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When vaccinating a large population in response to an invading pathogen, it
is often necessary to prioritize some individuals to be vaccinated first. One
way to do this is to choose individuals to vaccinate based on their location.
Methods for this prioritization include strategies that target those regions
most at risk of importing the pathogen, and strategies that target regions
with high centrality on the travel network. We use a simple infectious dis-
ease epidemic model to compare a risk-targeting strategy to two different
centrality-targeting strategies based on betweenness centrality and random
walk percolation centrality, respectively. We find that the relative effective-
ness of these strategies in reducing the total number of infections varies
with the basic reproduction number of the pathogen, travel rates, structure
of the travel network and vaccine availability. We conclude that when a
pathogen has high spreading capacity, or when vaccine availability is lim-
ited, centrality-targeting strategies should be considered as an alternative
to the more commonly used risk-targeting strategies.
1. Introduction
Administrators of vaccination programmes often find that there are fewer doses of
vaccines available (or capacity to administer these doses) than there are susceptible
individuals willing to receive them. In this situation, some form of prioritization is
necessary, in which certain individuals are chosen from the susceptible population
to be vaccinated, or to receive vaccines earlier than others.Often, vaccines are offered
to individuals in certain demographics who are particularly at risk of catching,
spreading or experiencing severe outcomes of a disease. This kind of demographic
targeting is used by the United Kingdom’s National Health Service to distribute
influenzavaccines—theNHSoffers free vaccines to individuals over 65, orwith con-
ditions suchas asthmaanddiabetes,whoare at riskof severe influenza [1]. Targeting
demographics at high riskof severedisease has alsobeenakeystrategy inCOVID-19
vaccination programmes, with elderly people often being prioritized [2–4].

An alternative way of selecting which individuals receive vaccinations is by
virtue of their location in geographical space. Spatial position can be used as
an alternative to demographic membership as a predictive variable for risk of
infection [5], but often spatial strategies are used when cases of a disease occur
only within a certain region, and public health decision-makers seek to contain
the pathogen locally and prevent it from spreading to other regions [6–8]. Spatial
control can be particularly important when responding to pandemic risks at the
point when containment is still possible [9]. While we focus on vaccination to
provide a concrete example of a spatial control tool, the structure of our model
is general and can represent any prophylactic control strategy that prevents infec-
tions (e.g. administering infection-preventing drugs, or culling of animals and
inducing resistance in plants in the case of agricultural diseases).

Within spatial strategies, there are many ways in which certain regions can be
prioritized for vaccine distribution. Among alternatives, priority could be given
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to regions close to an existing epidemic, with high population
density, or with many travel connections. In practice, many
modelling studies that consider spatial vaccine allocation use a
risk-targeting approach, in which those regions predicted to be
most at risk of importation of a pathogen are prioritized for dis-
tribution of the vaccine [5,8,10]. There is, however, no proof that
this leads to the maximum reduction in infections, and authors
often mention possible further work examining ‘downstream
effects’ [10] or ‘spreading capacity’ [11] of certain regions, or
the ‘impact of vaccination on … spatial expansion’ [5].

Here we define a vaccine strategy as a method for order-
ing all individuals susceptible to an infection from highest
priority to be vaccinated, to lowest priority. We define vac-
cine allocation as a division of those individuals into two
sets—those in one set receive a dose of vaccine, and those
in the other do not. We define risk-targeting as any vaccine
strategy in which a region is prioritized for receipt of vaccine
doses based solely on the risk that a large outbreak of the rel-
evant pathogen will occur in that region. The method for
determining this risk can range from simple heuristics to
sophisticated epidemiological forecasts [8]. One particularly
widely discussed form of risk-targeting is spatial ring vacci-
nation (as opposed to ring vaccination of contacts), in
which individuals are prioritized for vaccination based on
their proximity to an ongoing outbreak. This kind of strategy
has been discussed in settings from foot-and-mouth disease
in the United Kingdom to Ebola in the Democratic Republic
of the Congo [6,7].

An alternative to risk-targeting in strategies for vaccine dis-
tribution is centrality-targeting [12–14]. Centrality is a term for
any measure of the importance of a node in a network. One
possible use of some centrality measures is as proxy for the
spreading capacity of a given region. We discuss specific
measures of centrality, and their epidemiological relevance,
in more detail below. In centrality-targeting strategies, vaccines
are preferentially allocated to regions with high centrality in a
travel network. Thus, they may act to impede the circulation of
a pathogen between regions, rather than directly protecting
those regions most likely to experience outbreaks themselves.

There is little existingwork directly comparing risk-targeting
of vaccines to centrality-targeting. A study by Piraveenan et al.
[12] compares targeting of prophylactic control in a disease
transmission network according to three different measures:
hop distance (a simple kind of risk-targeting), percolation
centrality and betweenness centrality [12]. Hop distance is the
length of the shortest path through the network from a suscep-
tible node to the closest infected node, and can be treated as a
proxy for risk. Betweenness centrality is a very commonly used
centrality measure based on a node’s connectivity. Percolation
centrality is a measure of node centrality introduced in the
above study, which takes into account a node’s connectivity as
well as the current state of infection in the network. Piraveenan
et al. find that, in a scale-free and a random network, which of
the three strategies best reduces infections depends on par-
ameters reflecting how widespread the pathogen is, and how
many nodes can be immunized. In general, when the pathogen
is scarce in thenetwork, orwhenmanynodes canbe immunized,
risk-targeting (that is, priority according to hop distance), ismost
effective at reducing infection. In the opposite scenario, when the
pathogen is widespread or when few nodes can be immunized,
betweenness-targeting is most effective. In the intermediate
regime, targeting according to percolation centrality led to the
largest expected reduction in infections.
Generalizing from this result, we conjecture that risk-
targeting may be less effective than centrality-targeting when
resources available for control of a pathogen are very limited
(e.g. few doses of a vaccine), or when the pathogen concerned
has a high spreading potential (either by having a high R0 or
by travelling widely across space). We argue that Piraveenan
et al.’s findings are intuitive—for instance, whenmany resources
are available for control, a pathogen can be fully contained by
ring vaccination (a form of risk-targeting), while the only
chance to contain a pathogen when few resources are available
is by targeting travel hubs (a form of centrality targeting). This
intuitive understanding of the scenario leads to the following
generalized hypothesis:

— when resources for control are widely available, and the
potential for widespread pathogen transmission is lim-
ited, targeting regions at high risk is more effective than
targeting regions with high centrality.

— when resources are limited and the pathogen has the poten-
tial to spread widely, targeting regions with high centrality
is more effective than targeting regions at high risk.

To investigate this hypothesis, we examine whether the risk-
targeting strategy is the most effective strategy to reduce the
overall number of infections in a range of different epidemio-
logical networks. We compare this strategy to two variations
on a centrality-targeting strategy that prioritizes regions for
vaccination according to their centrality on the human
travel network. The variations come about due to alternative
centrality measures.
2. Methods
2.1. Disease model
In this study, we make use of a simplified stochastic SIR metapopu-
lation model similar to others used in spatial analyses of infectious
disease epidemics and their control [5]. Each node i on the travel
network is associated with a region, which has its own population
size Ni and within-region basic reproduction number R0,i. We can
represent the travel network with a matrix l, in which the element
lij is the expected number of individuals travelling from region i to
region j per unit time. Like all rates referred to in this section, this is
the rate of a stochastic process, where the actual number of individ-
uals travelling over a time period Δt is given by a Poisson
distribution with rate parameter lijΔt.

With this information, we can calculate the expected number
of infected individuals travelling from a region i that experiences
an epidemic, to any other region connected to it on the travel net-
work. First we calculate the total number of infected individuals
over the course of the epidemic in region i, Ri(∞), using the
widely used SIR final size equation [15–19]:

Rið1Þ ¼ Ni �Ni exp
��R0,iRið1Þ

Ni

�
: ð2:1Þ

Each infected individual can either recover while still in region i, or
travel to a neighbouring region before recovering. The probability
Pij that an individual travels to a particular neighbouring region j
while infected is therefore

Pij ¼
lijP

k lik þ m
, ð2:2Þ

where μ is the recovery rate, and
P

k lik is the total rate of travel out of
region i. This means that the expected total number Iij of infected
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individualswho arrive in region j from region i over the course of the
epidemic in i is

Iij ¼
lijRið1ÞP
k lik þ m

: ð2:3Þ

Whenm � P
k lik,meaning that individuals aremuchmore likely to

recover than travel while ill, equation (2.3) can be approximated as:

Iij �
lij

m
Rið1Þ: ð2:4Þ

This approximation allows us to treat disease dynamics separately in
each region,with the course of a local epidemic progressing indepen-
dentlyof its neighbours once it has been seeded.We alsomake use of
this approximation to assume that the population size Ni of each
region does not change over the course of the outbreak.

To avoid highly intensive computations, let us consider a
simplified disease model with a square epidemic curve—
meaning that, in our model, there are a constant number of
infected individuals during an epidemic and no infected individ-
uals otherwise. We assume that the duration of such an epidemic
is exponentially distributed, but that the number of infected indi-
viduals is deterministic and independent of the epidemic
duration. This assumption of the exponential distribution of epi-
demic duration is the greatest departure in the behaviour of our
simplified model from that of the full stochastic SIR model. We
discuss the implications of this further in the electronic sup-
plementary material. Since the size of the epidemic does not
vary from its start to its end, this means that we can shift from
treating the states of individuals, to treating the states of whole
regions. We can treat each region as belonging to a state S, mean-
ing that no epidemic has occurred; I, meaning that an epidemic is
ongoing; or R, meaning that an epidemic has occurred and the
region is protected from further outbreaks due to herd immunity.

The expected total number of infected individuals who arrive
in region j from a region i, which experiences a square epidemic
curve with height A and mean duration D, is given by lij AD.
This quantity determines the probability for the pathogen to
spread between regions, so we seek to match its value in our sim-
plified model to the corresponding value in equation (2.4). To
achieve this, we choose A = Ri(∞)/μ and D = 1. This choice
ensures that one unit of time is equal to the expected duration
of a single epidemic, thus effectively rescaling time to match
the simplified pathogen dynamics.

In a stochastic SIR model, the probability for a single infected
individual to cause an epidemic when introduced into a large,
entirely susceptible population is 1− 1/R0, a result cited widely
in the epidemiology literature [16,20–24]. So if the rate of arrival
of infected individuals in region j from region i is lij Ri(∞)/μ,
and each arrival has a probability of causing an epidemic
given by 1− 1/R0, then the rate at which the epidemic in
region i seeds an epidemic in region j is�

1� 1
R0

�
lijRið1Þ=m: ð2:5Þ

This completes the structure of our model: regions are
assigned states S, I and R; regions in state I export the epidemic
stochastically at the above rate to neighbouring regions in state S;
and regions in state I recover stochastically into state R at rate 1,
after which they cannot be reinfected. We assume that the time
between events is exponentially distributed, and use Gillespie’s
direct stochastic simulation method to generate our results [25].
To characterize the behaviour of an outbreak, we run many simu-
lations using this model and take the mean of the total
cumulative number of infections at the end of each simulation.

2.2. Centrality measures
The alternatives to risk-targeting that we investigate are centrality-
targeting strategies. Centrality is a measure of the importance of a
node in a network. Targeting nodes for intervention based on their
centrality may help prevent wide circulation of a pathogen in a
transmission network. There are several different ways of measur-
ing centrality, including degree centrality, eigenvector centrality,
closeness centrality and many others. One particularly widespread
measure of centrality is betweenness centrality.

The betweenness centrality of a node v is the proportion of
shortest paths from a source node s to a target node r that pass
through v, averaged over all sources and targets s and r [26,27].
In a weighted travel network, the contribution to the length of
a path of one of its constituent edges is equal to the reciprocal
of the weight of that edge, since higher weights represent stron-
ger connections. The betweenness bv of node v in a network G of
size n is expressed as

bv ¼ 1
ðn� 1Þðn� 2Þ

X
s=v,r=v

gðs,rÞv

gðs,rÞ
, ð2:6Þ

where g(s,r) is the number of geodesics (shortest paths) from node
s to node r, and gðs,rÞv is the number of such paths that pass
through node v. This definition ensures that the betweenness of
a given node is always between 0 and 1.

Betweenness centrality is discussed widely in studies of
spreading processes on networks [28–31]. The measure’s defi-
nition in terms of paths through a network makes it more
appropriate for use in the context of spreading processes than,
say, degree centrality [32]. For this reason, we include it in our
analysis (see the electronic supplementary material for a com-
parison of betweenness centrality to degree centrality).
However, there is good reason to believe that betweenness cen-
trality is not particularly well suited to finding important
nodes in a disease transmission network. First, it only counts
geodesic paths—but infections transmitting between regions
cannot be assumed to follow the shortest path from their
source to their destination. Second, when responding to an
invading pathogen, we often know the possible sources of an
infection and are seeking to disrupt transmission from these
sources—whereas the betweenness centrality calculation
averages across all possible sources. We can resolve the first
issue with random walk betweenness centrality, and the second
issue with percolation centrality—combining the two results in
our random walk percolation centrality (RWPC) measure.

Random walk betweenness centrality is defined similarly to
betweenness centrality, but expands the paths counted, from only
shortest paths from node s to node r that pass through node v, to
all random walks that pass through v from s to r [33,34]. Since a
random walk can have an arbitrarily high number of steps, we
allow steps passing along an edge in opposite directions to cancel
out, so thatwe ignore randomwalks that go back and forth through
a given nodemany timeswithout progressing to another part of the
network.We can then define the randomwalk betweenness brwv of a
node v in termsof the net numberof times a randomwalk from s to r
is expected to pass through v, Iðs,rÞv .

brwv ¼ 1
ðn� 1Þðn� 2Þ

X
s=v,r=v

Iðs,rÞv , ð2:7Þ

The method for calculating Iðs,rÞv is given in Newman [33].
Percolation centrality introduces a weighting to each element

of the sums in equations (2.6) and (2.7) depending on the infec-
tion state of the source node s [12]. The percolation centrality
pv(t) of node v at time t is

pvðtÞ ¼ 1
ðn� 2Þ

X
s=v,r=v

gðs,rÞv

gðs,rÞ
xsðtÞ

½Pi xiðtÞ� � xvðtÞ , ð2:8Þ

where xi(t) is a scalar quantity representing the infection state of
node i at time t. In our analysis, we assume that a given region is
either infected (state I) or uninfected (state S or R), restricting the
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Figure 1. The ‘joined grids’ arrangements of regions (circles), in which the movement of the population happens between adjacent regions in each grid (blue),
on longer-range travel within a grid (yellow), or along inter-grid travel routes (red). The area of the circles scales with the population of the corresponding region.
(a) The ‘one-to-one’ joined grids network. (b) The ‘four corners’ variation.
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values of xi(t) to 0 if region i is in state S or stateR, and 1 if region i is
in state I. In this binary case, equation (2.8) can be interpreted as
equivalent to equation (2.6), with the source node s restricted to
the class of infected nodes, and the quantity normalized appropri-
ately. This successfully captures the importance of paths starting
from an infected node in a disease transmission network.

Combining the modifications to betweenness centrality intro-
duced in equations (2.7) and 2.8 gives us RWPC. The RWPC
prwv (t) of a node v at time t is

prwv ðtÞ ¼ 1
ðn� 2Þ

X
s=v,r=v

Iðs,rÞv
xsðtÞ

½Pi xiðtÞ� � xvðtÞ : ð2:9Þ

Note that this equation is to equation (2.7) as equation (2.8) is to
equation (2.6).

To apply this measure to human mobility networks, we need
to capture the fact that the edges of these networks are weighted
by the amount of travel that occurs along them, and can be
directed if travel is not symmetric between regions. In the elec-
tronic supplementary material, we present the novel
mathematics of RWPC in a weighted directed network. This
results in the measure of RWPC used in this study.

2.3. Network specifications
We tested vaccination targeting strategies for simulated epi-
demics on metapopulations with a variety of transport
networks. We chose four network structures, two artificial and
two empirical. Our artificial networks are based on a ‘joined
grids’ structure, in which the regions are split into two identical
subsets, each of which is arranged in a grid with unit distance
between orthogonally adjacent regions (figure 1). Travel occurs
at the highest rate between regions (represented by nodes)
which are adjacent on the grid, and at a rate lij determined by
distance between more distant regions. In particular,

lij ¼ l

ðrijÞa , ð2:10Þ

where l is the travel rate between adjacent regions, rij≥ 1 is the
distance between region i and region j, and a is a parameter
determining the amount of long-distance travel—the higher the
value of a, the less long-distance travel. This is a kind of gravity
model, which is one of the standard models of human movement
[35–38]. In the basic version of this network, illustrated in figure
1a, there is a single travel route between the two grids, which
runs from a region at the corner of one grid to a region at the
corner of the another. We set the travel rate along this route at
ljoin = l by default. With this model, we can represent outbreaks
occurring at three different scales—within regions (represented
by circles in figure 1), within grids (each grid is made up of
nine regions) and across the whole network (the whole network
is made up of 18 regions on two grids). We assume that each
region has a fixed population of 200 000.
To explore further the role of population size and alternate
routes of transmission in an artificial network, we created a vari-
ation on the basic joined grids arrangement, which we call the
‘four corners’ network. In this network, the travel within each
grid is given by equation (2.10), but there are four routes between
the two networks, joining each corner of each grid to a corner of
the other grid, as illustrated in figure 1b. The inter-grid routes
each have travel rate ljoin = l/4. Each region has a fixed popu-
lation of 200 000, except for one region on the corner on each
grid, which has a population of 400 000, to represent high-popu-
lation travel hubs. These two regions are not directly connected
to each other. To account for the greater travel to more populous
regions predicted by the gravity model of human movement, we
now write

lij ¼ lNi

ðrijÞaN , ð2:11Þ

for the within-grid travel rates, where N = 200 000.
To extend our theoretical results to real-world networks, we

make use of two freely available data sets concerning human
movement patterns. The first is a subset of the US domestic air
traffic network, sourced from the Bureau of Transport Statistics
[39]. We used as nodes in our network only the 20 airports with
the highest total sum of passengers arriving and passengers
departing, and defined the weight of a directed edge between
two of these nodes i and j in proportion to the total number of pas-
sengers travelling from airport i to airport j in 2019. To assign a
population size to each node, we used the population size of the
urban area in which the airport is situated [40]. There are two air-
ports in the data set situated in Chicago. In this case, we merge the
two airports, assigning the population of the Chicago urban area
to the resultant node and including all passengers travelling to
and from either Chicago airport when calculating the weights of
edges involving the resultant node.

The edge weight lij (i.e. the travel rate) from node i to node j
in this network is therefore given by

lij ¼ s
tij
Ni

, ð2:12Þ

where tij is the total number of passengers travelling from the air-
ports(s) represented by node i to the airport(s) represented by
node j in 2019, Ni > 0 is the population size of node i, and s is
an overall scaling factor that we allow to vary.

The second empirical network we use is sourced from the 2011
UK census [41]. We use the census to estimate the amount of travel
between all cities and towns with populations over 100 000 in an
area of Northwest England including Greater Manchester and
West and South Yorkshire (figure 2). The census includes data
for the location of the residence and place of work for all respon-
dents, which we use to estimate the number of people cij who
commute between any given pair of cities i and j. We use this to
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Figure 2. Two travel networks based on empirical data—the US air passenger traffic network, and the Northwest England commuter network. The colour and
opacity of the edges scales with their weight, normalized separately in each network relative to the highest weighted edge. The actual weights depend on s. The
area of each node scales with the population size it represents, and the colour indicates its betweenness centrality [42,43].
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model the travel rate according to the equation:

lij ¼ s
cij þ c ji
2Ni

, ð2:13Þ

where Ni> 0 is the population size of city i, and s is an overall scal-
ing factor which we allow to vary. We make the travel rate
symmetric because a commuter travelling between cities can trans-
mit a pathogen either from the source city to the destination city (on
the outbound journey) or from the destination city to the source city
(on the inbound journey) [44]. The key assumption of our models of
empirical travel data is that total travel is proportional either to air
travel or to commuter travel, respectively.
3. Vaccination strategies
To test different vaccination strategies, we followed three
alternative methods of prioritizing regions for vaccination—
risk, betweenness centrality and RWPC. We assumed that a
pathogen would emerge in a single region at first, putting
that region in state I and triggering a vaccination campaign
across the network. We performed separate simulations for
each possible region of origination of the outbreak, and aver-
aged the results.

We modelled the results of these prioritizations with a
range of total available vaccine doses, considering all regions
in state S as possible targets for vaccination. We assumed a
single-dose vaccine with 100% efficacy against infection.
Given a certain number of doses nd, we assigned enough
doses to the highest priority region to achieve herd immunity
in that region, then did the same for the second highest pri-
ority region, and so on, until we reached a region whose
herd immunity threshold was higher than the number of
doses remaining, in which case we assigned all of the doses
remaining to that region and none to those with lower pri-
ority. We assume that the vaccine distribution in a region is
always completed before an epidemic occurs in that region.

To determine the priorities of regions according to the
risk-targeting strategy, we performed 10 000 stochastic simu-
lations of the outbreak from the initial state, and prioritized
regions from most at risk to least at risk. In this study, we trea-
ted the risk to region i as equivalent to the frequency with
which that region i becomes infected in stochastic simu-
lations. In principle, the risk is the expected number of
infected individuals, i.e. the probability of the region becom-
ing infected multiplied by R(∞). However, both R(∞) and the
number of vaccines required to achieve herd immunity scale
linearly with the size of the susceptible population. This
means that the risk averted per dose of vaccine is maximized
by prioritizing regions based on the probability of an out-
break in that region, from highest probability to lowest. For
the RWPC strategy, we calculated the RWPC for each
region according to the initial state of each region, and prior-
itized regions from highest RWPC to lowest. For the
betweenness centrality strategy, we simply prioritized from
highest betweenness centrality to lowest betweenness central-
ity. For both centrality measures, we found that weighting the
edges according to the rate of travel per individual resulted in
closer to optimal targeting than weighting them according to
the total flux of travelling individuals.
4. Results
The results of vaccine distribution on our artificial networks
using all three different strategies is shown in figure 3. In each
panel, the y-axis shows the mean total number of infections in
an epidemic that starts with a single region in state I and the
remaining regions in state S, over 10 000 stochastic simulations
for each possible starting region, using the model outlined in
§2.1. The total number of simulations used to calculate each
mean value is therefore 180 000. The smaller the number of
infections, the more effective the control of the pathogen. The
x-axis in each panel shows the number of vaccines adminis-
tered, nd, representing the resources available for control. The
three different coloured lines show the expected number of
infected individuals when vaccines are distributed according
to the risk-targeting strategy (blue), the betweenness centrality
strategy (red) or the RWPC strategy (yellow). The panels
are arranged left-to-right with increasing values of within-
region basic reproduction number R0, and top-to-bottom
with increasing values of adjacent-region travel rate l. The
range of parameters for which simulation results are
shown is chosen to illustrate the region around a change
in the relative effectiveness of different vaccine strategies,
if such a change occurs.

In figure 3a, we see that, for the one-to-one joined grids
network, risk-targeting is the best strategy under some par-
ameter combinations and not under others. When both R0

and l are small, the risk-targeting strategy is always the
most effective of the three considered, for any number of
available vaccines. For some combinations of R0 and l,
such as 8 and 2e–6, respectively, the risk-targeting strategy
is only the most effective when there are many vaccine
doses available. Finally, when both R0 and l are large, the
centrality-targeting strategies are more effective than the
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Figure 3. Plots of the mean total number of infections due to an outbreak, against the number of vaccine doses administered according to one of three region
prioritization policies, for five different values of R0 and three different overall travel rates, in two variations on the ‘joined grids’ network. The long-distance travel
parameter a in equation (2.10) is set to 2, and μ = 0.5, in all cases. For the one-to-one variation, it is possible to calculate the optimal vaccine allocation for some
parameter values. The resultant mean numbers of infections are shown by black dots, labelled with the number of regions vaccinated to herd immunity at that
value of nd. (a) One-to-one joined grids network, (b) four corners joined grids network.
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risk-targeting strategy at all values of nd. The RWPC strategy
is always more effective than the betweenness centrality strat-
egy, with the difference between the two being largest when
R0 and l are small and nd is large. The large dips in expected
infections seen in the lower right panels of the figure corre-
spond to the point at which sufficient vaccines become
available to achieve herd immunity in the patch that joins
the two grids. This happens outside of the range of doses
considered when R0≤ 2, and does not have as dramatic an
effect when l = 10−11. In the electronic supplementary
material, we show that increasing a (and thus decreasing
long-distance travel) makes risk-targeting more effective,
but does not change the general pattern of the results.
In the joined grids network, where each region has the
same population size, it is sometimes computationally feas-
ible to determine the optimal allocation of vaccines using a
brute force approach. That is, the approach in which we
simulate pathogen spread under all possible vaccine allo-
cation prioritizations, and select the prioritization that leads
to the smallest expected number of infections. For this
approach, we constrain the number of doses to be equal to
a small integer multiple of the herd immunity threshold for
a single population, so that the number of possible allocations
is not excessively high. In this case, we assume that no less
than the number of doses required for herd immunity are
ever allocated to a region, if any doses are allocated there at
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all. The resultant expected number of infections for each of
the optimal allocations is indicated with black dots in
figure 3a, labelled with the number of regions vaccinated.
The spacing between these numbers scales with the herd
immunity threshold, as determined by R0. In general, the
best strategy out of those considered for any combination of
parameters comes close to optimality in effectiveness, with
risk-targeting at low travel rates being indistinguishable
from the fully optimal strategy.

In figure 3b, we see that these dynamics can be signifi-
cantly altered by changing the network structure. When
we add multiple routes between the two grids, and increase
the population size of two patches, the risk-targeting strat-
egy becomes the most effective strategy for almost all
parameter combinations. For very high spread rates the
pathogen infects all those not protected by the vaccine or
by regional herd immunity, and so the expected number
of infections becomes the same linear function of the
number of doses for all vaccine strategies.

In figure 4, we show the results of our various vaccine
strategies in empirically derived networks. The structure of
the figure is identical to figure 3, but with the scale of
travel indicated by the s parameter rather than λ (see
equations (2.12) and (2.13) for the role of s in figure 4b and
4a, respectively). The y-axis of each panel again shows
the mean number of infections over 10 000 stochastic simu-
lations for each possible starting region. The total number
of simulations used to calculate each mean value is therefore
190 000 in the US air passenger traffic network, and 130 000 in
the Northwest England commuter network.
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In figure 4a, we see that the dynamics of vaccine targeting in
the US air passenger traffic network mirrors that in the joined
grids network, with the risk-targeting strategy performing best
at low R0 and low inter-regional travel, and the centrality-target-
ing strategies performing best at high R0 and high inter-regional
travel. Themaindifferences include the overall highperformance
of theRWPC strategy,which is or is very close to the best strategy
in all cases; the convergence of the effectiveness of the various
strategies for s = 10−6; and the smoothness of curves, with no
sharp dips in expected infections. This increased smoothness
comes about due to the fact that there is no single bottleneck
for pathogen spread in this network, unlike the bottleneck cre-
ated by the single travel route between the two grids in the
one-to-one joined grids network.

In figure 4b, we see a case of an empirical network in
which the risk-targeting strategy is consistently themost effective
at reducing infections, as seen for an artificial network in
figure 3b. The effectiveness of the different strategies converges
as s increases.
9:20210709
5. Discussion
In the Introduction, we presented a hypothesis concerning
the allocation of vaccine doses to various regions—namely,
that risk-targeting would perform better than centrality-
targeting when R0 and inter-region travel rates were high
relative to the number of vaccine doses distributed. We find
that this hypothesis is borne out by our results, but with
the important caveat that only certain network structures
allow effective use of centrality-targeting—in networks with
many weak edges between highly connected clusters of
regions, the effectiveness of centrality-targeting never exceeds
that of risk-targeting (figures 3b and 4b).

This provides an important perspective on the widespread
use of risk-targeting in spatial vaccination studies. Risk-target-
ing can perform very well in certain networks, or in certain
parameter regimes, but is far from universally superior to
alternative strategies. In particular, when a pathogen is spread-
ing quickly, or when vaccine availability is limited, centrality-
targeting strategies should be considered as an alternative.
However, it is important to choose the correct centrality
measure for the system at hand. We have shown that blunt
application of a popular measure of node importance, such
as betweenness, can result in a less effective allocation of vac-
cines compared to a measure tailored to the dynamics of a
pathogen spreading on a network. In this study, we used a
variation on the RWPC measure due to Piraveenan et al.
[12], but different scenarios may require the application of
different measures. For instance, if the current distribution of
infections is unknown, percolation centrality cannot be applied
and random walk betweenness centrality may be more
effective.

The scenarios explored in this study assume a vaccination
campaign that can efficiently vaccinate the selected portion of
the population before a pathogen becomes widespread. The
interacting dynamics of vaccination and transmission for a
pathogen that is epidemic or endemic in a population differ
significantly from the dynamics explored above [45–47].
Further work is required to know whether risk-targeting is
the most effective strategy for combating an endemic patho-
gen. With SARS-CoV-2 already prevalent in most regions of
the world, this means that our results are not applicable to
ongoing COVID-19 vaccination efforts; however, they may
provide insight into preventing the invasion of new strains
of the virus, if these variants are detected early.

In our model, we assumed a single-dose vaccine with 100%
efficacy against infection, and no waning immunity. We expect
our results to extend to less effective vaccines, since, in our
model, reducing the vaccine efficacy is equivalent to reducing
the number of vaccinations nd, so long as herd immunity is
still achievable. However, a more complexmodel of vaccination
could expand on our results in interesting ways. An expanded
model could consider the different effects of vaccines—
infection-reducing, disease-reducing and/or transmission-
reducing [48–52]. Varying efficacy in each of these dimensions
could affect the results of risk-targeting and centrality-targeting
strategies in different ways. Further analyses could also
consider different dosing regimes (e.g. vaccines that require
multiple doses for maximal efficacy) and the effects of waning
vaccine- or infection-induced immunity [53–55].

Vaccination is of course only one way to prevent a patho-
gen from spreading, and vaccines are not always available
early on in an outbreak, especially of a novel pathogen. Risk-
targeting is also used when modelling the allocation of pro-
phylactic drugs [9], or the imposition of non-pharmaceutical
interventions (NPIs) [56]. In the electronic supplementary
material, we extend our framework to a preliminary model
of NPIs, and show that our core results are replicated in this
case. However, a more complex model is needed to effectively
capture the dynamics of different NPIs, and to combine the
range of NPIs and pharmaceutical interventions used during
emerging outbreaks in a single model. This is a promising
avenue for further work.

This study has focused on spatial targeting and has investi-
gated only two types of strategy. In principle, there are asmany
possible vaccination strategies as there are orderings of individ-
uals to vaccinate. We believe that risk-targeting and centrality-
targeting are the best spatial strategies currently in contention,
but the vast space of possible strategies is ripe for exploration.
As well as variations on centrality targeting, future work
could explore generalizations of our results to demographic tar-
geting, investigatingwhen the vaccination of at-risk individuals
is most effective relative to those with high spreading capacity
(e.g. those with many contacts) [57–59]. Vaccines can also be
allocated on a pro rata basis—that is, a fixed proportion of the
population is vaccinated in each region. While this strategy
has had success in somemodels, we show in the electronic sup-
plementary material that it is not effective in the disease
transmission settings investigated here [2,11].

In this analysis, we have focused on the mean number of
infections as the target of control. However, in situations
where a large outbreak has an outsized cost, such as when
there is some fixed capacity for treatment of a disease, more
risk-adverse policies may be more appropriate, in particular
those that focus on minimizing some high percentile of the
distribution of estimated infections in an outbreak [60,61].
Future work could adapt our model to evaluate risk-adverse
vaccination strategies by replacing the exponential distri-
bution of epidemic duration with a more complex
probabilistic model of epidemic curves [62]. Such extensions
could include a range of pathogen spread dynamics, such
as the SEIR or SIRS compartmental models. These different
dynamics are likely to impact the temporal variability of
the spread of a pathogen, and so are particularly relevant
for risk-averse strategies [63].
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Finally, analysis of this kind could be applied to realistic
models of particular infectious disease outbreaks, providing
practical guidance for vaccination campaigns. These appli-
cations should consider practical restrictions to vaccine
deployment, potentially including penalizing vaccination
strategies that have significant spatial complexity. Such
work would further elucidate the circumstances in which
different types of spatial vaccination targeting strategies
would be effective in reducing infections during future
outbreaks.
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