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ABSTRACT A common method for quantifying microbial abundances in situ is through
metagenomic read recruitment to genomes and normalizing read counts as reads per kilo-
base (of genome) per million (bases of recruited sequences) (RPKM). We created RRAP
(RPKM Recruitment Analysis Pipeline), a wrapper that automates this process using Bowtie2
and SAMtools.

Quantifying the relative abundance of microorganisms in a sample is a critical compo-
nent of microbial ecology research. Whole-community metagenomic sequencing can

be used to calculate relative abundance after recruiting reads to genomes generated from
isolates, metagenomes, or single cells (1–4). Since genomes will have different sizes and
each sample will have different numbers of reads, normalizing for these two variables can
be accomplished with the RPKM (reads per kilobase [of genome] per million [bases of
recruited sequences]) method, which was originally developed to quantify relative tran-
script abundance (5).

To automate the process of read recruitment and RPKM normalization for use in recruit-
ing hundreds or thousands of samples to similarly large numbers of genomes, we devel-
oped RRAP (RPKM Recruitment Analysis Pipeline). RRAP is a wrapper for other established
tools that takes paired-end metagenomic sequences and reference genome sequences as
the input and generates both read alignment data and RPKM values. The pipeline stream-
lines the read recruitment process by automatically handling the preprocessing steps of
merging contigs, concatenating reference genomes, and indexing reference sequences.
RRAP installs the most recent versions of Bowtie2 and SAMtools that are compatible with
the other dependencies (6, 7). After performing read recruitment with Bowtie2, the pipe-
line sorts and indexes sequence alignment data before counting the numbers of mapped
and unmapped metagenomic reads per reference sequence with SAMtools. From the out-
put, RRAP calculates both unadjusted and log10-adjusted RPKM values for each reference
genome in each metagenomic sample.

Other bioinformatics tools are similar to RRAP but serve different purposes. The
Enveomics Collection is a compilation of scripts that analyze metagenomes (8). The
scripts BlastTab.catbj.pl and BlastTab.recplot2.R in particular use BLAST results to gen-
erate a recruitment plot for visualization purposes. The script anir.rb estimates the av-
erage nucleotide identity of reads against a genome using existing alignment data.
Anvi’o also provides a metagenomics workflow that assembles reads and maps them
to contigs, but this is a much more comprehensive software package than RRAP and
serves numerous purposes (9, 10). There are other existing pipelines that perform read
recruitment but do not calculate RPKM values. Sunbeam and ngs_backbone are two
examples that recruit reads with bwa instead of Bowtie2 to produce alignment data
but do not calculate RPKM values (11–13). RRAP is therefore a unique, lightweight, and
standalone pipeline for both recruitment and RPKM calculation.

Data availability. The code, detailed instructions for use, and sample data files to install
and test run RRAP are available on GitHub (https://github.com/thrash-lab/rrap). Because the
pipeline has dependencies, we recommend installation through the Conda package manager
(14). Upon installation, RRAP can be accessed from the command line with a single command.
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Sample metagenomes and reference genomes to allow quick testing of read recruitment and
RPKM calculations were obtained from previous studies (15–19).
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