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The heart is viscoelastic, meaning its compliance is inversely proportional to the
speed at which it stretches. During diastolic filling, the left ventricle rapidly expands
at rates where viscoelastic forces impact ventricular compliance. In heart disease,
myocardial viscoelasticity is often increased and can directly impede diastolic filling to
reduce cardiac output. Thus, treatments that reduce myocardial viscoelasticity may
provide benefit in heart failure, particularly for patients with diastolic heart failure.
Yet, many experimental techniques either cannot or do not characterize myocardial
viscoelasticity, and our understanding of the molecular regulators of viscoelasticity and
its impact on cardiac performance is lacking. Much of this may stem from a reliance on
techniques that either do not interrogate viscoelasticity (i.e., use non-physiological rates
of strain) or techniques that compromise elements that contribute to viscoelasticity (i.e.,
skinned or permeabilized muscle preparations that compromise cytoskeletal integrity).
Clinically, cardiac viscoelastic characterization is challenging, requiring the addition
of strain-rate modulation during invasive hemodynamics. Despite these challenges,
data continues to emerge demonstrating a meaningful contribution of viscoelasticity
to cardiac physiology and pathology, and thus innovative approaches to characterize
viscoelasticity stand to illuminate fundamental properties of myocardial mechanics and
facilitate the development of novel therapeutic strategies.
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INTRODUCTION

Cardiac Viscoelasticity in Health and Disease
Reduced cardiac compliance is associated with aging and broadly observed across multiple
etiologies of heart failure (Chen et al., 1998; Zile and Brutsaert, 2002; Kass, 2005; Borlaug et al.,
2013b). Stiffening arises from remodeling of the extracellular matrix (van Heerebeek et al., 2008;
Chris and Jacobs, 2017; Frangogiannis, 2019), changes to the myocyte cytoskeleton (Cooper,
2006; Sequeira et al., 2014; Chen et al., 2018), and modifications to the sarcomere (Miyata
et al., 2000; Le Winter and Van Buren, 2002; van der Velden, 2011; Hamdani et al., 2013;
Zile et al., 2015). Since myocardium is viscoelastic, its compliance decreases with increasing
rate of strain (Rankin et al., 1977; Harris et al., 2002; Wang et al., 2016), and thus proper
measurement of myocardial compliance requires physiological loading conditions. Common
assessments of myocardial mechanics utilize highly variable loading conditions, resulting in
different interpretations about the role of viscoelasticity in cardiac function (Brutsaert et al., 1971;
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Liu and Wang, 2019). As such, viscoelasticity remains an
understudied and poorly understood property of the heart.

The viscoelasticity of the myocardium is an important
determinant of cardiac performance in health and disease
(Rankin et al., 1977; Wang et al., 2016). Viscous forces influence
the rate of myocardial shortening (de Tombe and ter Keurs,
1992), and as the heart fills with blood in diastole, the stretching
of the left ventricle against diastolic blood pressure invokes
considerable viscoelastic forces (Hess et al., 1979; Caporizzo et al.,
2020). This viscoelasticity arises from the slip of cytoskeletal
and extracellular cross links that dissipate energy (Nam et al.,
2016), and the force reached prior to bond slip, and therefore
the stiffness of myocardium, depends strongly on the rate of
stretching (Stroud et al., 2002; Linke and Leake, 2004; Nishimura
et al., 2006; Caporizzo et al., 2020). Consequently, stressors such
as exercise, which increase heart rate and accelerate diastolic
filling, amplify viscoelastic forces (Tsutsui et al., 1993; Fraites
Thomas et al., 1997; Kass et al., 2004). With viscoelasticity
notably greater in heart disease (Harris et al., 2002; Caporizzo
et al., 2020), it is not surprising that exercise intolerance is an
early symptom for these patients. Still, our understanding of
myocardial viscoelasticity and its regulation in the context of
stressors and pathophysiology remains incomplete.

Viscoelasticity and Cardiac Output:
Implications for Myocardial Reserve
Controlling myocardial viscoelasticity may be particularly
consequential for maintaining myocardial reserve, the ability of
the heart to increase its power output in response to increased
demand. Viscous forces proportionally increase ventricular
stiffness by the rate of ventricular filling. During exercise, reserve
capacity is utilized by increasing the heart rate while maintaining
the stroke volume (Barmeyer et al., 2009; Borlaug et al., 2013a).
As heart rate increases, so does the filling rate (Smiseth, 2018),
creating a condition where elevated viscoelasticity may limit
filling during exercise.

Figure 1 illustrates the cardiac work loop and how
viscoelasticity changes the shape of the diastolic pressure-volume
relationship as filling rate changes. The work of each beat is
represented by a plot of ventricular pressure vs. volume forming
a “work loop” where the area is the stroke work (Figure 1A).
The bottom of the loop represents the pressure and volume
increase during diastolic filling, with the slope at any point
along the diastolic curve representing the effective stiffness of
the left ventricle at that point of diastole (diastolic filling: bold
segment Figure 1A). At a resting human heart rate of 60
beats per minute, diastole occurs over about 600 ms divided
into less than 100 ms for isovolumic relaxation (downward
arrow) and about 500 ms for ventricular filling. The majority of
ventricular filling occurs during two intervals of rapid stretching
early and late in diastole over which the myocardium strains
by 10–20% in about 200 ms separated by a period of diastasis
(Smiseth, 2018). Thus, diastole invokes viscous forces from the
myocardium and the stiffness of the myocardium depends on
the filling rate. In the absence of compensating factors, as the
heart rate increases under stress, viscoelastic forces impair filling

FIGURE 1 | The role of viscoelasticity in determining diastolic compliance.
(A) Illustration of cardiac work loop with diastolic filling and effective stiffness.
The red and gray curves indicate increased or decreased filling rate,
respectively. (B) The associated force vs. time and length vs. time plots for a
diastolic stretch and an isometric hold to reveal viscoelastic relaxation.

by increasing the diastolic pressure volume relationship (red
dashed line Figure 1A), which would reduce stroke volume,
and cardiac output to limit myocardial reserve. In healthy
individuals, the beta-adrenergic response may compensate for
viscous forces (Fukuda et al., 2005; Falcão-Pires et al., 2011).
However, consistent with elevated myocardial viscoelasticity
limiting exercise tolerance, patients with diastolic heart failure
often exhibit reduced end diastolic volume despite increased
diastolic pressure during exercise (Barmeyer et al., 2009; Borlaug
et al., 2013a). This underscores the importance of understanding
the role of viscoelasticity in cardiac performance.

Figure 1B breaks down the time-dependence of a continuous
diastolic stretch to more clearly illustrate the influence of
myocardial viscoelasticity on ventricular compliance at different
physiological strain rates. This is effectively a portion of the
bold segment in 1A split into stress vs. time and volume vs.
time. When the length is held constant, the viscoelasticity is
evident by the stress relaxation (Figure 1B; Caporizzo et al.,
2018). This behavior is not readily appreciated in a cardiac
work loop where time is not represented. Yet, the difference
between the stiffness at a physiological rate vs a slow rate of
strain (dashed gray line) is considerable. Analogously, when
the diastolic interval decreases and myocardium is stretched
faster (dashed red line) viscoelasticity increases the effective
stiffness (Harris et al., 2002; Caporizzo et al., 2018, 2020).
On the work loop this behavior appears as a steeper slope of
the diastolic pressure–volume curve (red dashed line), which
can limit diastolic filling in cases of pathologically increased
viscoelasticity (Koide et al., 2000). It should be noted that diastole
is a complex multi-component process that is influenced by the
lungs, circulatory system, and all four chambers of the heart
(Yellin et al., 1992; Kovács et al., 2000), and that while here we
use a constant strain-rate to illustrate viscoelastic principles in
Figure 1, the left-ventricular myocardium fills at a variable rate
in diastole with different phases exhibiting unique mechanical
behavior that simple mechanical models alone do not fully
capture (Zhang and Kovács, 2008).
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The Cast of Characters: Viscoelasticity in
the Myofilament, Myocyte, and
Myocardium
Myocardial compliance is regulated at the myofilament,
cytoskeletal and extracellular level. At the molecular level
tissue viscoelasticity arises from cross-links which break and
reform when the material is stretched or compressed. There are
numerous such instances of slip bonds in myocardium, such as
actomyosin cross-bridges, cell-cell and cell-matrix interactions,
and cytoskeletal cross-linking and anchoring complexes. Thus,
viscoelasticity is a multi-scale problem with tissue level, myocyte
level, and myofilament level contributors.

The myofilaments, which are responsible for the contractile
capacity of cardiac tissue, have highly regulated mechanical
behavior governed in large part by post-translational
modifications and changes in sarcomere stoichiometry (Miyata
et al., 2000; Hamdani et al., 2013; LeWinter and Palmer, 2015).
The giant protein titin is considered to be a primary determinant
of myofilament diastolic tension (Granzier and Irving, 1995) and
a significant contributor to myofilament viscoelasticity (Chung
et al., 2011). Titin compliance is regulated by phosphorylation,
which is commonly altered in disease affecting the diastolic
compliance of skinned myocardium (Hamdani et al., 2013;
Herwig et al., 2020). Myosin binding protein C acts as a drag,
i.e., viscous, element in the sarcomere, bridging the thick and
thin filaments in the "C-zones", and is important for regulating
force generation and relaxation (Palmer et al., 2004; Rosas
et al., 2015). Myosin activation during systole is the primary
determinant of cardiac systolic stiffness, i.e., force generation,
although the contribution of cross-bridges to stiffness in the
relaxed state remains somewhat uncertain and may depend
on conditions (Sequeira et al., 2014). While regulation of
myofilament contractile function has an established role in
cardiac health and disease, the passive role of myofilament
stiffness in regulating diastolic filling is an active area of research.

The non-sarcomeric cytoskeleton consisting of microtubules
and desmin intermediate filaments is critical for sarcomere
organization (Robison et al., 2016) and regulates myocyte
viscoelasticity (Caporizzo et al., 2020). The viscoelastic
contribution of microtubules requires their post translational
detyrosination which promotes the binding of various
microtubule associated proteins that stabilize the microtubule
network and promote its cross-linking with the myocyte
cytoskeleton and intermediate filament network (Cooper, 2006;
Kerr et al., 2015; Chen et al., 2018). Desmin intermediate
filaments are elastic elements in the myocyte that wrap around
the myofilament Z-disk to maintain sarcomere registry.
In heart failure, there is an increased abundance of both
detyrosinated microtubules and desmin intermediate filaments
(Chen et al., 2018). Together, the microtubule and desmin
filament networks form a lattice-like scaffold that contributes to
myocyte viscoelasticity facilitates sarcomere maintenance and
organization (Caporizzo et al., 2019).

Deposition of extracellular matrix, i.e., fibrosis, is a common
feature of dilated and ischemic heart failure in particular (Gulati
et al., 2013; Perestrelo et al., 2021). When the ventricular wall is

weakened by high filling pressures or ischemic insult, stiffening
through fibrosis is necessary to prevent diastolic overstretching
or even wall rupture (Nagai et al., 2014). Fibrosis can dramatically
stiffen myocardium and is largely thought of as an irreversible
feature of disease, as it is resistant to remodeling (Webber et al.,
2020). Aside from fibrosis, the cardiac extracellular matrix is
rich in viscoelastic proteoglycans that are linked to hypertrophic
signaling and overexpressed in multiple etiologies of heart failure
(Christensen et al., 2019). The basement membrane consists
of type four collagens, laminins, nidogen and other specific
ECM proteins which serve as the interface for cell surface
receptors (Perestrelo et al., 2021). The overall composition of
the ECM is altered in disease independent of fibrosis, but
the influence composition has on myocardial viscoelasticity or
myocyte remodeling remains unclear.

In a Non-linear Viscoelastic
Myocardium–What Is the Right
Mechanical Test?
Like most biological material, myocardium is a non-linear
viscoelastic material (Humphrey et al., 1990; Harris et al., 2002;
Linke and Leake, 2004), meaning that its stiffness depends
on both the rate and magnitude by which it is stretched or
compressed. In an intact heart, the sarcomere length typically
ranges from about 1.8 µm in systole to 2.1 µm in diastole
(Sonnenblick et al., 1967). Depending on the magnitude of
strain, structural proteins such as microtubules, titin, and
collagen become aligned and maximally extended, which sharply
increases their contribution to stiffness. Filamentous elements
in the myocardium typically run parallel to the contractile
axis of the cardiomyocytes, which form an anisotropic cross-
hatched pattern in the ventricular free wall. When sarcomere
length is extended beyond 2.1 um, the non-linear stiffening
associated with fiber alignment of titin and collagen becomes
the dominant factor determining myocardial stiffness (Linke
and Leake, 2004; Zile et al., 2015; Caporizzo et al., 2020). This
length-dependent stiffening is important to prevent the heart
from becoming overstretched or injured but adds a degree of
complexity in designing experiments to measure physiologically
relevant viscoelastic properties.

In addition to non-linear mechanical properties, the heart
expands during diastole, meaning that the myocytes are stretched
along both their length and width which leads to compression
along their axis normal to both the contractile axis and
ventricular wall. Tensile tests only stretch the material in 1D,
while compressive tests do not typically stretch sarcomeres, as
compression is commonly applied orthogonal to the contractile
axis. 2D stretching assays are more physiologically relevant
but are highly specialized and difficult to employ. The easiest
physiological approximation of diastolic compliance likely comes
from stretching myocytes or myocardium in 1D with 10–20%
strain in about 100–200 ms along the contractile axis. At these
rates myocardial stiffness is increased by about 30–50% by
viscoelastic forces (Caporizzo et al., 2020).

The complexity of a non-linear, anisotropic, viscoelastic
material makes it difficult to extrapolate physiological
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implications from a single measurement technique. Yet the
use of orthogonal approaches, when combined with varying
strain and loading rates and modeling, enables the contributions
of sarcomeres, microtubules, and extracellular matrix to be
isolated.

The One Dimensional: Force-Length
Relationship
One dimensional mechanical tests are the most common form
of measuring myocardial mechanics enabling assessment of both
systolic and diastolic properties. Isometric force generation is
a typical method to determine the contractile capacity of the
heart, conducted by holding the muscle at constant length and
introducing calcium to demembranated myocardium (Sequeira
et al., 2014) or by electrically stimulating intact myocardium.
Similarly, the elasticity of relaxed myocytes or myocardium
can be determined by measuring the tension held at various
sarcomere lengths. While "resting tension" is an important metric
of diastolic stiffness, it only captures elasticity and is effectively
a minimum value of stiffness. Tensile tests determine the stress-
strain response and can be conducted at physiological strain
rates where viscoelasticity is observed (Linke and Fernandez,
2003; Caporizzo et al., 2018). In these experiments, precise length
control and force-feedback is possible and has been used to mimic
the cardiac cycle to generate work loops in beating myocytes
and myocardium (Helmes et al., 2016). These experiments clearly
demonstrate that both active and passive myocardial mechanics
depend on both the length (Chung, 2020) and the rate of
shortening or lengthening (Sonnenblick, 1962; Brutsaert et al.,
1971; Chung et al., 2017).

Force Spectroscopy
Scanning probe-based force spectroscopy employs micro and
nanoscale cantilevers (Lieber et al., 2004; Lyon et al., 2009),
fluid jets (Swiatlowska et al., 2020), and suction pipettes, to
deform myocytes and myocardium to determine viscoelastic
properties. Scanning probe microscopy offers the advantage
of high spatial resolution that can resolve local stiffness
differences between T-tubules, intercalated disks, Z-disks, and
M-lines. Scanning nanojet microscopy has been employed
for example to demonstrate that detyrosinated microtubules
contribute significantly to both the structure and stiffness of the
cardiomyocyte cortex at the costamere (Swiatlowska et al., 2020).
Determining viscoelasticity requires making measurements at
different strain rates or frequencies and modeling the rate-
dependence of the modulus. This can be done by either
indenting at different speeds (Caporizzo et al., 2015) or by
pressing on the material and then oscillating the probe in a
low-amplitude frequency sweep to determine the elastic and
viscous components of the stiffness (Grant et al., 2012). These
experiments find that cardiomyocytes are best modeled by
a standard linear solid with an additional parallel viscous
element (Robison et al., 2016; Caporizzo et al., 2018). Various
groups have successfully observed increased viscoelasticity of
cardiomyocytes in heart disease with atomic force microscopy
(Nishimura et al., 2006; Chen et al., 2018). However, it is

FIGURE 2 | Skinned cardiomyocytes exhibit a loss of microtubules and
reduced viscoelasticity. (A) Representative fluorescence images of
microtubules and desmin intermediate filaments in an intact (left) and skinned
(0.1% Triton X-100 30 min at room temperature) (right) cardiomyocyte.
(B) Average viscoelasticity of intact cardiomyocytes (left) and skinned
cardiomyocytes (right). (C) Average data for peak, steady-state and stress
relaxation, mean line with SD whiskers; p-values determined from
paired-sample t-test. N = 12 rates and n = 12 myocytes for each. Viscoelastic
test is a 15% length step in 200 ms. Scale bar = 20 µm.

challenging to extrapolate compressive or cortical stiffness, where
myocytes are compressed orthogonal to their contractile axis,
to physiological tissue level mechanics, where myocytes are
stretched along their contractile axis. These techniques also
rely on smaller strains than are typically seen in the cardiac
cycle, where larger viscoelastic contributions are observed.
Nevertheless, it has unrivaled mechanical resolution, making it a
go-to technique for determining local or element-specific stiffness
of intact samples.

In vivo Assessment of Viscoelasticity
Echocardiography is routinely employed to measure chamber
dynamics in patients as it allows for an easy and non-invasive
assessment of cardiac systolic and diastolic function (Hildick-
Smith, 2001). Echocardiography can be used to characterize
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diastolic dysfunction, but determining the underlying cause from
imaging alone can be difficult (Nagueh, 2020). Quantitative
determination of ventricular stiffness in vivo requires the
simultaneous collection of chamber pressure and volume, as
achieved using conductance catheter hemodynamic assesment
(Ogilvie et al., 2020). Typically, during these procedures patients
are anesthetized and their heart rate is constant. Thus, altering
filling rate to assess viscoelasticity is impractical. Lifting patients’
feet to transiently increase venous return is one way to
accelerate LV filling (Elwan et al., 2018) and could enable
an estimate of in vivo viscoelasticity. While crude, this type
of procedure can provide insight into the rate-dependent
mechanical response, and may provide useful information about
a patient’s exercise capacity and the severity of their underlying
disease.

Practical Considerations
Many of the aforementioned mechanical interrogations are
conducted in reduced preparations of myofibrils, myocytes,
and myocardium at either room or physiological temperature.
Both temperature (Templeton et al., 1974) and chemical
permeabilization, i.e., “skinning,” affect myocyte viscoelasticity
(King et al., 2011). Microtubule polymerization dynamics are
sensitive to temperature and while microtubules generally remain
intact at room temperature, exposure to ice cold solutions
as is common in myocardial preparations can depolymerize
a significant fraction of microtubules (Fassett et al., 2019).
Skinned preparations allow for robust attachment of myocytes
via cytotoxic glues that enable repeated stretching beyond
sarcomere lengths of 2.1 µm which is difficult to achieve in
intact preparations that rely on myocyte-friendly extracellular
glues such as MyotakTM. Skinning leads to an expansion
of the myofilament lattice that reduces diastolic stiffness
at physiological (King et al., 2011) and room temperature
(Figures 2B,C) which can be restored by adding high
molecular weight polymers such as 2–4% dextran to solution
(McDonald and Moss, 1995; King et al., 2011). Skinning
also removes key viscoelastic elements such as membranes,
microtubules (Figure 2A), and cytosolic proteins, which is
reflected in the reduced viscoelasticity of skinned preparations
as shown by a greater than proportional decrease in the
stress relaxation of skinned myocytes, Figure 2C. “Gentler”
permeabilization techniques such as alpha toxin and saponin
have been employed to better retain membrane-bound proteins
than typical ionic surfactants (Kuznetsov et al., 2008), but
while these do retain membrane proteins, the loss of soluble
cytosolic factors and the breakdown of structural elements
such as the microtubules can still compromise viscoelasticity.
Thus, while skinned myocytes represent a powerful and
informative platform for interrogating myofilament mechanical
properties, one needs to keep in mind that such reductionist
approaches can significantly reduce the viscoelasticity of
the cardiomyocyte.

Concluding Remarks
Overall, myocytes and myocardium exhibit non-linear
viscoelasticity, meaning that ventricular mechanical properties

depend on both the amount and speed they stretch. Myocardial
viscoelasticity is a determinant of diastolic stiffness and likely
influences cardiac exercise capacity. Ventricular viscoelasticity
increases in heart failure due to multiscale remodeling of
myofilaments, microtubules, and the extracellular matrix, and
while much of these changes have been well characterized
in end-stage heart failure, their role in the physiology of
cardiac performance is an active area of research. Different
viscoelastic characterization techniques provide meaningful
information about different aspects of cardiac stiffness, but
relating viscoelastic parameters to in vivo function remains
a challenge. Directly assessing myocardial viscoelasticity
in vivo also presents a challenge as it necessitates modifying
venous return during hemodynamic assessment. Nevertheless,
emerging research demonstrating a causal role of increased
viscoelasticity in the pathology of heart failure motivates
the development of new characterization techniques and
strategies to manipulate this understudied component of cardiac
mechanics.

Experimental Methods
Cell Stretch: Adult cardiomyocytes were isolated by Langendorff
perfusion as described previously (Robison et al., 2016). Myocytes
were then placed in culture in a 95/5 incubator at 37◦C in
M199 media supplemented with 20 mM HEPES pH 7.4, 1×
Insulin Selenium and Transferrin (Thermo Scientific 51500056),
1 mg/mL Primocin (Invivogen), and 25 µM Cytochalasin D
(Cayman Chemical Company). Following incubation, cells were
exchanged into room temperature normal Tyrode’s solution
(Robison et al., 2016) containing 30 mM BDM and attached
to the Myostretcher Apparatus with Myotak (Ion Optix LLC).
Intact myocytes were stretched via a 200 ms ramp and held at
length for 5 s as shown in Figure 1B which corresponded to a
stretch from an average sarcomere length of 1.9 µm resting to
2.1 µm stretched. Tyrode’s was then exchanged for relaxing buffer
(7.8 mM ATP, 20 mM phosphocreatine, 20 mM imidazole, 4 mM
EGTA, 12 mM Mg-propionate, and 97.6 mM K-propionate)
and allowed to equilibrate for 5 min before relaxing buffer
containing 0.1% T × 100 was introduced into the chamber.
Myocytes were continuously observed using the eye piece and
transmitted light on a Zeiss Axio Observer Z.1 inverted optical
microscope with a Zeiss 1.4 NA 63× oil immersion objective
for 30 min of demembranation at which point cell contrast
was notably reduced but sarcomere length was still clearly
visible. An identical stretch (in terms of resting to stretched
sarcomere length) was conducted on the skinned myocyte to
determine the skinned cell viscoelasticity. Peak, steady state,
and stress-relaxation was quantified from the resulting stress-
strain plots. Experiments were conducted at a room temperature
of∼22C.

Immunofluorescence: Cardiomyocytes were gravity
sedimented in media and resuspended in relaxing buffer
containing 0.1% T × 100 for 25 min on a rocker before gravity
sedimentation for the final 5 min of skinning. Supernatant
was removed and cells were then immediately fixed in chilled
methanol (–20◦C) for 7 min. Following fixation, cells were
exchanged into blocking buffer and incubated with primary

Frontiers in Physiology | www.frontiersin.org 5 July 2021 | Volume 12 | Article 696694

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-696694 July 26, 2021 Time: 18:17 # 6

Caporizzo and Prosser Myocardial Viscoelasticity and Diastolic Function

antibodies for alpha tubulin (mouse DM1A–Cell
Signaling Technology 1:500) and desmin (goat Y-20,
Santa Cruz Biotechnology- 1:200) for 48 h. Cells were
then rinsed and exchanged into secondaries (Thermo
Fisher Scientific, A10037 and Life Technologies, A-
21082) for 48 h of incubation. Cells were then
pelleted and resuspended in Prolong Diamond antifade
(Invitrogen) and mounted between and glass slide and
coverslip for imaging.

Confocal imaging was conducted on a Zeiss 980 laser scanning
confocal microscope equipped with Airyscan through a 63× oil
1.4 NA objective lens. Image analysis was performed using
Zen Black for Airyscan processing and Image J was used for
image preparation.

Unadjusted p-values were calculated using paired sample
t-tests in Origin Lab 2019.
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