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D
iabetes is a major risk factor for the develop-
ment of atherosclerosis. In addition to in-
creased risk of stroke, myocardial infarction,
and peripheral vascular disease, diabetics suffer

from a particularly aggressive form of atherosclerosis with
greater in-hospital mortality following myocardial infarc-
tion and a higher incidence of heart failure, if they survive
(1–3). While diabetics often have other accompanying risk
factors for atherosclerosis (e.g., hypertension hypercho-
lesterolemia, obesity), the additional risk conferred by
diabetes and the particularly aggressive vascular and
myocardial disease that affects diabetics suggest that
diabetes-associated atherosclerosis involves unique patho-
genic mechanisms.

The systemic metabolic disturbances of diabetes, in-
cluding hyperglycemia and hyperlipidemia, likely play a
central role in the pathogenesis of diabetes-associated
atherosclerosis through the generation of oxidative stress.
Hyperglycemia causes increased flux through the polyol
pathway, formation of advanced glycation end products,
activation of protein kinase C isoforms, and increased
hexosamine pathway flux, all of which may contribute to
increased oxidative stress (4–6). Excessive free fatty
acids delivered to nonadipose tissues can lead to reactive
oxygen species (ROS) formation through cycles of oxida-
tive phosphorylation, activation of NADPH oxidase, and
alterations in mitochondrial structure that precipitate ROS
production (7–9). In addition to evidence for activation of
these pathways in cultured endothelial cells, human stud-
ies support the notion of increased systemic oxidative
stress in diabetic subjects in whom increased circulating
levels of adhesion molecules and oxidized lipids correlate
with increases in A1C and hypertriglyceridemia (10). The
effects of oxidative stress in diabetes on both the vascular
wall and lipoproteins in the circulation may promote
atherogenesis.

In this issue of Diabetes, Jaleel et al. (11) provide
intriguing evidence that poor glycemic control in type 1
diabetes is associated with accelerated oxidative damage
to apolipoprotein (apo) A-1. These investigators adapted a
pulse-chase approach, classically used in cell culture ex-
periments, to label newly synthesized proteins with 13C-
phenylalanine in human subjects. They then analyzed
various plasma apoA-1 isoforms by two-dimensional gel
separation and mass spectrometry. This approach enabled
quantification of isotopic enrichment in newly synthesized

forms of the protein containing the propeptide and in more
mature cleaved forms, which together form a charge train
of five spots in two-dimensional gel analyses. As expected,
isotopic enrichment hours after the stable isotope pulse
was highest in the immature forms, and over the course of
10 days, “chased” into more mature forms of the protein
lacking the propeptide. Importantly, the older forms of
apoA-1 accumulated significantly more evidence of dam-
age including deamidation, oxidation, and carbonylation
of amino acids, post-translational modifications that likely
contributed to their altered migration in isoelectric focus-
ing. Although the apoA-1 profile of type 1 diabetics during
insulin infusion was indistinguishable from that of control
subjects, type 1 diabetics deprived of insulin demonstrated
increased oxidative damage to newly synthesized apoA-1
(Fig. 1).

These findings add to a growing body of molecular
evidence for how the oxidative stress that accompanies
poor metabolic control impacts physiology. It has long
been appreciated that ROS can initiate damage to the
nucleic acids, membranes, and proteins of cells. It should
not be surprising then that similar damage can affect
plasma proteins such as apoA-1. Transcriptional, post-
translational, and signaling mechanisms have been well
described in studies of the cellular response to oxidative
stress (12–14). Given that apoA-1 is a major component of
HDLs, which protect against atherosclerosis by facilitating
the removal of cholesterol from macrophages in the artery
wall and promoting reverse cholesterol transport, obvious
extensions of this work will be to determine whether the
changes observed by Jaleel et al. in apoA-1 forms are due
directly to oxidative stress (e.g., attenuated following
anti-oxidant treatment), with which HDL subclasses the
damaged apoA-1 associates, and whether the altered
forms of apoA-1 affect HDL clearance or function. The
former will provide mechanistic insight into the etiology of
these changes. The latter two aspects have the potential to
functionally link the investigators’ biochemical observa-
tions to increased cardiovascular risk in diabetes.

While low plasma HDL is an independent risk factor for
coronary artery disease (15,16), it is increasingly clear that
perturbations in HDL metabolism can alter HDL function
and promote atherosclerosis independent of plasma HDL
levels (17–19). In fact, HDL cholesterol levels alone are
insufficient to capture the functional variation in HDL
particles and the associated cardiovascular risk for indi-
vidual subjects (20). Together with the failure of HDL-
raising therapy in recent clinical trials to reduce
cardiovascular events (21), these findings suggest that the
functional competence of HDL may be as important as
absolute plasma HDL levels. It is likely that an important
pathway for the generation of dysfunctional HDL is
through oxidative damage, such as that precipitated by
hyperglycemia and hyperlipidemia (22).

The damage to apoA-1 described in the accompanying
original article adds to an expanding list of HDL alter-
ations that may impair its function in vivo. HDL-associated
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paraoxanase-1 (PON1), which is principally responsible
for the anti-oxidant properties of HDL that prevent LDL
oxidation, is reduced in diabetic subjects and is associated
with defective anti-oxidant capacity (23,24). HDL anti-
oxidant activity is further impaired by the formation of
advanced glycation end products that interfere with PON1
activity and reduce cholesterol efflux to HDL (25,26). In
vitro oxidation of apoA-I has been shown to impair the
ability of HDL to activate lecithin:cholesterol acyltrans-
ferase, the enzyme responsible for converting nascent
HDL into mature, cholesteryl ester-rich HDL, and to inter-
act with ATP-binding cassette transporter A1 to facilitate
cholesterol export (27–29). Disruption of this critical step
in the reverse cholesterol transport pathway is likely to
have profound effects on the mobilization of cholesterol
from vascular tissues. Beyond analyses such as these,
proteomic examination of HDL is likely to identify changes
in additional proteins that impact lipoprotein function in
the setting of poor metabolic control in diabetes. More-
over, examination of the lipid constituents of the HDL
particles, which are similarly susceptible to oxidation, is
likely to provide equally important insights into HDL
dysfunction and increased susceptibility to atherosclerosis
in diabetes.
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FIG. 1. Accelerated oxidative damage to apoA-1 in poorly controlled
diabetes. ApoA-1 is initially synthesized with a propeptide that is
cleaved (pro-apoA-1 to apoA-1). In the circulation, apoA-1 accumulates
oxidative modifications (apoA-1 to damaged apoA-1). Stable isotope
labeling demonstrates that in the setting of diabetes (DM) and acute
insulin withdrawal, this process is accelerated.
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