, and for five different time windows of prescriptions. We also performed
further subgroup and interaction analyses to reveal differential effects of the drugs in
people with different clinical background. This may enable more “personalized” drug
repositioning, i.e., prioritizing drug candidates for specific patient subgroups.

2. Methods
2.1. UK Biobank Data

The UK Biobank is a large-scale prospective cohort comprising over 500,000 subjects
aged 40–69 years who were recruited in 2006–2010 [28]. In this study, subjects with recorded
mortality before 31 January 2020 (N = 28,930) were excluded, as it was the date for the first
recorded case in UK. This study was conducted under project 28732.

2.2. COVID-19 Phenotypes

COVID-19 outcome data were downloaded from UKBB data portal. Information
regarding COVID-19 data in the UKBB can be viewed at http://biobank.ndph.ox.ac.uk/
showcase/exinfo.cgi?src=COVID19 (accessed on 3 November 2020). Briefly, the latest
COVID test results were downloaded on 6 November 2020 (last update 3 November
2020). We consider inpatient (hospitalization) status at testing as a proxy for severity. Data
on date and cause of mortality were also extracted (latest update on 21 October 2020).
Cases indicated by U07.1 were considered to be (laboratory-confirmed) COVID-19-related
fatalities.

A case was considered as having “severe COVID-19” if the subject was hospitalized
and/or if the cause of mortality was U07.1. We required both test result and origin to be
1 (positive test and inpatient origin) to be considered as a hospitalized case. For a small
number of subjects with initial outpatient origin and positive test result, but changed to
inpatient origin and negative result within 2 weeks, we still considered these subjects
inpatient cases (i.e., assume the hospitalization was related to the infection).

For a minority of subjects (N = 19) whose mortality cause was U07.1 but test results
were negative within one week, to be conservative, they were excluded from subsequent
analyses.

2.3. Medication Data

Medication data was obtained from the primary care data for COVID-19 research in
UKBB (details available at https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/
gp4covid19.pdf, accessed on 9 November 2020). We made use of the latest release of
General Practice (GP) records released by UKBB, which contains prescription data from
two electronic health record (EHR) systems (TPP or EMIS) for ~397,000 UKBB participants.
The drug code and issue date of each drug are available. Please also refer to Figure 1 for an
overview of our analysis workflow.

http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=COVID19
http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=COVID19
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/gp4covid19.pdf
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/gp4covid19.pdf
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were investigated separately. Missing data were accounted for by multiple imputation. Inverse probability weighting 
(IPW) of the probability of being tested (Prob(tested)) was employed to reduce testing bias. Multivariable logistic regres-
sion was conducted, controlling for main confounders. We primarily focused on drugs with protective effects, as residual 
confounding tends to bias towards harmful effects. In addition, we performed further subgroup and interaction analysis 
to identify factors that may modify the drug effects. 
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(2) the date of last test for those who were tested negative; or (3) 3 November 2020 (the 
date of the latest update of COVID-19 test results) for those who were untested. 

The issue date of each prescription was available, but the duration was not. Time 
windows were determined by whether the drug was issued within a specified period be-
fore the index date. The following windows were considered for medications: 6 months, 
1 year, 2 years, and 5 years. Narrower time windows (<6 months) may not be desirable 
and may lead to many prescriptions being missed, as the latest issue date was 25 July 2020, 
but the latest index date was 3 November 2020. 

As for vaccines, unlike many medications, vaccines are not prescribed regularly, and 
most vaccines only need to be given once or less than a few times; hence, a narrow time 
window is not optimal due to sparsity of data. For seasonal vaccines, namely flu vaccines, 
they are usually given in autumn (September to November) or early winter in the UK. A 
time window of 6 months will lead to missing most of the flu vaccines given. On the other 
hand, it is also reasonable to consider a longer time window (e.g., 10 years) as vaccine 
effects can be more long-lasting [29]. In view of the above, we considered time windows 
of 1, 2, 5, and 10 years for vaccinations. For flu vaccines, we defined “past 1 year” as pre-
scriptions from 1 September 2019 onwards (and similarly for past k years) to account for 
the seasonal nature of vaccination. 

Figure 1. An overview of the analytic workflow. We considered five exposure time windows and multiple statistical
models. We conducted analyses within infected patients, tested subjects, and the whole population, respectively. Effects of
prescribed medications/vaccinations on the risk of infection, severity of disease (hospitalization as proxy) and mortality
were investigated separately. Missing data were accounted for by multiple imputation. Inverse probability weighting (IPW)
of the probability of being tested (Prob(tested)) was employed to reduce testing bias. Multivariable logistic regression
was conducted, controlling for main confounders. We primarily focused on drugs with protective effects, as residual
confounding tends to bias towards harmful effects. In addition, we performed further subgroup and interaction analysis to
identify factors that may modify the drug effects.

2.3.1. Time Window of Prescriptions

Since the GP records cover many years of prescriptions, we set time windows to restrict
prescriptions with a certain time period as the “exposure”. The “index date” was defined
as (1) the date of the first positive COVID-19 test for infected subjects (for U07.1 cases, the
mortality date was regarded as the index date if no test record was found); or (2) the date
of last test for those who were tested negative; or (3) 3 November 2020 (the date of the
latest update of COVID-19 test results) for those who were untested.

The issue date of each prescription was available, but the duration was not. Time
windows were determined by whether the drug was issued within a specified period
before the index date. The following windows were considered for medications: 6 months,
1 year, 2 years, and 5 years. Narrower time windows (<6 months) may not be desirable
and may lead to many prescriptions being missed, as the latest issue date was 25 July 2020,
but the latest index date was 3 November 2020.

As for vaccines, unlike many medications, vaccines are not prescribed regularly, and
most vaccines only need to be given once or less than a few times; hence, a narrow time
window is not optimal due to sparsity of data. For seasonal vaccines, namely flu vaccines,
they are usually given in autumn (September to November) or early winter in the UK. A
time window of 6 months will lead to missing most of the flu vaccines given. On the other
hand, it is also reasonable to consider a longer time window (e.g., 10 years) as vaccine
effects can be more long-lasting [29]. In view of the above, we considered time windows
of 1, 2, 5, and 10 years for vaccinations. For flu vaccines, we defined “past 1 year” as
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prescriptions from 1 September 2019 onwards (and similarly for past k years) to account
for the seasonal nature of vaccination.

2.3.2. Mapping to ATC

All the medications were mapped to the ATC Classification (https://www.genome.
jp/kegg-bin/get_htext?br08303, accessed on 9 November 2020). Drug categories were
defined by the fourth level of ATC classification.

2.4. Covariate Data

We performed multivariable regression analysis with adjustment for potential con-
founders including basic demographic variables (age, sex, ethnic group), comorbidities
(coronary artery disease (CAD), diabetes (DM), hypertension, asthma, chronic obstruc-
tive pulmonary disease (COPD), depression, dementia, history of cancer, blood urea and
creatinine reflecting renal function), indicators of general health (number of medications
taken, number of non-cancer illnesses), anthropometric measures (body mass index (BMI)),
socioeconomic status (Townsend deprivation index) and lifestyle risk factor (smoking sta-
tus). For disease traits, we included information from ICD-10 diagnoses (code 41270) and
self-reported illnesses (code 20002), and incorporated data from all waves of follow-ups.
Subjects with no records of the relevant disease from either self-report or ICD-10 were
regarded as having no history of the disease.

2.5. Sets of Analysis

We performed a total of eight sets of analysis (Table 1). The impact of prescribed med-
ication/vaccination on the risk of infection (Models E and F), severity of infection (Models
A, C, and G) and risk of mortality (Models B, D, and H) from COVID-19 were investigated
separately. Both hospitalized and fatal cases were grouped under the “severe” category.

Table 1. The eight sets of analyses based on infected patients (model A, B), tested subjects (models F, G, H) and the
population (models C, D, E).

Model Cohort 1 Cohort 2

A Hospitalized or fatal infection (U07.1) (Severe) Non-hospitalized COVID-19 (Mild)
B U07.1 cases All other COVID-19 cases
C Hospitalized or fatal infection (U07.1) (Severe) UKBB subjects without COVID-19 Dx or tested-ve
D U07.1 cases UKBB subjects without COVID-19 Dx or tested-ve
E Infected UKBB subjects without COVID-19 Dx or tested-ve
F Infected Tested-ve
G Hospitalized or fatal infection (U07.1) (Severe) Tested-ve
H U07.1 cases Tested-ve

U07.1 is the code for fatal (laboratory-confirmed) COVID-19 infection based on the latest ICD coding. Dx, diagnosis; -ve, negative.

We also considered different study designs and conducted our analyses with different
comparison samples. Models A and B are restricted to the infected subjects, while models
C, D, and E involve comparison of severe, fatal and general infected cases to the general
population (with no known diagnosis of COVID-19). On the other hand, models F, G, and
H compared infected, severe, and fatal cases, respectively, against subjects who were tested
negative for SARS-CoV-2.

There were 397,000 subjects in the UKBB with available GP prescription records.
Among them, 30,835 subjects have received at least one COVID-19 test, and 3858 had been
tested positive. There were 1318 cases classified as “severe” (hospitalized or mortality
from COVID-19) and 170 fatal cases. In total 393,142 UKBB participants did not have a
known diagnosis of COVID-19. The detailed count of participants for each model is listed
in Table 2.

https://www.genome.jp/kegg-bin/get_htext?br08303
https://www.genome.jp/kegg-bin/get_htext?br08303
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Table 2. Number of available subjects for analysis for the 8 models.

Model Cohort 1 Cohort 2 Total

A 1318 2540 3858
B 170 3688 3858
C 1318 393,142 394,460
D 170 393,142 393,312
E 3858 393,142 397,000
F 3858 26,977 30,835
G 1318 26,977 28,295
H 170 26,977 27,147

Only subjects with available GP prescription records are shown.

2.6. Statistical Analysis Methods

Logistic regression (using the R package speedglm) was used to examine the impact
of medication on different outcomes in the eight sets of analysis. For more stable estimates,
analysis was not performed if the number of subjects taking the drug in the affected or
unaffected group was less than five. All statistical analyses were conducted using R. The
false discovery rate (FDR) approach by Benjamini and Hochberg [30] was performed
to control for multiple testing. This approach controls the expected proportion of false
positives among the rejected null hypotheses.

2.7. Imputation of Missing Data

Missing values of remaining features were imputed with the R package “missRanger”.
The program is based on missForest, which is an iterative imputation approach based
on random forest (RF). It has been widely used and shown to produce low imputation
errors and good performance in predictive models [31]. The program missRanger is largely
based on the algorithm of missForest, but uses the R package “ranger” [32] to build RF for
improvement in speed (we found that other packages, such as MICE and missForest, are
computationally too slow to produce results for the large-scale analyses here). Predictive
mean matching (pmm) was employed to avoid imputation of values not present in the
original data, and to increase variance to more realistic levels for multiple imputation (MI).
We followed the default settings with pmm.k = 5 and num.trees = 100. We performed the
analyses on multiply imputed datasets (imputed for 10 times) and combined the results by
Rubin’s rules [33] using the function “mi.meld” under the R package “amelia”. Another
advantage of missRanger is that out-of-bag errors (in terms of classification errors or
normalized root-mean-squared error) could be computed, which provides an estimate of
imputation accuracy.

2.8. Inverse Probability Weighting of the Probability of Being Tested

Bias due to non-random testing has been discussed previously in other works [34,35].
As a person has to be tested to be diagnosed with COVID-19, factors leading to increased
probability of being tested will also lead to an apparent increase in the risk of infection [35].
In addition, it has been raised that collider bias can occur when conditioned on the tested
group. This could result in spurious associations, for example, between a risk factor and
COVID-19 severity if both increases the probability of being tested (Pr(tested)). One way
to reduce this kind of bias is to employ inverse probability weighting (IPW) of Pr(tested).
Essentially, we wish to create a pseudo-population, or mimic a scenario under which testing
is random instead of selected for certain subgroups. The IPW approach up-weighs those
who are less likely to be tested and down-weighs those who have a high chance of being
tested. This may create more unbiased estimates of the effects of drugs.

We took reference to the approach described in [34] to analyze the data with IPW.
Following our recent work [36] which aims to predict COVID-19 severity with machine
learning (ML), here we also employed an ML model (XGboost) to predict Pr(tested) based
on a range of factors. An advantage of using ML models is that nonlinear and complex
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interactions can be considered, which may improve predictive performance over logistic
models. We employed the same set of predictors as in our previous work [36], and
followed the same analysis strategy of hyper-parameter tuning and cross-validation to
obtain predicted probabilities (please refer to [36] for details). Beta-calibration [37] was
performed, and the resulting average AUC was 0.622. The predicted probabilities (i.e.,
Pr(tested)) were used to construct weights for IPW. Stabilized weights [38] were used.

2.9. Subgroup Analysis

For selected drugs showing tentative protective effects, we also performed further
subgroup and interaction analyses. These drugs included cardiovascular medications listed
in Table 3, four vaccines with protective associations (influenza, pneumococcal, typhoid,
and combined bacterial/viral vaccines), and other top drugs with consistent protective
associations across multiple models/time windows as listed in Table 4.

Table 3. Cardiometabolic medications showing significant protective associations (limited to FDR < 0.05) within time
windows of 6, 12, and 24 months.

Window Model ATC Code OR conf.low conf.high p FDR.BH Full Name

1 year C A10BA 0.67 0.51 0.88 4.01 × 10−3 1.11 × 10−2 Biguanides
2 years C A10BA 0.68 0.52 0.90 5.79 × 10−3 1.68 × 10−2 Biguanides
0.5 year F C07AB 0.78 0.68 0.89 3.56 × 10−4 7.40 × 10−3 Beta blocking agents, selective
1 year F C07AB 0.80 0.70 0.91 7.59 × 10−4 1.29 × 10−2 Beta blocking agents, selective
2 years F C07AB 0.78 0.69 0.88 9.10 × 10−5 2.15 × 10−3 Beta blocking agents, selective
1 year C C08CA 0.76 0.64 0.90 1.31 × 10−3 4.23 × 10−3 Dihydropyridine derivatives
2 years C C08CA 0.78 0.66 0.92 3.27 × 10−3 1.11 × 10−2 Dihydropyridine derivatives
0.5 year A C09AA 0.68 0.53 0.87 2.11 × 10−3 1.43 × 10−2 ACE inhibitors, plain
0.5 year C C09AA 0.75 0.62 0.91 3.15 × 10−3 6.48 × 10−3 ACE inhibitors, plain
0.5 year G C09AA 0.68 0.56 0.83 1.13 × 10−4 1.54 × 10−3 ACE inhibitors, plain
1 year A C09AA 0.68 0.54 0.86 1.15 × 10−3 1.03 × 10−2 ACE inhibitors, plain
1 year C C09AA 0.61 0.51 0.74 1.59 × 10−7 1.25 × 10−6 ACE inhibitors, plain
1 year D C09AA 0.57 0.36 0.92 2.22 × 10−2 4.31 × 10−2 ACE inhibitors, plain
1 year E C09AA 0.79 0.72 0.88 1.40 × 10−5 8.63 × 10−5 ACE inhibitors, plain
1 year G C09AA 0.71 0.59 0.85 2.80 × 10−4 4.00 × 10−3 ACE inhibitors, plain
2 years A C09AA 0.67 0.54 0.84 5.87 × 10−4 1.10 × 10−2 ACE inhibitors, plain
2 years C C09AA 0.63 0.53 0.75 2.84 × 10−7 2.60 × 10−6 ACE inhibitors, plain
2 years E C09AA 0.81 0.73 0.90 5.38 × 10−5 3.41 × 10−4 ACE inhibitors, plain
2 years G C09AA 0.71 0.59 0.85 1.40 × 10−4 2.81 × 10−3 ACE inhibitors, plain
1 year C C09CA 0.68 0.54 0.85 7.58 × 10−4 2.61 × 10−3 Angiotensin II receptor blockers, plain
1 year G C09CA 0.69 0.55 0.87 1.95 × 10−3 1.85 × 10−2 Angiotensin II receptor blockers, plain
2 years C C09CA 0.73 0.58 0.90 3.97 × 10−3 1.25 × 10−2 Angiotensin II receptor blockers, plain
2 years G C09CA 0.72 0.58 0.90 3.93 × 10−3 4.80 × 10−2 Angiotensin II receptor blockers, plain
0.5 year A C10AA 0.57 0.47 0.68 3.37 × 10−9 8.37 × 10−8 HMG CoA reductase inhibitors
0.5 year C C10AA 0.79 0.68 0.91 1.20 × 10−3 2.63 × 10−3 HMG CoA reductase inhibitors
0.5 year E C10AA 1.14 1.05 1.24 1.64 × 10−3 4.26 × 10−3 HMG CoA reductase inhibitors
0.5 year G C10AA 0.66 0.57 0.76 2.55 × 10−8 9.03 × 10−7 HMG CoA reductase inhibitors
1 year A C10AA 0.50 0.42 0.60 2.87 × 10−13 5.17 × 10−11 HMG CoA reductase inhibitors
1 year C C10AA 0.49 0.42 0.57 2.97 × 10−21 7.42 × 10−20 HMG CoA reductase inhibitors
1 year D C10AA 0.50 0.34 0.74 5.28 × 10−4 1.57 × 10−3 HMG CoA reductase inhibitors
1 year E C10AA 0.83 0.77 0.91 1.69 × 10−5 1.00 × 10−4 HMG CoA reductase inhibitors
1 year G C10AA 0.63 0.54 0.73 4.15 × 10−10 2.77 × 10−8 HMG CoA reductase inhibitors
2 years A C10AA 0.49 0.40 0.58 1.55 × 10−14 3.19 × 10−12 HMG CoA reductase inhibitors
2 years C C10AA 0.49 0.43 0.57 7.09 × 10−21 2.60 × 10−19 HMG CoA reductase inhibitors
2 years D C10AA 0.50 0.34 0.74 4.38 × 10−4 1.63 × 10−3 HMG CoA reductase inhibitors
2 years E C10AA 0.86 0.79 0.93 3.09 × 10−4 1.52 × 10−3 HMG CoA reductase inhibitors
2 years G C10AA 0.63 0.54 0.72 2.65 × 10−10 2.92 × 10−8 HMG CoA reductase inhibitors

For space limits, only results with FDR < 0.05 are shown. Please refer to Tables S3 and S6 for full results. OR, odds ratio; conf.low, lower
95% CI for OR; conf.high, upper 95% CI for OR; FDR.BH, false discovery rate by the Benjamini–Hochberg method.
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Table 4. Drugs showing consistent protective associations across 4 time-windows and 8 models
(ranked by the frequency of being nominally significant, i.e., p < 0.05).

ATC Code Drug Name Freq

1 C09AA ACE inhibitors, plain 21
2 J07BB Influenza vaccines 20
3 C10AA HMG CoA reductase inhibitors 19
4 H03AA Thyroid hormones 17

5 C09CA Angiotensin II receptor blockers,
plain 15

6 G04CB Testosterone-5-alpha reductase
inhibitors 12

7 A02BC Proton pump inhibitors 11
8 C08CA Dihydropyridine derivatives 11
9 R03BA Glucocorticoids 9
10 C07AB Beta blocking agents, selective 8
11 A10BA Biguanides 7

12 B01AC Platelet aggregation inhibitors excl.
heparin 7

13 G03CA Natural and semisynthetic
estrogens, plain 7

14 J07CA Bacterial and viral vaccines,
combined 7

15 A03AA Synthetic anticholinergics, esters
with tertiary amino group 6

Frequency (freq) calculated based on results from time windows of 6 months to 5 years. Ophthalmological and
dermatological agents are not listed in the above table.

Subgroup analysis was performed with respect to main demographic features (age,
sex, and ethnicity) and main comorbidities (same as the diseases listed under “covariate
data”). We also compared log(OR) estimates across the subgroups with or without the risk
factor of interest. The test statistic was obtained by z = (β1 − β2)/

√
var(β1) + var(β2),

where β1 and β2 refer to the coefficients under the two independent subgroups.

2.10. Interaction Analysis

As a complementary approach, we also performed analysis with a logistic model
including an interaction term (drug*risk_factor). The same set of drugs and risk factors
were studied. The two approaches are similar in principle; however, stratified analysis
yields more unbiased estimates if confounders have subgroup-dependent associations,
while the interaction term approach produces more precise (lower-SE) estimates (hence
higher power to detect interactions) [39].

2.11. Controlling for Other Drugs

We also performed additional regression analyses controlling for other top-ranked
drugs. Two sets of analyses were conducted. In the first set of analysis, we controlled for
the top 10 or 20 protective and harmful drugs in each time window and model. As for the
second analysis, for drugs with protective associations, we controlled all other protective
drugs with FDR < 0.05 or 0.1 (this analysis was performed for protective drugs only, as
there were too many drugs associated with harmful effects to be included as covariates).

3. Results

Due to the large number of models and drugs being studied, we highlight the main
results and findings from different sensitivity analysis.

Confounding by indication and other comorbidities is unavoidable, and, in particular,
drugs showing harmful effects may possibly be explained by such confounding. On the
other hand, as it is expected that most diseases tend to increase the risk/severity of infection,
drugs showing protective effects are much less likely to be affected by confounding, and
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such associations may be relatively more reliable. We therefore place a greater emphasis
on protective drugs in the sections below; this is also in line with our primary objective to
prioritize repositioning candidates. Drugs with harmful effects are briefly discussed for
comprehensiveness.

A summary of the demographic and covariate data of the original UKBB dataset is
shown in Table S1. The missing rates and out-of-bag (OOB) errors for different variables
from multiple imputations are shown in Table S2.

3.1. Primary Analysis with Multiple Imputation of Covariates

Full results of all drug categories across all time windows (including 6, 12, 24, 60,
and 120 months; the last time window only for vaccines) are shown in Tables S6–S10.
All protective associations (with at least nominal significance, i.e., p < 0.05) are shown in
Table S3, while all association results with vaccines are presented in Table S4. For drugs
associated with increased odds of infection/severity, we also summarize the top 10 drugs
(ranked by p-value) from each model and time window, and organize them together in
Table S5.

3.1.1. Overview

Across all categories, statins showed the strongest and most consistent protective
associations. Highly significant protective effects were seen across infected subjects, tested
subjects, or the whole population, especially in reducing the severity or mortality of
infection. Albeit with smaller effect sizes, we also observed that statins might be linked to
lower susceptibility to infection (model E). Interestingly, a number of top-listed drugs are
also cardiovascular medications, such as angiotensin-converting enzyme inhibitors (ACEI),
angiotensin receptor blockers (ARB), calcium channel blocker (CCB), and beta-blockers.

For simplicity, odds ratios (OR) are presented for a time horizon of 1 year if not further
specified.

3.1.2. Drugs for Cardiometabolic Disorders

Significant protective associations with FDR < 0.05 are shown in Table 3. Statins
showed protective effects across models A, C, D, E, and G. Significant protective effects
against severe infection were seen among infected subjects (OR for prescriptions within
a 12-month window, same below: 0.50, 95% CI: 0.42–0.60), tested subjects (OR = 0.63,
0.54–0.73), or when comparing severe cases to the general population (OR = 0.49, 0.42–0.57).
In addition, protective association against fatal infection was observed (OR = 0.51, CI
0.34–0.74). Statins was also associated with lower susceptibility to infection, with ORs
of 0.83 (CI: 0.77–0.91) and 0.86 (CI: 0.79–0.93) for prescriptions within 1 year and 2 years,
respectively.

Another group of drugs with highly consistent protective associations were ACEI and
ARB. ACEI showed protective associations against severe disease among infected subjects
(model A: OR for 1-year time window, same below: 0.68, CI: 0.54–0.86), and when compared
to the general population (model C: OR 1 year = 0.61, CI: 0.51–0.74) or test-negative subjects
(model G: OR 1 year = 0.71, CI: 0.59–0.85). We also observed association with lower odds
of infection at a population level (model E: OR 1 year = 0.81, CI: 0.73–0.90); the effect size
seemed to decrease over longer time windows. ARBs also showed protective associations
against severe disease in the population (model C: OR 1 year = 0.68, CI: 0.54–0.85) or among
tested individuals (model G: OR 1 year = 0.68, CI: 0.55–0.87).

Biguanides (mainly metformin) were associated with lower odds of severe illness
among the infected (model A: OR for 2-year time window = 0.60, CI: 0.42–0.86) and in
the population (model C; OR 1 year = 0.67, CI: 0.51–0.88). Other drugs of interest include
beta-blockers, which were associated with lower risk of infection among tested subjects
(model F, OR 1 year = 0.80, CI: 0.70–0.91), and CCBs (C08CA) which were associated with
lower odds of severe disease in the population (model C, OR 1 year: 0.76, CI: 0.64–0.90).
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3.1.3. Vaccines

Significant associations for vaccines with FDR < 0.05 are shown in Table 5. One of the
most consistent associations was observed for influenza vaccines. Protective associations
were observed across almost all models (B to H), and across all time windows. Flu vaccina-
tion was associated with lower odds of infection when compared to population controls
(model E; OR 1 year = 0.73, CI: 0.65–0.83) or compared to test-negative individuals (model
F; OR 1 year = 0.60, CI: 0.53–0.68). Similar protective effects were also observed when
restricting the cases to severe cases (model C: OR 1 year = 0.74; CI: 0.60–0.91; model G: OR
1 year = 0.61, CI: 0.50–0.76). Association with lower odds of mortality was also observed,
although the confidence interval is wide as the number of fatal cases was small (model D:
OR 1 year = 0.28, CI: 0.13–0.63; model H: OR 1 year = 0.23, CI: 0.11–0.52). The effect sizes in
general became weaker with longer time windows.

Table 5. Vaccines with significant protective associations (limited to FDR < 0.05) within time windows of 1, 2, 5, and 10 years.

Window Model ATC Code OR conf.low conf.high p FDR.BH Full Name
1 year F J07AL 0.50 0.31 0.82 5.29 × 10−3 4.65 × 10−2 Pneumococcal vaccines
2 years F J07AL 0.59 0.42 0.82 1.59 × 10−3 2.17 × 10−2 Pneumococcal vaccines
5 years E J07AL 0.70 0.55 0.89 3.81 × 10−3 1.62 × 10−2 Pneumococcal vaccines
5 years F J07AL 0.61 0.47 0.79 1.47 × 10−4 3.27 × 10−3 Pneumococcal vaccines

10 years E J07AL 0.78 0.67 0.91 1.89 × 10−3 8.52 × 10−3 Pneumococcal vaccines
10 years F J07AL 0.67 0.57 0.78 9.39 × 10−7 4.23 × 10−6 Pneumococcal vaccines
10 years G J07AL 0.67 0.51 0.87 3.32 × 10−3 9.20 × 10−3 Pneumococcal vaccines
5 years F J07AM 0.45 0.29 0.68 1.93 × 10−4 3.73 × 10−3 Tetanus vaccines

10 years E J07AM 0.65 0.45 0.92 1.60 × 10−2 4.23 × 10−2 Tetanus vaccines
10 years F J07AM 0.49 0.34 0.71 1.69 × 10−4 3.80 × 10−4 Tetanus vaccines
5 years F J07AP 0.70 0.58 0.84 1.60 × 10−4 3.30 × 10−3 Typhoid vaccines

10 years E J07AP 0.86 0.76 0.97 1.88 × 10−2 4.23 × 10−2 Typhoid vaccines
10 years F J07AP 0.76 0.67 0.88 1.18 × 10−4 3.55 × 10−4 Typhoid vaccines
10 years G J07AP 0.74 0.58 0.95 1.61 × 10−2 2.82 × 10−2 Typhoid vaccines
1 year C J07BB 0.74 0.60 0.91 3.80 × 10−3 1.08 × 10−2 Influenza vaccines
1 year D J07BB 0.28 0.13 0.63 1.92 × 10−3 4.68 × 10−3 Influenza vaccines
1 year E J07BB 0.73 0.65 0.83 5.93 × 10−7 4.50 × 10−6 Influenza vaccines
1 year F J07BB 0.60 0.53 0.68 2.94 × 10−15 6.97 × 10−13 Influenza vaccines
1 year G J07BB 0.61 0.50 0.76 4.35 × 10−6 1.09 × 10−4 Influenza vaccines
1 year H J07BB 0.23 0.11 0.52 4.04 × 10−4 3.32 × 10−3 Influenza vaccines
2 years C J07BB 0.75 0.62 0.90 2.01 × 10−3 7.27 × 10−3 Influenza vaccines
2 years D J07BB 0.30 0.15 0.60 7.22 × 10−4 2.30 × 10−3 Influenza vaccines
2 years E J07BB 0.75 0.68 0.84 4.83 × 10−7 4.83 × 10−6 Influenza vaccines
2 years F J07BB 0.62 0.55 0.70 4.38 × 10−16 1.14 × 10−13 Influenza vaccines
2 years G J07BB 0.62 0.52 0.75 8.86 × 10−7 2.78 × 10−5 Influenza vaccines
2 years H J07BB 0.25 0.12 0.50 9.64 × 10−5 9.11 × 10−4 Influenza vaccines
5 years D J07BB 0.53 0.32 0.86 9.80 × 10−3 3.83 × 10−2 Influenza vaccines
5 years E J07BB 0.80 0.73 0.88 7.01 × 10−6 5.79 × 10−5 Influenza vaccines
5 years F J07BB 0.66 0.60 0.73 7.67 × 10−16 1.11 × 10−13 Influenza vaccines
5 years G J07BB 0.69 0.59 0.81 8.14 × 10−6 2.93 × 10−4 Influenza vaccines
5 years H J07BB 0.44 0.27 0.72 1.12 × 10−3 1.07 × 10−2 Influenza vaccines

10 years D J07BB 0.59 0.39 0.90 1.51 × 10−2 4.54 × 10−2 Influenza vaccines
10 years E J07BB 0.82 0.75 0.89 6.70 × 10−6 6.03 × 10−5 Influenza vaccines
10 years F J07BB 0.67 0.61 0.74 5.16 × 10−17 4.64 × 10−16 Influenza vaccines
10 years G J07BB 0.69 0.59 0.80 9.82 × 10−7 6.87 × 10−6 Influenza vaccines
10 years H J07BB 0.50 0.32 0.76 1.44 × 10−3 4.31 × 10−3 Influenza vaccines
1 year F J07CA 0.56 0.38 0.84 4.30 × 10−3 3.97 × 10−2 Bacterial and viral vaccines, combined
2 years F J07CA 0.71 0.57 0.89 3.05 × 10−3 3.59 × 10−2 Bacterial and viral vaccines, combined

10 years F J07CA 0.85 0.78 0.94 7.85 × 10−4 1.41 × 10−3 Bacterial and viral vaccines, combined
10 years G J07CA 0.78 0.66 0.92 3.94 × 10−3 9.20 × 10−3 Bacterial and viral vaccines, combined

For space limits, only results with FDR < 0.05 are shown. Please refer to Table S4 for full results.

In view of the significant findings, we repeated the analyses on flu vaccines with other
ways to define the exposure (Table S14). First, we defined the exposure based on the actual
season of vaccination instead of any vaccines received in the past k years. For people who
had received flu vaccination in 2019–2020 (regardless of vaccination in other years), the
OR for infection was 0.60 (CI: 0.53–0.68), compared to those who had not (test-negative
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subjects as controls, model F; same below). The OR was attenuated to 0.76 (CI: 0.67–0.87)
if the exposure was defined as flu vaccination in 2015–2016 (regardless of vaccination in
other years). We then narrowed down the exposure as receiving flu vaccine in the last
season (2019–2020) but not in 2018–2019; the resulting OR was 0.67 (CI: 0.53–0.83). On
the other hand, if we considered exposure as vaccination in 2018–19 but not 2019–20, the
OR became weaker and nonsignificant (OR = 0.80, CI: 0.63–1.01). Those who received the
vaccine consecutively for the last two seasons had similar but slightly stronger protection
from infection (OR = 0.59, CI: 0.51–0.69); however, the CI overlaps with other estimates. A
similar pattern of association was observed for model E (population controls). In general,
more recent vaccination was associated with stronger protective effects.

Pneumococcal vaccines were also associated with protection against infection, espe-
cially within tested subjects (model F: OR 1 year = 0.50, CI: 0.31–0.82), which shows a trend
of attenuation with longer time windows (OR for 10-year window = 0.67, CI: 0.51–0.87).
Another group of vaccines showing protective effects is J07CA (bacterial and viral vaccines),
which was significant under model F (OR for 1-year window: 0.56, CI: 0.38–0.84); it also
showed weakening of effect over time. Other significant associations included tetanus and
typhoid vaccines, which were observed to be protective against infections.

3.1.4. Other Drugs Showing Protective Associations

Significant results for other drugs having protective effects and FDR < 0.05 are shown
in Table 6. As for other drugs, proton pump inhibitors (PPI) were associated with lower
odds of infection when we compared test-positive against test-negative patients (model
F: OR 1 year = 0.77, CI: 0.71–0.83); the ORs showed a gradient with largest effect within
6 month of use (OR = 0.72) and became weaker at the 5-year time window (OR = 0.87). PPI
was also significantly associated with lower severity of disease.

Natural and semisynthetic estrogens (ATC G03CA) were linked to lower risk of
infection and severity in the tested population (model F: OR 1 year = 0.67, CI: 0.58–0.78),
which showed attenuation of effect over time. The largest effect size was noted within
6 months of use (OR = 0.63), which was attenuated for a 5-year time window (OR = 0.73).
Similar protective associations were observed under model G, with severity as the outcome.

Prior use of thyroid hormones was consistently associated with lower risk of infection
and severity, no matter whether the general population or test-negative individuals were
considered as controls. The ORs were similar across all time windows. For model E
(infected vs. population), the OR for 1-year time window was 0.80 (CI 0.71 to 0.92), which
was close to the effect size under model F (infected vs. test-negative). For model C
(hospitalized/fatal cases vs. population), the OR for 1-year time window was 0.62 (CI 0.48
to 0.79), and it was similar when constrained to tested subjects.



Pharmaceutics 2021, 13, 1514 12 of 26

Table 6. Other drugs with significant protective associations (limited to FDR < 0.05) within time windows of 6, 12, and
24 months.

Window Model ATC Code OR conf.low conf.high p FDR.BH Full Name
0.5 year F A02BC 0.72 0.67 0.79 1.05 × 10−13 2.18 × 10−11 Proton pump inhibitors
0.5 year G A02BC 0.70 0.61 0.81 1.06 × 10−6 2.08 × 10−5 Proton pump inhibitors
1 year A A02BC 0.77 0.65 0.91 2.37 × 10−3 1.78 × 10−2 Proton pump inhibitors
1 year F A02BC 0.77 0.71 0.83 2.01 × 10−11 2.38 × 10−9 Proton pump inhibitors
1 year G A02BC 0.66 0.58 0.76 1.56 × 10−9 7.80 × 10−8 Proton pump inhibitors
2 years A A02BC 0.77 0.66 0.90 1.05 × 10−3 1.80 × 10−2 Proton pump inhibitors
2 years F A02BC 0.80 0.74 0.86 2.94 × 10−9 2.55 × 10−7 Proton pump inhibitors
2 years G A02BC 0.68 0.59 0.77 1.81 × 10−9 9.96 × 10−8 Proton pump inhibitors
2 years F A03FA 0.51 0.37 0.70 3.67 × 10−5 1.19 × 10−3 Propulsives
1 year F A09AA 0.24 0.09 0.64 4.19 × 10−3 3.97 × 10−2 Enzyme preparations
2 years F A09AA 0.23 0.09 0.60 2.81 × 10−3 3.48 × 10−2 Enzyme preparations

0.5 year F A12AX 0.80 0.69 0.93 2.74 × 10−3 3.49 × 10−2 Calcium, combinations with vitamin D and/or
other drugs

1 year F A12AX 0.83 0.72 0.94 4.36 × 10−3 3.97 × 10−2 Calcium, combinations with vitamin D and/or
other drugs

1 year F B03AA 0.74 0.60 0.91 4.00 × 10−3 3.97 × 10−2 Iron bivalent, oral preparations
2 years F C05AE 0.33 0.16 0.69 3.18 × 10−3 3.59 × 10−2 Muscle relaxants
0.5 year F G03CA 0.63 0.52 0.76 3.03 × 10−6 1.58 × 10−4 Natural and semisynthetic estrogens, plain
1 year F G03CA 0.67 0.58 0.78 4.08 × 10−7 2.42 × 10−5 Natural and semisynthetic estrogens, plain
2 years F G03CA 0.70 0.61 0.80 1.89 × 10−7 9.83 × 10−6 Natural and semisynthetic estrogens, plain
2 years G G03CA 0.66 0.51 0.86 2.43 × 10−3 3.35 × 10−2 Natural and semisynthetic estrogens, plain
0.5 year F G04CB 0.63 0.46 0.85 3.02 × 10−3 3.49 × 10−2 Testosterone-5-alpha reductase inhibitors
0.5 year F H03AA 0.80 0.69 0.92 2.24 × 10−3 3.11 × 10−2 Thyroid hormones
0.5 year G H03AA 0.66 0.51 0.86 2.10 × 10−3 1.96 × 10−2 Thyroid hormones
1 year C H03AA 0.62 0.48 0.79 1.77 × 10−4 6.57 × 10−4 Thyroid hormones
1 year E H03AA 0.80 0.71 0.92 9.47 × 10−4 4.23 × 10−3 Thyroid hormones
1 year F H03AA 0.81 0.71 0.93 2.51 × 10−3 2.98 × 10−2 Thyroid hormones
1 year G H03AA 0.64 0.49 0.82 5.53 × 10−4 6.50 × 10−3 Thyroid hormones
2 years C H03AA 0.62 0.48 0.79 1.50 × 10−4 7.36 × 10−4 Thyroid hormones
2 years E H03AA 0.80 0.70 0.91 5.94 × 10−4 2.81 × 10−3 Thyroid hormones
2 years F H03AA 0.81 0.71 0.93 2.57 × 10−3 3.35 × 10−2 Thyroid hormones
2 years G H03AA 0.64 0.50 0.83 6.06 × 10−4 9.52 × 10−3 Thyroid hormones
1 year F J01MA 0.49 0.34 0.72 2.40 × 10−4 5.93 × 10−3 Fluoroquinolones
2 years F J01MA 0.59 0.46 0.76 5.39 × 10−5 1.56 × 10−3 Fluoroquinolones
0.5 year F L02AE 0.29 0.14 0.60 9.84 × 10−4 1.86 × 10−2 Gonadotropin releasing hormone analogues
1 year F L02AE 0.41 0.23 0.72 2.02 × 10−3 2.62 × 10−2 Gonadotropin releasing hormone analogues
2 years F L02AE 0.42 0.25 0.70 9.73 × 10−4 1.49 × 10−2 Gonadotropin releasing hormone analogues
0.5 year F M01AE 0.68 0.56 0.82 4.61 × 10−5 1.37 × 10−3 Propionic acid derivatives
1 year F M01AE 0.79 0.70 0.91 6.65 × 10−4 1.29 × 10−2 Propionic acid derivatives

0.5 year F N02AX 0.56 0.41 0.76 1.88 × 10−4 4.33 × 10−3 Other opioids
1 year F N02AX 0.63 0.49 0.80 1.63 × 10−4 4.84 × 10−3 Other opioids
2 years F N02AX 0.68 0.56 0.83 1.14 × 10−4 2.29 × 10−3 Other opioids
0.5 year F N03AX 0.68 0.58 0.81 1.72 × 10−5 5.96 × 10−4 Other antiepileptics
1 year F N03AX 0.70 0.60 0.82 1.00 × 10−5 3.95 × 10−4 Other antiepileptics
2 years F N03AX 0.73 0.64 0.84 7.15 × 10−6 3.10 × 10−4 Other antiepileptics
0.5 year F N06AA 0.77 0.65 0.92 3.99 × 10−3 4.15 × 10−2 Nonselective monoamine reuptake inhibitors
1 year F N06AA 0.79 0.68 0.92 1.98 × 10−3 2.62 × 10−2 Nonselective monoamine reuptake inhibitors
2 years F N06AA 0.79 0.70 0.90 2.67 × 10−4 4.96 × 10−3 Nonselective monoamine reuptake inhibitors
1 year A R03BA 0.48 0.31 0.73 7.44 × 10−4 7.44 × 10−3 Glucocorticoids
2 years A R03BA 0.55 0.38 0.81 2.44 × 10−3 3.36 × 10−2 Glucocorticoids
0.5 year F R05DA 0.69 0.55 0.87 1.46 × 10−3 2.33 × 10−2 Opium alkaloids and derivatives
1 year F R05DA 0.74 0.62 0.88 5.47 × 10−4 1.18 × 10−2 Opium alkaloids and derivatives
2 years F R05DA 0.80 0.70 0.91 7.02 × 10−4 1.22 × 10−2 Opium alkaloids and derivatives

For space limits, only results with FDR < 0.05 are shown. Please refer to Tables S3 and S6 for full results. Ophthalmological and other
topical agents are not listed in the above table.

3.1.5. Drugs Ranked by Consistency of Protective Associations

We also ranked the drugs in term of their consistency of protective associations. Briefly,
drugs were ranked by their frequency of being at least nominally significant (p < 0.05)
across the four time windows and eight models (Table 4). This serves as an alternative
approach to prioritize drugs. For some drugs, the results may not be significant after FDR
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correction. Nevertheless, if a drug showed consistent associations (at least nominally)
across multiple models or time-frames, it may also be worthy of further investigation.

3.1.6. Drug Associated with Increased Odds of Risk/Severity of Infection

Among the drugs with harmful associations, the more frequently top-listed ones
include laxatives, opioids (N02AA), benzodiazepines, tetracycline, penicillins, other an-
tipsychotics (N05AX), and antidementia drugs (N06DA/DX). The full results are presented
in Tables S6–S10, and a summary is also provided in Table S5.

3.2. Analysis Restricted to Subjects with Complete Covariate Data, and Models with/without IPW

As a sensitivity analysis, for the above analysis with imputed covariates, we also
repeated models A to H without IPW of Pr(tested). In addition, we also repeated the
analyses, limiting to subjects with complete covariate data, with or without the IPW
approach. In general, we observed similar drugs with significant results, and the top-
ranked protective or harmful drugs were similar to the above. Comparing results with and
without IPW, the list of significant drugs remained similar although the OR estimates and
SE were adjusted. The full results are presented in Tables S7 and S8 (complete covariate
data with and without IPW) and Table S9 (imputed covariates without IPW).

3.3. Subgroup Analysis

The proportion of subjects falling into each subgroup is presented in Table S10, while
full results are presented in Table S11. We performed a statistical test to compare the log(OR)
across the two subgroups with and without the risk factor; drugs with protective effect
in one subgroup but significantly different OR in the other subgroup are listed in Table 7.
For example, the protective effects of pneumococcal and flu vaccines were significantly
weaker in obese (BMI > 30) subjects under model F. With regards to age, several drugs, such
as PPI and ACEI, showed larger protective effects in those with age > 70 under models
F and E, respectively. Statins, ACEIs, and PPI showed stronger protective associations
in hypertensive patients under models C, E, and F, respectively. Regarding ethnicity as
a subgroup, a number of drugs, including several vaccines, appeared to have stronger
protective effects in the white compared to non-white subjects. However, only <10%
of the UKBB subjects included here were non-white, and the non-white subgroup was
heterogeneous and composed of several different ethnicities. We did not observe clear
evidence of sex-specific effects in this analysis.

Table 7. Summary of subgroup analysis, showing drugs having significant protective association in one subgroup but
significantly different OR in the other subgroup (FDR < 0.2).

Subgp Windows Model OR_Y OR_N sig_Y sig_N z_OR_cmp p_OR_cmp p.adjust_OR_cmp Name

AGE > 70 5 years F 0.81 0.99 1 0 −2.65 8.15 × 10−3 1.47 × 10−1 A02BC Proton pump inhibitors

AGE > 70 1 year E 1.19 0.49 0 1 2.11 3.47 × 10−2 1.56 × 10−1 A10AE Insulins and analogues
for injection, long-acting

AGE > 70 1 year E 0.81 1.04 1 0 −2.38 1.72 × 10−2 1.55 × 10−1 C09AA ACE inhibitors, plain
Asthma 5 years E 0.60 0.86 1 1 −2.66 7.76 × 10−3 1.40 × 10−1 J07BB Influenza vaccines
Asthma 10 years E 0.61 0.87 1 1 −2.95 3.22 × 10−3 1.29 × 10−2 J07BB Influenza vaccines

BMI > 30 1 year F 1.04 0.31 0 1 2.42 1.56 × 10−2 1.40 × 10−1 J07AL Pneumococcal vaccines
BMI > 30 1 year F 0.76 0.54 1 1 2.52 1.17 × 10−2 1.40 × 10−1 J07BB Influenza vaccines
BMI > 30 2 years F 0.79 0.56 1 1 2.75 6.01 × 10−3 1.08 × 10−1 J07BB Influenza vaccines
BMI > 30 6 months F 0.92 0.16 0 1 2.68 7.40 × 10−3 1.26 × 10−1 R03BA Glucocorticoids

CAD 5 years H 0.36 1.32 1 0 −2.39 1.71 × 10−2 1.53 × 10−1 C08CA Dihydropyridine
derivatives

CAD 5 years H 1.72 0.18 0 1 2.42 1.53 × 10−2 1.53 × 10−1 G04CB Testosterone-5-alpha
reductase inhibitors

CAD 5 years C 1.92 0.56 0 1 2.38 1.72 × 10−2 1.55 × 10−1 J07AL Pneumococcal vaccines
CAD 5 years F 1.55 0.56 0 1 2.55 1.07 × 10−2 1.92 × 10−1 J07AL Pneumococcal vaccines
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Table 7. Cont.

Subgp Windows Model OR_Y OR_N sig_Y sig_N z_OR_cmp p_OR_cmp p.adjust_OR_cmp Name

Depression 1 yearr B 0.07 0.73 1 0 −2.60 9.36 × 10−3 1.50 × 10−1 C10AA HMG CoA reductase
inhibitors

HT 2 years F 0.75 0.93 1 0 −2.69 7.20 × 10−3 1.30 × 10−1 A02BC Proton pump inhibitors
HT 5 years F 0.76 1.00 1 0 −3.36 7.92 × 10−4 1.43 × 10−2 A02BC Proton pump inhibitors
HT 1 year E 0.86 1.07 1 0 −2.11 3.49 × 10−2 1.26 × 10−1 C09AA ACE inhibitors, plain

HT 1 year C 0.71 1.02 1 0 −2.58 9.90 × 10−3 8.91 × 10−2 C10AA HMG CoA reductase
inhibitors

OR_Y, odds ratio within the subgroup defined in the 1st column; OR_N, OR in the other subgroup. Sig_Y, sig_N, significance in the two
subgroups, 1 denotes significant protective effect, 0 denotes nonsignificant effect, −1 denotes significant harmful effect. p_OR_cmp, p-value
based on comparison of ORs; p.adjust_OR_cmp, corresponding FDR. Ethnicity as a subgroup is not shown here; please refer to Table S11
for details. CAD, coronary artery disease, HT, hypertension.

3.4. Interaction Analysis

A summary of results (results with FDR < 0.2) is presented in Table 8, while a fuller
version is given in Table S12. Full results are given in Table S13. More significant results
(at FDR < 0.2) are observed compared to stratified analysis, presumably due to the higher
power of this approach. For example, we found that most vaccines showing protective
effects, including influenza and pneumococcal vaccines, interacted with BMI and obesity
significantly. Higher BMI was associated with reduced protective effects, in line with
evidence from subgroup analysis.

On the other hand, statins, biguanides (metformin), and antiplatelet drugs showed
positive interactions with BMI. For CAD, significant interaction was observed with several
cardiometabolic drugs, including beta-blockers (nonselective), antiplatelet drugs, and
statins, suggesting larger protective effects for such drugs in CAD patients. In a similar
vein, most cardiometabolic medications showed interaction with HT, indicating more
prominent protective associations in HT patients.

Considering age as an interacting variable, interaction was observed with a large
number of drugs, most suggesting weaker protection as age increases. Considering specific
medications, statins interact with multiple risk factors and demonstrate larger protective
effects with CAD, obesity, DM, CAD, HT, dementia, and in males. However, its effect tends
to be weaker with increasing age. Interaction analysis with flu vaccines showed that its
effect may be weaker in the obese and with increasing age, but was stronger in the white
population and asthmatic subgroup. ACEI and ARB showed stronger protective effects in
the white and HT patients, but weaker effects with advanced age.

3.5. Controlling for Other Medications

We primarily focused on protective drugs, as the number of drugs with significant
negative effects is large and is hard to control for all. Overall, most drugs with protective
effects remain significant (at least for a subset of models), despite controlling for other
medications (Table S15). However, biguanides (A10BA), CCB (C08CA), and platelet ag-
gregation inhibitors, excluding heparin (B01AC), showed a relatively consistent trend of
nonsignificant association with outcome when other protective drugs were controlled
for. The findings are similar when controlling for top-10/20 drugs or all protective drugs
having FDR < 0.05/0.1.
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Table 8. Summary of interaction analysis, showing pairs of variables with significant interactions (FDR < 0.2).

ATC
Code

Interacting
Factor Drug Name Interaction

Term
ATC
Code

Interacting
Factor Drug Name Interaction

Term
A02BC AGE Proton pump inhibitors 1/−1 A02BC CAD Proton pump inhibitors 1

A03AA AGE
Synthetic anticholinergics,
esters with tertiary amino

group
−1 A03AA CAD

Synthetic anticholinergics,
esters with tertiary amino

group
1

A10AE AGE Insulins and analogues for
injection, long-acting −1 B01AC CAD Platelet aggregation

inhibitors excl. heparin 1

B01AC AGE Platelet aggregation
inhibitors excl. heparin −1 C07AB CAD Beta blocking agents,

selective 1

C07AB AGE Beta blocking agents,
selective −1 C10AA CAD HMG CoA reductase

inhibitors 1

C08CA AGE Dihydropyridine derivatives −1 J07AL CAD Pneumococcal vaccines −1

C09AA AGE ACE inhibitors, plain −1 C10AA Dementia HMG CoA reductase
inhibitors 1

C09CA AGE Angiotensin II receptor
blockers, plain −1 J07CA Dementia Bacterial and viral vaccines,

combined −1

C10AA AGE HMG CoA reductase
inhibitors −1 C08CA COPD Dihydropyridine derivatives −1

G04CB AGE Testosterone-5-alpha
reductase inhibitors −1 J07AP COPD Typhoid vaccines −1

J07AL AGE Pneumococcal vaccines −1 A03AA Depression
Synthetic anticholinergics,
esters with tertiary amino

group
−1

R03BA AGE Glucocorticoids 1 C10AA DM HMG CoA reductase
inhibitors 1

A02BC AGE > 70 Proton pump inhibitors −1 A02BC Dx_cancer Proton pump inhibitors −1

A10AE AGE > 70 Insulins and analogues for
injection, long-acting −1 J07AL Dx_cancer Pneumococcal vaccines −1

A10BA AGE > 70 Biguanides −1 A10BA Ethnic
(White) Biguanides 1

B01AC AGE > 70 Platelet aggregation
inhibitors excl. heparin −1 C08CA Ethnic

(White) Dihydropyridine derivatives 1

C07AB AGE > 70 Beta blocking agents,
selective −1 C09AA Ethnic

(White) ACE inhibitors, plain 1

C08CA AGE > 70 Dihydropyridine derivatives −1 C09CA Ethnic
(White)

Angiotensin II receptor
blockers, plain 1

C09AA AGE > 70 ACE inhibitors, plain −1 H03AA Ethnic
(White) Thyroid hormones 1

C10AA AGE > 70 HMG CoA reductase
inhibitors −1 J07AL Ethnic

(White) Pneumococcal vaccines 1

G04CB AGE > 70 Testosterone-5-alpha
reductase inhibitors −1 J07AP Ethnic

(White) Typhoid vaccines 1

J07AL AGE > 70 Pneumococcal vaccines −1 J07BB Ethnic
(White) Influenza vaccines 1

J07BB AGE > 70 Influenza vaccines −1 A02BC Hypertension Proton pump inhibitors −1

R03BA AGE > 70 Glucocorticoids −1 A03AA Hypertension
Synthetic anticholinergics,
esters with tertiary amino

group
1

A10AE Asthma Insulins and analogues for
injection, long-acting −1 B01AC Hypertension Platelet aggregation

inhibitors excl. heparin 1

A10BA Asthma Biguanides −1 C07AB Hypertension Beta blocking agents,
selective 1

C08CA Asthma Dihydropyridine derivatives −1 C08CA Hypertension Dihydropyridine derivatives 1

C09CA Asthma Angiotensin II receptor
blockers, plain −1 C09AA Hypertension ACE inhibitors, plain 1

J07AL Asthma Pneumococcal vaccines −1 C09CA Hypertension Angiotensin II receptor
blockers, plain 1

J07BB Asthma Influenza vaccines 1 C10AA Hypertension HMG CoA reductase
inhibitors 1

A02BC BMI Proton pump inhibitors 1 J07AL Hypertension Pneumococcal vaccines −1

A03AA BMI
Synthetic anticholinergics,
esters with tertiary amino

group
−1 B01AC Obesity Platelet aggregation

inhibitors excl. heparin 1
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Table 8. Cont.

ATC
Code

Interacting
Factor Drug Name Interaction

Term
ATC
Code

Interacting
Factor Drug Name Interaction

Term

A10BA BMI Biguanides 1 C10AA Obesity HMG CoA reductase
inhibitors 1

B01AC BMI Platelet aggregation
inhibitors excl. heparin 1 J07AL Obesity Pneumococcal vaccines −1

C10AA BMI HMG CoA reductase
inhibitors 1 J07BB Obesity Influenza vaccines −1

J07AL BMI Pneumococcal vaccines −1 A02BC Sex (male) Proton pump inhibitors 1

J07AP BMI Typhoid vaccines −1 C10AA Sex (male) HMG CoA reductase
inhibitors 1

J07BB BMI Influenza vaccines −1 J07AL Sex (male) Pneumococcal vaccines −1

J07CA BMI Bacterial and viral vaccines,
combined −1 J07AP Sex (male) Typhoid vaccines 1

We added an interaction term drug*interacting factor in the regression model. For “interaction term”, 1 denotes significant interaction
effects towards protection (i.e., presence of the interacting factor tends to increase the protective effect of the drug); −1 denotes significant
interaction effects towards harmful side (presence of the interacting factor tends to reduce the protective effect of the drug). We consider
significant results in any model or time window. For age and BMI, they were modeled as continuous variables unless otherwise specified.
For full results, please refer to Tables S12 and S13.

4. Discussion

In this work, we performed a thorough and rigorous analysis on the effect of drugs
and vaccines on COVID-19 susceptibility and severity. We uncovered a number of drugs
with potentially protective effects, which may be further explored as candidates for drug
repositioning.

As an approach based on observational data, different kinds of bias, such as confound-
ing and selection bias, may affect the results. We performed analysis on infected subjects
(models A and B), the whole population (models C, D, E) and the tested population (models
F, G, H) to obtain a more comprehensive picture of drug effects under different settings,
and to avoid limitations (e.g., selection bias, collider bias, unscreened controls) of some
designs.

4.1. Highlights of Relevant Drugs

Below, we highlight drugs that are tentatively associated with altered risk or severity
of infection. We preferentially consider drugs that showed significant associations across
multiple models and time windows, those with stronger statistical significance, and those
with protective effects, as confounding by indication is much less likely.

4.1.1. Drugs for Cardiometabolic Disorders with Protective Effects

Interestingly, many drugs with potential protective effects are indicated for car-
diometabolic (CM) disorders. Cardiometabolic risk factors, such as obesity, hypertension,
DM, and CAD, have consistently been shown to be associated with risk and severity of
infection [15,40]; as such, it is biologically plausible that drugs for treating CM disorders
may be beneficial.

Among all drugs, the strongest and most consistent protective association was ob-
served for statins. The beneficial effects of statins are supported by several previous
studies. For example, a recent meta-analysis of four retrospective studies of COVID-19
patients [41] showed a significantly decreased hazard of severity or mortality of infection
(pooled HR = 0.70) when comparing statin users against nonusers. Another retrospective
study by Tan et al. [42] also reported lower risk of intensive care unit (ICU) admission
among statin users in infected patients. Yet another work showed that statins may be effec-
tive in reducing in-hospital mortality among diabetic patients [43]. Potential mechanisms
for the protective actions of statins have been discussed elsewhere [44–46]. It has been
postulated that, besides reducing CVD risks, statins may reduce risk/severity of infection
by inhibiting inflammation and excessive immune response, producing direct antiviral
effects, improving endothelial function, and exerting an antithrombotic effect, among other
actions [44–46].
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Another group of drugs worth highlighting is ACEI and ARB. There have been intense
discussions on whether ACEI/ARB may affect risk or severity of infection from early on,
as ACE2 is a receptor for SARS-CoV-2. Nevertheless, a recent study showed that ACE2 is
localized in respiratory cilia, and the use of ARB/ACEI does not change its expression [47].
Recent systemic reviews and meta-analysis (for example, see [48] with continuous updates)
of observational studies do not support an association between ACEI/ARB prior use and
severity of infection. However, several studies [47,49–55] reported protective effects of
ACEI/ARB on severity or mortality of disease. Here, we observed consistent association of
prior use of ACEI/ARB with reduced risks of severe/fatal infection (models A, C, G) and
overall infection risk in the population (model E).

For several other kinds of cardiometabolic drugs, the associations were not as strong,
but may still be worthy of further studies. Biguanides (mainly metformin) are observed to
be protective for severe COVID-19 infection, both among the infected and at a population
level. For example, in a meta-analysis on four observational studies of hospitalized patients
mostly with type 2 DM, the use of metformin was associated with a lower risk of mortality
(OR = 0.75, 95% CI = 0.67–0.85) [56]. A number of mechanisms have been proposed [56,57].
For example, besides improving glycemic control and weight reduction, metformin may
lead to AMPK activation which potentially reduces viral entry by phosphorylation of ACE2
receptor. It may also lead to mTOR pathway inhibition and prevents hyperactivation of the
immune system [56].

Other drugs of interest may include beta-blockers and calcium channel blockers
(C08CA, dihydropyridine derivatives). It was suggested that beta-blockers may be useful
in preventing hyperinflammation and hence beneficial for COVID-19 [58]. For calcium
channel blockers (CCBs), a study using cell culture suggested that CCBs, especially am-
lodipine and nifedipine, were useful in blocking viral entry and infection in epithelial lung
cells [59]. In another retrospective study [60], both beta-blockers and CCBs were associated
with lower mortality. Another relevant study in the UK [61] utilized data from the UK
Clinical Practice Research Datalink (CPRD) and found that ACEI/ARB, CCBs, and thiazide
diuretics were all associated with lower odds of diagnosis, while beta-blockers do not show
any association after adjusting for consultation frequency. None of the above drugs were
associated with mortality in that study [61].

4.1.2. Vaccines

There has been intense interest in whether vaccines indicated for other diseases may
protect against COVID-19. Here, we observed that a number of vaccines showed protection
against infection or severe infection. For example, pneumococcal vaccines were protective
against infection in the population and tested subjects, and risk of severe infection (model
G). Significant protective associations were also observed for tetanus and typhoid vaccines
at a time horizon of 10 years (the power to detect associations is likely stronger over
longer periods due to larger number of people having received the vaccine; it does not
exclude the possibility that the vaccines may have effects over shorter time windows). We
also observed associations with the J07CA category, which contains various bacterial and
viral vaccines (see https://www.whocc.no/atc_ddd_index/?code=J07CA, accessed on 9
November 2020).

For influenza vaccines, we observed highly consistent protective associations. It has
been proposed that “trained innate immunity”, which may involve epigenetic reprogram-
ming of innate immune cells, may enable a vaccine to protect against other diseases [62,63].
Interestingly, two studies in Italy reported that higher coverage rate of flu vaccine was
associated with lower rate of infection, hospitalization, and mortality from COVID-19.
Another larger-scale study, based on electronic records of 137,037 subjects who have re-
ceived viral PCR tests, showed that a number of vaccines (given in the past 1, 2, or 5 years)
were associated with lower risks of infection [64]. These included flu and pneumococcal
vaccines also implicated in the present study. Another recent study in the Netherlands [65]
also showed a reduced risk (Relative risk = 0.61, 95% CI: 0.46–0.82) of infection among

https://www.whocc.no/atc_ddd_index/?code=J07CA
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recipients of flu vaccine, and this effect size was similar to that observed here. In vitro
studies by the same authors showed that the vaccine was able to induce a trained immunity
response, including an increase of cytokine responses after stimulation of immune cells
with SARS-CoV-2.

We note that this is an observational study, and residual confounding may be present.
For example, it is possible that people receiving flu vaccines are more health-conscious
and observe preventive measures better. However, we observed waning protective effects
over time, which makes sense biologically but could not be entirely explained by the above
confounder alone. In addition, the vaccine appears to have stronger effect sizes if fatal
infection is considered as the outcome (although the confidence interval is large), which
cannot be easily explained by health-consciousness. On the other hand, as flu vaccines
are more likely to be received by the elderly and those with chronic illnesses, residual
confounding of these factors tend to push the effects towards the harmful side.

Taken together, we believe that the protective effects of vaccines may not be easily
and fully explained away by other confounders. Further experimental and clinical studies
are warranted to investigate the nonspecific effects of flu and other vaccines, especially
since COVID-19 vaccines may not be easily available to many people (especially those in
low-income countries) in a short timeframe.

4.1.3. Other Potential Protective Drugs

We briefly highlight a few other drugs with potential protective effects. Estrogens
(G03CA) were among the drugs showing protective associations. As many studies reported
higher risks of severe disease in men than in women, it has been hypothesized that estrogen
may play a part in the sex-discordant outcomes, for example via its effects on immune
response to infections [66–68].

Thyroid hormones (TH) were also among the top-ranked drugs. It was postulated
that TH may ameliorate tissue injury due to hypoxia by suppression of p38 MAPK [69].
Clinical trials on TH are ongoing [69,70], and our findings support a protective role of TH
in COVID-19.

Another drug category of note is proton pump inhibitors (PPI). Several studies have
suggested harmful effects of PPI on disease severity, which may be related to reduced
gastric acid production with subsequent bacterial overgrowth [71–73]. However, an in vitro
screening study revealed that PPIs may serve as a potent inhibitor of SARS-CoV-2 replica-
tion [74]. The difference in findings between the current study and previous works may be
due to heterogeneity in study samples and designs, differences in the outcome studied (e.g.,
hospitalization vs. ICU admission used in some other studies; infection risk vs. severity of
disease, etc.), and variations in the covariates being adjusted for. Residual confounding,
such as by other comorbidities and drugs given, may also affect the results. Interestingly,
we observed that effects of PPI may be stronger in certain subgroups (e.g., older age, HT),
which may also account for the discrepancy in results across different studies.

Several other top-ranked drug categories in Table 4 may also be worth discussing.
Testosterone-5-alpha reductase inhibitors (5ARis) were recently shown in a small random-
ized controlled trial (RCT) to reduce the time to remission [75]. Two earlier observational
studies also reported lower risk of ICU admission and frequency of symptoms [76,77];
5ARis block the conversion of testosterone to its more potent form, dihydrotestosterone.
Of note, one of the key receptors for the SAR-CoV-2 virus is TMPRSS2 [78], and the only
known promoter of the gene is an androgen response element in the promoter region [79].

Another drug category of interest is platelet aggregation inhibitors (B01AC). It has
been reported that COVID-19 is associated with higher risk of thrombotic events, including
deep vein thrombosis and pulmonary embolism [80]. Antithrombotic therapies have
been hypothesized to reduce thrombo-inflammatory processes as a result of endothelial
dysfunction related to viral infection [81]. An observational study reported that aspirin
is associated with reduced risk of mechanical ventilation and mortality in hospitalized
patients [82]; however, RCTs are lacking.
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For some of the protective drugs highlighted above, we note that their significance
weakened (or became nonsignificant) when controlling for other medications. However, we
expect multicollinearity among the drug variables, as cardiometabolic disorders are highly
comorbid and one patient often takes multiple medications. Multicollinearity may render
interpretation of individual predictors difficult due to unstable coefficient estimates [83].

In our secondary analyses, we also considered subgroup and interaction effects. While
this is a more exploratory analysis and further replications are required, it shed light on
how the effects of drugs/vaccines may differ in people with different clinical background
and may contribute to more “personalized” drug repositioning in the future. For instance,
we observed a consistent trend that the protective associations of flu and pneumococcal
vaccines were weaker in obese individuals. As an example, comparing those who received
flu vaccine in the past season (2019–2020) against those who did not, the estimated OR for
infection was 0.76 in the obese group and 0.54 in the non-obese group (model F). It has
been observed before that obese individuals respond less well to flu and other vaccines due
to impaired immunological responses [84,85]. As another example, statins were observed
to have more prominent protective effects in those with cardiometabolic abnormalities,
such as DM, HT, CAD, and obesity. This is also supported by a recent study [43] which
showed mortality reduction in statin users in diabetic patients only.

4.1.4. Drugs with Potentially Harmful Effects

We noted a number of drugs with potentially harmful effects, but we caution that
residual confounding, such as confounding by indication, other comorbidities, and general
poor health, may lead to bias towards an increased odds of infection or severe disease.

For example, people who have poorer health in general may visit their GPs more
often and be prescribed drugs (e.g., laxatives, antibiotics, painkillers), which may lead to
confounding. Nevertheless, it is possible that some of the top-ranked drugs may indeed
increase the risk/severity of infection. For instance, it is slightly unexpected that laxatives
were highly significant across multiple models and time windows. It has recently been
postulated that dysregulation of gut microbiome may be associated with susceptibility or
resilience to infection [86,87], and laxatives represent a main category of drugs that affect
the gut microbiome [88]. Interestingly, several associations involve psychiatric medications
such as benzodiazepines, antipsychotics, and antidementia drugs. The association may
be due to underlying neuropsychiatric conditions (e.g., anxiety, psychosis, dementia, etc.),
or the effect of the drugs, or a combination of both. Some of the above drugs overlap
with those revealed in a recent study using primary care data in Scotland. In a univariate
analysis restricted to nonresidents in care homes and those without major conditions,
laxatives, anxiolytics, penicillins, and opioid analgesics were significantly associated with
ICU admission or mortality from COVID-19 when compared to population controls [89].
These drugs were also top-listed as drugs with harmful effects in this study.

Patients taking immunosuppressants are more susceptible to viral infections in general,
and it is possible that these drugs are also associated with increased vulnerability to COVID-
19 infection [90]. On the other hand, such drugs may dampen excessive immune responses
(“cytokine storm”) that may occur in severe infections [91]. However, here we did not find
consistent evidence of associations between immunosuppressive agents and COVID-19.
Across immunosuppressive drugs (ATC category L04), we only found two significant
associations (FDR < 0.05). Interleukin inhibitors were associated with higher susceptibility
to infection (model E) and selective immunosuppressants (L04AA) were associated with
higher risk of severe infection (model C), respectively, when compared to population
controls (Table S6). No other significant associations were observed. Of note, a few
preclinical studies reported that thiopurines, a type of immunosuppressant, may lead to
reduced viral replication [92,93] via other mechanisms, although clinical studies suggested
possible harmful effects [94,95]. However, the number of patients taking such drugs was
too small for meaningful analysis in this study.
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4.1.5. Different Results under Different Models

We note that sometimes the different models may yield different results. One main
observation is that analysis on the tested population appears to result in more findings of
drugs with protective effects. We also observed that some drugs in model F (infected vs.
tested negative) may show different effects under model E (infected vs. general population).
Several reasons may explain this finding. First, confounding by indication is inevitable
and may play a more important role when analyzing general population samples. It is
possible that apparent harmful effects of drugs are due to the diseases/conditions that the
prescription is related to, or poorer health in general. Based on a machine learning model
for predicting testing probability (see Figure S1), we observed that people who are older,
having more comorbidities and taking more medications, suffering from cardiovascular
conditions, etc. were more likely to be tested. Compared to the general population, the
tested group may represent a more “homogeneous” population, enriched for people with
poorer health and more comorbidities in general. Therefore, a proportion of confounders
which overlap with factors associated with higher Pr(tested) are essentially controlled for
by stratification, if we only study the tested subjects. On the other hand, in the general
population, as there is a higher proportion of healthy subjects, the effect of confounding by
indication may be stronger. Another possibility is collider bias due to conditioning on a
subgroup of subjects. For example, a drug may be associated with certain conditions which,
in turn, are associated with higher chance of being tested; on the other hand, those who
have more severe symptoms or complications are more likely to be tested. Conditioning
on testing may result in spurious associations between the drug and severity of infection.
However, we have tried to minimize this type of bias by the IPW approach, and we did not
observe substantial difference in results with or without IPW correction for most drugs.
However, we note that, even with adjustment by IPW, there is still chance for residual
selection or collider bias. For example, some factors associated with Pr(tested) may not
be captured in the prediction model. A third possibility to consider is that a drug may
truly produce different effects in different subgroups, due to effect modification by other
factors or diseases. For instance, a recent study reported that the protective effect of statins
is more marked in patients with diabetes [43]. The fact that risk factor associations may
differ between a whole-population- or tested-population-based study has also been noted
previously, for example in [35].

4.2. Strengths and Limitation

This study has a number of strengths. First and foremost, the study was performed
on a large cohort with a sample size close to half a million. The sample was not limited
to one or a few medical centers, and covered the entire UK population, although this
is not an entirely random sample and participation bias still exists [34]. The large and
well-characterized sample also enables analysis of infected and tested, as well as the whole
population. We have studied all level-4 ATC drug categories, allowing an unbiased and
systematic analysis on the association of different drugs with COVID-19 risks or outcomes.
This avoids the risk of publication bias, especially negative results to be unreported. Drugs
showing null associations can still be of important public health interest, as this may suggest
that patients on such medications may not need to change their regimen in view of the
pandemic. In addition, medication history was retrieved from GP records, which minimize
recall bias and errors from self-reporting. Another strength is that we performed a variety
of statistical analysis to reduce bias, including control for potential confounders, multiple
imputation, IPW to reduce effects of testing bias, and study of different time windows and
multiple models. Some of our findings were also corroborated by previous studies. Many
previous clinical studies were limited to hospitalized or infected individuals, which cannot
study the effect of drugs on susceptibility to infection. Selection on hospitalized/infected
subjects may also be prone to selection/collider bias, as discussed elsewhere [34]; therefore,
we included multiple models with infected and tested, as well the whole population as
samples, which aims to reduce limitations due to specific designs.
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There are also various limitations, some of which have been mentioned above. First
and foremost, this is an observational study based on a retrospective cohort of UKBB. As
this is not a randomized controlled trial, confounding is inevitable, especially confounding
by indication. Although we have controlled for main confounders in the regression model,
residual confounding is still likely. Since confounding by indication will likely bias towards
increased odds of infection or severe disease, null or protective associations may be more
reliable. Confounding by the use of other types of drugs is also possible. In addition, the
UKBB cohort is not random, and participants are on average healthier than the general
population [96]. The majority of participants are of European descent, so the findings may
not be generalizable to other ethnicities. In addition, the subjects are mostly >50 years old,
and drug effects in younger individuals may be different.

Regarding drug history, it is worth noting that vaccination records are not complete, as
individuals may receive vaccination outside GP practices. Over-the-counter prescriptions
were not counted, and it cannot be guaranteed that all drugs issued are dispensed by
the pharmacy (see https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/tppgp4covid19.
pdf, accessed on 9 November 2020). However, if this misclassification is nondifferential
(unrelated to outcome), the bias will be towards the null. There is a relatively high missing
rate of GP prescription records for deceased COVID-19 patients, which leads to reduced
power to detect associations. While the UKBB cohort sample is large, we still have low
power to detect associations for drugs that are uncommonly prescribed. Another limitation
with the GP records is that only the issue date, but no duration or dosage, is available.

As for the outcome, hospitalization is a rough proxy for severity only. For models
comparing to the general population, it is likely that a proportion of the population may be
infected but were not tested. This tends to lead to bias on the conservative side (akin to the
use of unscreened controls in genetic studies [97,98]), especially under model E. Patients
with more severe symptoms are less likely to remain untested, so other models may be
less affected by this bias. We note that this study focuses on prior (or pre-diagnostic)
use of drugs and their association with infection risk/severity, and does not provide
direct evidence for whether newly prescribed drugs to recently diagnosed patients will
be useful or not. The current study represents one approach to drug repositioning with
real-world population data, yet integrating results from other repositioning approaches
(e.g., network/structure-based) may further improve the reliability of candidates.

4.3. Clinical Implications

We highlight a few clinical implications here, although we stress that further studies
are required to confirm our findings. We discovered a number of drugs with potential
protective effects that, if replicated and tested in further trials, may represent promising
repurposing candidates (for prevention or treatment of disease). As CM disorders are a
major risk factor for severe infection, this study also provides further support for the safety
of CM medications and reinforces the need to continue these drugs for those indicated. In
a similar vein, negative findings (nonsignificant associations with COVID-19) in this study
may also be of value, given that some patients or physicians may have concerns over the
risk of COVID-19 induced by existing drugs.

Another important finding is that flu (and possibly others, e.g., pneumococcal) vac-
cines may be associated with lower odds of infection and severity of disease. If further
confirmed, the finding is clinically important as COVID-19 vaccines are not fully available
yet to a large part of the world’s population (especially those in developing countries), some
may be hesitant to take the new vaccine, and the efficacy of existing vaccines varies and is
less than perfect. At least, the present work supports that flu and other vaccinations should
be continued and encouraged amid the pandemic. For any vaccines/drugs that may be
repurposed for COVID-19, we believe that even a modest reduction in the risk/severity of
infection may still be highly useful, given the huge number of people at risk for COVID-19
and its complications.

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/tppgp4covid19.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/tppgp4covid19.pdf
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5. Conclusions

Here, we observed that a number of drugs, including many for cardiometabolic
disorders, may be associated with lower odds of infection/severity of COVID-19. Several
existing vaccines, especially flu vaccines, may be beneficial against COVID-19 as well.
Due to the observational nature of the study, confounding cannot be excluded, and other
limitations may be present. We understand that causal relationship between drugs and
disease cannot be reliably concluded from this study alone, and shall regard the findings
as more exploratory than confirmatory. Nevertheless, to our knowledge, this is the most
comprehensive study to date on drug/vaccine associations with COVID-19. We believe
that the current work provides a valuable resource to prioritize repositioning candidates
for future meta-analyses, clinical trials, and/or experimental studies.
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