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Our understanding of the transition from physiological to pathological cardiac

hypertrophy remains elusive and largely based on reductionist hypotheses. Here, we

profiled the translatomes of 15 mouse hearts to provide a molecular blueprint of altered

gene networks in early cardiac remodeling. Using co-expression analysis, we showed

how sub-networks are orchestrated into functional modules associated with pathological

phenotypes. We discovered unappreciated hub genes, many undocumented for their

role in cardiac hypertrophy, and genes in the transcriptional network that were rewired in

the translational network, and associated with semantically different subsets of enriched

functional terms, such as Fam210a, a novel musculoskeletal modulator, or Psmd12,

implicated in protein quality control. Using their correlation structure, we found that

transcriptome networks are only partially reproducible at the translatome level, providing

further evidence of post-transcriptional control at the level of translation. Our results

provide novel insights into the complexity of the organization of in vivo cardiac regulatory

networks.

Keywords: cardiovascular, cardiac hypertrophy, transcription/RNA-seq, translation/Ribo-seq, co-expression

networks

1. INTRODUCTION

Exercise- and disease-induced cardiac growth are associated with different molecular profiles and
differ in the signaling pathways that drive remodeling; yet both are characterized by an increase
in size of cardiomyocytes, sarcomerogenesis, and overall increase in heart-weight-to-body-weight
(HW/BW) ratio (Shimizu and Minamino, 2016). While adaptive exercise-induced hypertrophy
allows the heart to maintain an adequate cardiac output with improved contractility, pathological
hypertrophy is a maladaptive response, concurring with irreversible changes (e.g., cardiomyocyte
loss, fibrosis, reduced cardiac function), and typically progressing to heart failure (Shimizu and
Minamino, 2016; Bernardo et al., 2018).

Little is known about the molecular mechanisms controlling physiological hypertrophy,
particularly from a multi-omics systems biology perspective. Yet our understanding of the
in vivo transition from adaptive hypertrophy to cardiac dysfunction has important clinical
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implications (Boström et al., 2010). Only recently have
post-transcriptional regulatory networks been uncovered
that are of central importance for morphological
remodeling in fibrosis (Chothani et al., 2019), or
for modulating the early reponse to cardiac stress
(Doroudgar et al., 2019).

In this study, we adopt a systems biology approach to
integrate multi-omics data through the use of co-expression
networks to highlight higher-order relationships among gene
programs that are expressed in the heart in vivo under growth
stimuli. In such networks, genes are connected if there is a
significant co-expression relationship between them (Langfelder
and Horvath, 2008). Modules or sub-networks represent clusters
of genes with related function or involved in common
processes or pathways. Our analysis of 15 mouse left ventricular
tissues from experimental models of exercise- and disease-
induced cardiac hypertrophy showed, for the first time, the
organization of the transcriptome and translatome into networks
of biologically meaningful clusters of co-expressed genes. By
correlating module expression and disease phenotypes, we
were able to show the synchronized expression dynamics of
genes encoding extracellular matrix, and cytoskeletal proteins,
and a diminished contribution of electron transport complex
genes, genes associated with oxidative phosphorylation and
mitochondrial function. While concerted dynamic changes were
observed in both transcriptome and translatome networks,
transcriptome networks were only partially reproducible at
the translatome level, reflecting the existence of RNA- or
Ribo-specific modules. In contrast to differential expression
analysis, co-expression and rewiring analysis led us to the
identification of yet uncharacterized candidate genes, key to
organizing the behavior of transcriptome and translatome
networks. In particular, our results uncovered Fam210a, a novel
musculoskeletal modulator, which we hypothesize to regulate
the expression of mitochondrial encoded genes; and Psmd12, a
regulatory subunit of the 26S proteasome, whose deregulation
may act as a pathogenic factor compromising protein quality
control in cardiomyocytes.

2. MATERIALS AND METHODS

2.1. Experimental Models
We acquired data from experimental models of pathological
cardiac hypertrophy (transverse aortic constriction or TAC) and
swimming-induced physiological hypertrophy. TAC (27 gauge
needle) surgery was performed as previously described (Völkers
et al., 2013), and animals were sacrificed after 2 days (n = 4)
and 2 weeks (n = 5). For exercise training in the physiological
hypertrophy model, mice swam regularly in a water tank for
either 2 days (n = 3) or 2 weeks (n = 3) (Evangelista et al.,
2003). The experiments were performed in 9-week-old male
C57Bl6/Nmice using the RiboTag system (Doroudgar et al., 2019;
Kmietczyk et al., 2019). All animal experimental procedures were
reviewed and approved by the Institutional Animal Care and
Use Committees at the Animal Experiment Review Board of the
government of the state of Baden-Württemberg, Germany.

2.2. Preparation of Sequencing Libraries
Mice were sacrificed, and their hearts were excised, washed
in PBS containing 100 µg/ml cycloheximide (CHX), and
snap frozen in liquid nitrogen. Left ventricular tissue was
homogenized using a tissue homogenizer in 5 volumes of
ice-cold polysome buffer (20 mM Tris pH 7.4, 10 mM
MgCl, 200 mM KCl, 2 mM DTT, 1% Triton X-100, 1U
DNase/µl) containing 100 µg/ml CHX. Ribo-seq and RNA-
seq libraries were prepared for each biological replicate from
the identical lysate. Ribosome protected fragments (RPFs) were
generated after immunoprecipitation of cardiac myocyte-specific
polysomes with anti-HA magnetic beads after treating the lysate
with RNase I (Ambion). Libraries were generated according to
the mammalian Ribo-seq kit (Illumina), and sequenced on the
HiSeq 2000 platform using a 50-bp sequencing chemistry.

2.3. The RiboTag System
In the RiboTag mouse, the exon 4 of the Rpl22 gene is flanked
by Loxp recombination sites, followed by an HA-tagged exon 4.
When the RiboTag mouse is crossed to a Cre driver mouse, the
Cre recombinase enzyme is activated resulting in the removal
of the LoxP-flanked wild type Rpl22 exon 4 and replacement
with the HA-tagged Rpl22 exon 4, which is incorporated into
the ribosome particle. In mouse hearts, a cell-specific promotor
(Myosin heavy chain, α isoform, or αMHC, encoded by theMyh6
gene) drives the expression of Cre which induces cardiomyocyte-
specific HA-tagged ribosomes. RiboTag mice were purchased
from Jackson Laboratory (JAX ID 011029) and bred to the
αMHC-Cre mice line to obtain homozygous mice expressing
Rpl22-HA in cardiomyocytes.

2.4. Detecting Active Translation
Translation prediction using Ribo-seq data was performed with
RP-BP v2.0 (Malone et al., 2017), based on Ensembl release 96.
We used evidence from uniquely mapped reads and periodic
fragment lengths only. For each sample, the fragment lengths
and ribosome P-site offsets were determined from a metagene
analysis using the automatic Bayesian selection of read lengths
and ribosome P-site offsets (BPPS). The final list of translation
events includes, in addition to annotated open reading frames
(ORFs), ORFs with evidence of translation outside of annotated
coding sequences (Supplementary Table 1). For the analyses,
translation in non-coding regions as well as variants of canonical
coding sequences were discarded (Supplementary Figures 1, 2).
We required ORFs to have a minimum length of 3 aa and more
than 10 in-frame P-sites. The final list of translation events was
further filtered to only include ORFs that were predicted in at
least three samples and whose host gene was also annotated in
APPRIS (Rodriguez et al., 2018), resulting in 9,129 unique genes
(Supplementary Table 2).

2.5. Sequencing Data Alignment
Adapters removal and quality filtering was done with flexbar
v3.0.3 (Dodt et al., 2012) using standard filtering parameters
implemented in RP-BP. Reads aligning to a custom bowtie2
v2.3.0 (Langmead and Salzberg, 2012) ribosomal index were
discarded. Remaining reads were then aligned in genomic
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coordinates to the mouse genome (GRCm38.p6) with STAR
v2.5.3a (Dobin et al., 2013). For the RNA-seq data, reads were
trimmed from the 3’ end after adapter removal, to match the
maximum periodic fragment length, as determined with the
BPPS method, for each sample. Finally, abundance estimates and
read count to coding sequences were obtained using HTSeq-
count (Anders et al., 2014), taking into account the strand-
specific protocols.

2.6. Constructing Gene Co-expression
Networks
Read counts to coding sequences were used, only including
genes that were considered to be translated (9,129 genes), as
explained in the section 2.4. We removed low variance genes
and genes with the lowest sequencing-depth normalized average
expression (first centile). From these, 7,976 genes with the
highest connectivity were clustered on the basis of topological
overlap (TO) to identify patterns of co-expression, using the
WGCNA R package (Langfelder and Horvath, 2008, 2012)
(Supplementary Table 3). The network construction was done
separately for Ribo-seq and RNA-seq data, on this common
set of genes. We first applied a regularized log transformation,
and corrected for batch effects, where applicable (Johnson et al.,
2006). Weighted adjacencies were defined based on signed co-
expression similarity using biweight midcorrelation and a soft
thresholding power of β = 18 (for both RNA-seq and Ribo-seq).
For each network, a reference TO matrix was first calculated.
To produce robust and reproducible clusters, we then performed
bootstrap-resampling (n = 100) and computed the TO matrix
for each of the resampled networks. In each case, resampling
was done within the physiological (swim) or the pathological
(TAC) group. The final consensus TO matrix was defined as
the median of all scaled TO matrices, and used as input for
hierarchical clustering. The consensus TO matrix can be viewed
as a “smoothed” version of the adjacency matrix. Network
modules whose eigengenes were highly correlated were merged,
and characterized by their eigengene expression and significance.
To validate module membership, we applied post-hoc resampling
(n = 100) by subsetting TO of random modules matched by
size with respect to the consensus TO for every module. A one-
proportion Z-test was used to assess whether the mean TO of the
random modules was higher than that of the module assigned by
the hierarchical clustering and merging algorithm.

The module membership is defined as the correlation
(biweight midcorrelation) between eigengene and gene
expression values, and measures the importance of a gene
within a cluster. Gene significance is defined as the correlation
(biweight midcorrelation) between genes and biological traits or
disease association. To create indicators for level contrasts, e.g.,
pathological vs. physiological, TAC 2d vs. swim 2d, or TAC 2w
vs. swim 2w, categorical variables were binarized as input for
correlation. The pathological model includes all TAC samples,
and the physiological model includes all swim samples. For
binary/discrete variable correlation, biweight midcorrelation was
replaced by the standard Pearson correlation. Hub genes were
defined as genes with the highest intramodular connectivity.

We ranked genes in each module and selected as hub genes
those having a number of interactions greater than two standard
deviations above the average connectivity found in a given
module, i.e., with a Z-score > 2.

Preservation statistics were derived using the RNA-seq
network as a reference, using the correlation structure of the
networks. We used the medianRank statistic, defined as the
mean of the observed density and connectivity statistics, and
the Zsummary, defined as the mean of Z-scores computed for
density and connectivity measures (Langfelder et al., 2011).
The medianRank was used to compare relative preservation
among clusters. The Zsummary was used to assess the significance
of observed statistics by distinguishing preserved from non-
preserved clusters via permutation testing (n= 100).

Differentially connectivity (DC) was defined as the
Log10(k

RNA
in /kRiboin ). It is not a robust measure, and it is based

uniquely on intramodular connectivity. A gene was DC if this
ratio was greater than two standard deviations above the average
across all genes. All results are found in Supplementary Table 4.

2.7. Dynamic Neighborhoods Score
The Dn score, or dynamic neighborhoods score, of a given gene
is calculated based on the variance of the state-space adjacency
matrix over the network states (RNA-seq and Ribo-seq), relative

to the mean centroid, as Dn=
∑RNA,Ribo

i=1 d
(

Vi, centroid
)2
, where

d is the Euclidean distance, and Vi is a vector of genes in
the RNA-seq and Ribo-seq networks (Goenawan et al., 2016).
To calculate the Dn score, we used the consensus TO matrix,
thresholded at 0.1 (all interactions below this threshold were
considered inexistant).

2.8. Differential Translational-Efficiency
Analysis
Differential translational-efficiency analysis was performed using
DESeq2 (Love et al., 2014). The calculation of change in
translational efficiency was done using an interaction term
(∼assay + condition + assay:condition) with a likelihood-ratio
test, accounting for variance and level of expression. Regulation
status of a gene at the transcriptional and/or translational
level can be integrated using the fold changes from standard
Wald test (RNA-seq, Ribo-seq) and the likelihood-ratio test
(translational efficiency). All analyses were performed on the
same set of genes used as input for network clustering (n =

7,976). We used genome-wide significance threshold of FDR <

0.05, and a fold change (FC) of log2(1.2). All results are found
in Supplementary Table 7.

2.9. Gene Ontology (GO) Enrichment
GO enrichment (The Gene Ontology Consortium, 2018) to
assign functional annotation to modules were performed with
topGO v2.34.0 (Alexa and Rahnenfuhrer, 2018). To define the
relevant gene sets corresponding to each clusters, we considered
hub genes and genes with strong module membership and
significance for a given trait (heart-weight-to-body-weight ratio,
pathological vs. physiological, TAC2d vs. swim2d, or TAC2w
vs. swim2w). The latter were identified by taking the upper
quartile of genes with the highest module membership and gene
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significance for a trait having the highest correlation between
absolute values of module membership and gene significance.
The universe of genes consisted of all translated genes (n =

9,129). All results are found in Supplementary Table 5.

3. RESULTS

3.1. Exercise- vs. Disease-Induced Cardiac
Remodeling
To characterize stress-induced cardiac remodeling and the
response to acute and chronic pressure overload, we used the
swim model (Wang et al., 2010) and the transverse aortic
constriction (TAC) model (Rockman et al., 1991). The swim
model is referred to as the physiological or the healthy model,
and represents exercise-induced hypertrophy. The TAC model
is referred to as the pathological model, and represents disease-
induced hypertrophy.

To study co-expression networks during cardiac remodeling,
we used in vivo Ribo-seq and RNA-seq libraries from 15
mouse hearts (Figure 1A). We used the RiboTag approach to
capture the cardiac translatome. Cardiomyocyte-specific analysis
of ribosome protected fragments was achieved after affinity
purification using the RiboTag mouse (Doroudgar et al., 2019).
To catalog translation events, we performed an unsupervised
search for actively translated open reading frames (ORFs)
using RP-BP (Malone et al., 2017) (Supplementary Figures 1, 2).
The final list of translated genes was used as background
for co-expression and differential expression analyses. Co-
expression networks were constructed separately for RNA-seq
(transcriptome) and Ribo-seq (translatome) count data and
used to identify hub genes associated with cardiac remodeling
(Supplementary Figure 3). All translated ORFs used in this
study, RNA-seq and Ribo-seq read counts can be found as
Supporting Information and Supplementary Tables 2, 3.

We monitored the acute response at an intermediate time
point (2 days after TAC), and a chronic time point (2 weeks after
TAC), when cellular and molecular remodeling has occurred,
but cardiac function is preserved (Doroudgar et al., 2019).
Matching time points were monitored in the physiological model
(swim at 2 days and 2 weeks). At the RNA-seq level only, we
observed an upregulation of Nppa, the fetal isoform of myosin
heavy chain (Myh7) (Taegtmeyer et al., 2010), clinically relevant
genes such as Ankrd1 or Synpo2l (Ling et al., 2017; van Eldik
et al., 2017), as well as a number of genes implicated in tissue
remodeling (Figure 1B). These observations were corroborated
with RT-PCR results for two markers of hypertrophy and
fibrosis (Figure 1C). Increased HW/BW ratios were detected
after 2 weeks in the swim and TAC models, with a larger
increase in the pathological model (Figure 1D). Taken together,
these results are consistent with graded, pathological cardiac
hypertrophy in the TAC model. In the physiological model, we
did not observe fetal gene re-expression, typically associated
with metabolic remodeling in a variety of pathophysiologic
conditions (Taegtmeyer et al., 2010). There was a significant
increase in Ppargc1a, a master regulator of mitochondrial
biogenesis associated with physiological hypertrophy (Boström

et al., 2010), and Agt, key component of the renin-angiotensin
system (RAS), suggesting that the swim model did not induce a
pathological hypertrophy phenotype, but instead improved the
cellular energetics of the heart.

3.2. Co-expression Networks of Cardiac
Remodeling
We calculated topological overlap and clustered genes,
identifying independently 17 distinct co-expression
modules for each of the RNA-seq and Ribo-seq networks
(Supplementary Table 4). The modules were labeled in order
from RNA1 to RNA17, and from Ribo1 to Ribo17, using
unsupervised hierarchical clustering based on co-expression
correlation with disease association (Figures 2A, 3A). Our
analysis revealed how gene expression programs in the heart
are organized differently in transcriptome and translatome
space into modules, or sub-networks, of highly connected
genes. Gene Ontology (GO) enrichment analysis suggest that
significant genes in a number of modules localize to common
cellular components, such as the extracellular matrix (ECM) and
associated proteins (RNA1, RNA7, Ribo1, Ribo2, and Ribo4),
the cytoskeleton, related membrane ruffling (RNA4 and RNA6)
and the cell cortex (Ribo8, Ribo10), the Golgi apparatus (RNA2),
the nucleosome (Ribo12), or the various sub-compartments
of the mitochondrion (RNA13, RNA14, RNA15, Ribo13, and
Ribo16) (Supplementary Table 5). These modules had one or
more related molecular function or were associated with shared
biological processes.

3.2.1. Correlation With the Cardiac Pathophysiology

of Remodeling
We calculated the module correlations to disease association and
HW/BW ratios, and clustered them to identify sub-networks
associated with patho-physiological features and pre-clinical
symptoms of cardiac hypertrophy. Five RNA modules and five
Ribo modules had a positive correlation to the pathological
model and to increased HW/BW ratio, and almost all were
significant (RNA1 to RNA5, Ribo1 to Ribo5, Figures 2A, 3A).
We also observed a negative correlation to the pathological
model (i.e., a positive correlation to the physiological model)
in five RNA modules and, to a moderate extent, in four Ribo
modules (RNA13 to RNA17, Ribo14 to Ribo17). RNA1 to RNA5
(Ribo1 to Ribo5) were activated after pressure overload in
the pathological model, whereas RNA13 to RNA17 (Ribo14 to
Ribo17) were repressed, when looking at the module eigengenes
(Figures 2B,C, 3B,C, and Supplementary Figures 4A,B 5A,B).
An eigengene is a representative of the standardized module
expression values across all samples. Eigengenes have been
largely regarded as robust biomarkers (Oldham et al., 2008;
Johnson et al., 2018; Zhang et al., 2018; Di et al., 2019).
The strong association between RNA1 to RNA5 (Ribo1 to
Ribo5), on the one hand, and that of RNA13 to RNA17
(Ribo14 to Ribo17), on the other hand, suggests a synchronized
expression dynamics characterized by an increased role of genes
encoding ECM and cytoskeletal proteins, and a diminished or
altered contribution from mitochondrial translation, metabolic
pathways of carbohydrate, fat, and protein metabolism, as well as
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FIGURE 1 | Co-expression networks of transcriptional and translational regulation in cardiac remodeling. (A) The RiboTag system is used to find the cardiac

translatome of 15 animals from two models at two time points. A final set of translated genes is inferred using graphical Bayesian models. Co-expression networks are

then constructed separately for in vivo Ribo-seq (translatome from RiboTag data) and RNA-seq (transcriptome) data. The networks were used to identify hub genes

associated with cardiac remodeling, and how changes in connectivity (network rewiring) are associated with differential functionality in transcriptome vs. translatome,

see also Supplementary Figure 3. (B) Volcano plot displaying the distribution of all genes with relative abundance (log2 RNA-seq pathological vs. physiological)

plotted against significance level, showing significantly increased and decreased genes during in vivo pathological stress. Top genes (red) are highlighted. A number of

genes (green) significant at a threshold of 0.05 are also highlighted. NS, Non-significant; FC, Fold change only significant; P, p-value only significant; Significant, FC+P.

(C) RT-PCR fold changes relative to control animals (2w) for two important markers of hypertrophy and fibrosis, corroborating evidence from RNA-seq shown in (B).

(D) Heart-weight-to-body-weight ratio (HW/BW) after 2d and 2w of exercise in the physiological model, 2d and 2w after transverse aortic constriction (TAC) surgery.

For (C,D), N≥3 at each time point. Significance was measured using Mann–Whitney U-test, at a threshold of * < 0.05 (** < 0.01, p-values may be affected by the

small sample size, for this reason we also report effect size using non-directional rank-biserial correlation). For (D) only, Kruskall–Wallis test H = 10.9, p = 0.01.

oxidative phosphorylation. RNA6 to RNA12 (Ribo6 to Ribo13)
showed a dynamic association pattern to either the 2d or the
2w time points, uncovering the transcriptional and translational

heterogeneity in response to pressure overload (Figures 2A,
3A, and Supplementary Figures 4C, 5C). The significance of
these associations was highly consistent, and when we looked
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FIGURE 2 | Transcriptome (RNA) network modules were clustered to assess relatedness based on correlation of co-expressed eigengenes. (A) Biweight

midcorrelation and Student correlation p-values between eigengene module expression and disease association as well as heart-weight-to-body-weight ratio. (B) The

first three module expression profiles and top ranked hub genes that are positively correlated with pathological cardiac remodeling. (C) The first three module

expression profiles and top ranked hub genes that are negatively correlated with pathological cardiac remodeling (i.e., positively correlated with the physiological

model). Significance was measured using a one-sided Mann-Whitney U-test, at a threshold of * < 0.05 (** < 0.01, *** < 0.001, p-values may be affected by the small

sample size, for this reason we also report effect size using non-directional rank-biserial correlation). Up to five hub genes are shown.

at the correlation between module membership and gene
significance, we found that the strongest and most significant
associations were for the top five modules, particularly for RNA
(RNA1 to RNA5) (Supplementary Table 6). In addition, for
modules RNA6 to RNA12, gene significance at 2w was more
often and more strongly correlated with module membership,
suggesting that driver genes are associated with the later
time points. On the contrary, for most modules Ribo6 to
Ribo13, the association was observed with the earlier time
points, supporting a higher relative contribution of translational
control at 2d, consistent with a rapid translational response
to stress (Doroudgar et al., 2019). In each module, we also
identified intramodular hub genes, which are highly co-expressed
genes with respect to all other genes in the same module,
and may thus function as key components of the hypertrophic
response (Figures 2B,C, 3B,C, and Supplementary Figures 4, 5).
Finally, markers of the fetal gene program were found in sub-
networks correlated with the pathological models (Taegtmeyer
et al., 2010) (Supplementary Table 4): Nppa (RNA1, Ribo1),
Nppb (RNA3, Ribo7), or Myh7 (RNA3, Ribo1). While Myh6
was found in RNA15 and Ribo16, consistent with the
observed known “gene switches,” we observed the presence
of several other genes clustered in RNA1, Ribo4 or Ribo2
(Myh7b, Myh10, Myh11, and Myh14), and whose clinical
significance has not yet been described in the context of
cardiac hypertrophy. These switches were also observed for
Glut1 and Glut4: Slc2a8 (RNA1, Ribo1), Slc2a1 (RNA10,
Ribo10), Slc2a4 (RNA14, Ribo3), or Slc2a12 (RNA15, Ribo17);

and for Myc: Mycn (RNA1, Ribo4), and Myc (RNA17,
Ribo10).

3.2.2. Co-expression Networks Uncover Hub Genes

Not Found by Differential Expression
Unsupervised hierarchical clustering based on hub gene
expression showed that the top interacting genes serve
as a molecular signature to differentiate physiological
and pathological models of cardiac hypertrophy
(Supplementary Figures 6A, 7A). We then compared these
observations with results from differential translational-
efficiency (DTE) and differential connectivity (DC) analyses
(Supplementary Figure 8 and Supplementary Table 7 for
extended DTE results). Although a large number of non-
significant genes in DTE showed a higher DC between RNA-seq
and Ribo-seq networks, hub genes remain relatively unchanged
in DC (Supplementary Table 4). Many hub genes from
modules with positive (RNA1 to RNA5, and Ribo1 to Ribo5)
or negative correlation (RNA13 to RNA17, and Ribo14 to
Ribo17) were up-/down-regulated in the pathological model,
respectively (Supplementary Figure 6B). Similar observations
were made considering the different time points and the varying
correlations, using hub genes from modules RNA6 to RNA12,
and Ribo6 to Ribo13 (Supplementary Figure 7B). While the
number of differentially regulated genes is much larger, we found
hub genes from co-expression correlation only that were not
identified in DTE.
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FIGURE 3 | Translatome (Ribo) network modules were clustered to assess relatedness based on correlation of co-expressed eigengenes. (A) Biweight midcorrelation

and Student correlation p-values between eigengene module expression and disease association as well as heart-weight-to-body-weight ratio. (B) The first three

module expression profiles and top ranked hub genes that are positively correlated with pathological cardiac remodeling. (C) The first three module expression profiles

and top ranked hub genes that are negatively correlated with pathological cardiac remodeling (i.e., positively correlated with the physiological model). Significance was

measured using a one-sided Mann-Whitney U-test, at a threshold of * < 0.05 (** < 0.01, *** < 0.001, p-values may be affected by the small sample size, for this

reason we also report effect size using non-directional rank-biserial correlation). Up to five hub genes are shown.

3.2.3. Co-expression Networks Describe the

Organization of the Heart Transcriptome and

Translatome
We investigated the degree of preservation between RNA
network structure and Ribo co-expression network, and the
amount of overlap between sub-networks. Preservation is
based on density and connectivity measures (Langfelder et al.,
2011), and uses the correlation structure of the networks
to identify differences between RNA-seq and Ribo-seq.
We identified modules that were highly correlated/anti-
correlated with the pathological model that were partially
shared across transcriptome and translatome (RNA1,
RNA3, and RNA4 overlap with Ribo1, Ribo2 and Ribo4;
RNA14, RNA15, and RNA17 overlap with Ribo14, Ribo16,
and Ribo17) (Figure 4A). These modules may represent
ubiquitous processes and mechanisms of response to stress.
Five RNA clusters were found to be highly preserved, and six
moderately preserved, at the translatome level (Figure 4B). Six
more RNA modules, one of which was activated (RNA5)
after pressure overload in the pathological model, two
of which were repressed (RNA13 and RNA16), as well
as RNA7, RNA8, and RNA11, which showed differential
activation/repression at 2d and 2w, had no or little gene overlap
with translatome modules, and did not have a preserved
network structure, suggesting that the transcriptome does
not capture all key changes occurring in the heart during
early hypertrophy.

To uncover how the heart transcriptome and translatome
networks are rewired in response to stress, we highlighted
genes which had the most dynamic neighborhoods. The Dn
score, or dynamic neighborhoods score, captures changes in
connectivity of a gene, even when its intramodular connectivity
remains similar in RNA-seq and Ribo-seq networks, and is
thus better suited than DC to highlight hub genes associated
with potential regulatory mechanisms. The most rewired
genes all belonged to the top preserved modules (Figure 4C).
Among these, we highlighted two candidates, Fam210a and
Psmd12, identified earlier (Supplementary Figure 6), which
were strongly rewired, and whose immediate interactors
were enriched in different GO terms between RNA-seq and
Ribo-seq networks (Figure 4D and Supplementary Figure 9).
Fam210a is a conserved transmembrane protein localized
in the mitochondria, containing a mitochondrial targeting
signal peptide (MitoCarta2.0 mouse), a DUF1279 (Domain of
Unknown Function) domain with a transmembrane peptide,
and a coiled coil at the C-terminus (InterPro). It is mostly
expressed in the heart [1.72534] and skeletal muscle [1.57137]
(Standardized values, BioGPS Mouse Cell Type and Tissue
Gene Expression Profiles), and is thought to play a role in
modulating muscle and bone biology (Tanaka et al., 2018),
but its function in the heart and its molecular mechanisms
are unknown. Psmd12, encoding the non-ATPase regulatory
subunit 12 of the 26S proteasome, is better characterized. The
26S proteasome is a multiprotein complex involved in the
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FIGURE 4 | The organization of the heart transcriptome and translatome under cardiac remodeling. (A) Cross-tabulation of RNA-seq (rows) and Ribo-seq (columns)

modules. Each row and column is labeled by the corresponding module and its size (number of genes). Counts of genes in the intersection is shown for modules

sharing a significant overlap (p < 0.01, two-tailed Fisher’s exact test). Overlap with p < 1e-10 are highlighted. (B) Preservation Z scores (mean of Z-scores computed

for density and connectivity measures) for the RNA-seq modules in the Ribo-seq network. The vertical lines indicate the threshold for moderate preservation (5) and

strong preservation (10). The medianRank statistic is indicated to the right of each bar. (C) Barcode plot showing the enrichment of genes based on their dynamic

neighborhoods score (Dn score), compared to their association with modules that are either strongly or not preserved. Genes are ranked according to their Dn score,

and colored based on their association. The gray box toward the right indicates genes for which Dn score is greater than two standard deviations above the average.

To test whether genes belonging to preserved or not preserved clusters are highly ranked in terms of Dn score, the camera test from the limma R package was

performed and p-values are shown. (D) Scatter plot of the most rewired genes (gray box in C). A semantic similarity analysis was performed for each ontology (BP, MF,

and CC) and every gene using its immediate interactors in the RNA-seq and Ribo-seq networks, respectively, and the maximum semantic similarity is reported on the

y-axis. The set of all translated genes was used as background. Dots are colored according to their cluster association, and the size represents the total number of

interactors, or connected genes, in a hypothetical joint network combining the respective RNA-seq and Ribo-seq modules. Semantic similarity was calculated using

the GOSemSim R package. Only genes in modules with significant overlap are reported. BP, Biological Process; MF, Molecular Function; CC, Cellular Component.

ATP-dependent degradation of ubiquitinated proteins, and thus
plays a key role in protein homeostasis. Psmd12 is associated
with several pathways, including Regulation of Apoptosis,
Stabilization of p53, and p53-Dependent/Independent G1 DNA
Damage Response (WikiPathways, Reactome). The tumor
suppressor Trp53 (p53) regulates cell growth and fate, and
its role in the heart is well-known. Psmd12 is also associated
with inflammation [2.13579] and hypertrophy [2.10896]
(Standardized values, CTD Comparative Toxicogenomics
Database). Overall, module-eigengene association to disease
phenotypes has led to the identification of highly rewired hub
genes that may function as drivers of cardiac remodeling. These
hub genes are potentially involved in related, but different
molecular pathways or functions, suggesting some form of
translational control that may not be immediately apparent from
DTE analyses.

4. DISCUSSION

In this study, a model of left ventricular pressure overload was
used to mimic hypertrophy induced by systemic hypertension
and aortic stenosis, and compared with a physiological
model of exercise-induced cardiac growth. Transcriptional and
translational co-expression networks uncovered in vivo changes
in the heart occurring within 2 weeks of a transverse aortic
constriction (TAC) surgery, revealing the complexity of the
organization as well as unappreciated genes that may act as key
drivers of the hypertrophic response.

Physiologic and pathophysiologic stimuli act upon the cell
membrane and work their way through various cascades to
mediate gene expression, translational control and protein
levels (Haque and Wang, 2017). As expected, pressure overload
was associated with profound changes in the composition
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of the extracellular matrix (ECM), which were reflected by
a sub-clustering and a synchronized expression dynamics of
ECM-, and cytoskeletal-related genes, in both transcriptome and
translatome networks (Figures 2, 3, Supplementary Figures 4,
5, and Supplementary Table 4). A marked upregulation of
genes encoding ECM proteins has previously been observed
during the transition from stable cardiac hypertrophy to
heart failure (Boluyt et al., 1994). Our results indicate that
concerted dynamic changes occur early in vivo after stimuli,
and are likely to be implicated in transducing molecular
signals driving the maladaptive response. Concurrently to
these observations, modules anti-correlated to the pathological
model showed a diminished expression or altered contribution
of mitochondrial, electron transport complex and oxidative
phosphorylation genes. These modules (1–4, and 14, 15, 17)
were also among the most preserved (Figure 4), suggesting
the existence of stable sub-network structures, which could
be associated with ubiquitous mechanisms of response to
stress, although genes associated with these may or may
not show significant changes in translational/transcriptional
efficiency (Supplementary Figures 6, 7). Co-expression network
and differential translational-efficiency (DTE) analyses are based
on different assumptions (Langfelder and Horvath, 2008, 2012).
In co-expression networks, the top genes are the most connected
genes, based on the correlation structure.

In this study, we identified a number of hub genes that
may function as molecular drivers of cardiac remodeling, many
of which were recently described for their putative role in
myofiber hypertrophy, cardiac inflammation or injury, such
as Gsk3a (Ribo2) (Sugden et al., 2008; Zhou et al., 2016),
Cand2 (Ribo2) (Sandmann et al., 2018), Rptor (Ribo9) (Shende
et al., 2011), Lonp1 (Ribo9) (Venkatesh et al., 2019), Ubr4
(Ribo9) (Hunt et al., 2019), C5ar1 (RNA10) (Natarajan et al.,
2018), S100a4 (RNA10) (Doroudgar et al., 2016), or Phb2
(Ribo13) (Wu D. et al., 2020). We also identified hub genes in
the transcriptional network that were rewired in the translational
network, and associated with semantically different subsets of
enriched terms (Figure 4). Notably, we highlighted the presence
of two hub genes that were rewired under hypertrophic stimuli,
Fam210a (RNA15, Ribo16), and Psmd12 (RNA17, Ribo16).
Fam210a, a gene of previously unknown function, has been
described as a musculoskeletal modulator (Tanaka et al., 2018).
In humans, a prior study reported that Fam210a (C18orf19)
was the strongest candidate partner protein of Atad3a (ATPase
Family AAA Domain Containing 3A), which was also found
in the same modules (RNA15 and/or Ribo16), along with 60
(out of 153) interacting proteins identified by Orbitrap MS
analysis and quantified by SILAC labeling (He et al., 2012).
Atad3a is essential for mitochondrial metabolism and translation,
and has been implicated in several processes in mitochondria.
More recent work, which we discovered while this manuscript
was under review, has shown how the miR-574-Fam210a axis
regulates mitonchondrial-encoded protein expression in cardiac
pathological remodeling (Wu J. et al., 2020). Taken together,
these results suggest that Fam210a could modulate translation
of mitochondrial-encoded electron-transport chain proteins, and
play a yet undescribed role in cardiac muscle adaptation and

growth. The biological importance of Psmd12 as a scaffolding
subunit in proteasome function has been described earlier in the
context of neuronal development, but remains un-documented
in the heart. The ubiquitin proteasome system (UPS) is
critical in preventing accumulation of damaged and misfolded
proteins, and has been implicated in a number of cardiac
proteinopathies and heart failure (Pagan et al., 2013; Cacciapuoti,
2014; Maejima, 2020). Our results support the existence of
transcriptional/translational regulatory processes affecting the
or affected by proteasome function in the pathogenesis of
cardiac hypertrophy.

In summary, these results highlight the organization of
distinct molecular processes into sub-networks of co-expressed
genes, and describe how transcriptome and translatome
signatures are orchestrated into functional modules associated
with the early stages of cardiac remodeling. Our results constitute
a valuable resource to study in vivo cardiac regulatory networks,
and a first step toward the identification and characterization of
novel proteins involved in cardiac remodeling, hypertrophy and
heart failure.
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