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Introduction
The obesity epidemic and its associated cardiometabolic complications is an acknowledged public health 
crisis worldwide (1, 2). Obesity, however, does not necessarily equate to obesity-related complications, as 
observed with metabolically healthy obese (MHO) participants with high BMI (1, 2). Indeed, in MHO 
patients (prevalence estimate of  7%–13% of  adults with obesity), high BMI exists in the absence of  any 

BACKGROUND. Responses of the metabolome to acute aerobic exercise may predict maximum 
oxygen consumption (VO2max) and longer-term outcomes, including the development of diabetes 
and its complications.

METHODS. Serum samples were collected from overweight/obese trained (OWT) and normal-
weight trained (NWT) runners prior to and immediately after a supervised 90-minute treadmill 
run at 60% VO2max (NWT = 14, OWT = 11) in a cross-sectional study. We applied a liquid 
chromatography high-resolution–mass spectrometry–based untargeted metabolomics platform to 
evaluate the effect of acute aerobic exercise on the serum metabolome.

RESULTS. NWT and OWT metabolic profiles shared increased circulating acylcarnitines and 
free fatty acids (FFAs) with exercise, while intermediates of adenine metabolism, inosine, 
and hypoxanthine were strongly correlated with body fat percentage and VO2max. Untargeted 
metabolomics-guided follow-up quantitative lipidomic analysis revealed that baseline levels of 
fatty acid esters of hydroxy fatty acids (FAHFAs) were generally diminished in the OWT group. 
FAHFAs negatively correlated with visceral fat mass and HOMA-IR. Strikingly, a 4-fold decrease 
in FAHFAs was provoked by acute aerobic running in NWT participants, an effect that negatively 
correlated with circulating IL-6; these effects were not observed in the OWT group. Machine 
learning models based on a preexercise metabolite profile that included FAHFAs, FFAs, and adenine 
intermediates predicted VO2max.

CONCLUSION. These findings in overweight human participants and healthy controls indicate that 
exercise-provoked changes in FAHFAs distinguish normal-weight from overweight participants 
and could predict VO2max. These results support the notion that FAHFAs could modulate the 
inflammatory response, fuel utilization, and insulin resistance.
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metabolic syndrome components and the presence of  low HOMA-IR (1, 2). Additionally, higher cardiovas-
cular fitness, related to higher volumes of  physical activity, provides multiple benefits, even after adjusting 
for BMI, including lower mortality rates, incidence of  prediabetes, or incidence of  diabetes (3–10). Studies 
comparing the differences between MHO and metabolically unhealthy obese (MUO) groups focus on iden-
tifying differential mortality and morbidity risks and the stability of  the MHO state over time (2, 11, 12). 
Interestingly, 30%–50% of  MHO convert to MUO within 4–20 years (11).

Exercise continues to be a highly effective lifestyle intervention for metabolic dysfunction that decreases 
the risk of more than 20 chronic diseases (13–15). Exercise training improves amino acid and fatty acid profiles 
over a period of moderate intensity training — adaptations that resemble the metabolic differences between 
MHO and MUO groups (16–18). Additionally, exercise has an antiinflammatory effect in both acute and 
chronic settings, contributing to the improvement of insulin sensitivity and other cardiometabolic factors in 
MUO groups whose members undergo exercise training (13, 19–22). While differences between MHO and 
MUO groups are evident in the absence of lifestyle intervention, it is plausible that training may protect against 
transition to MUO. The modulating effect of exercise on insulin sensitivity makes it an important context 
to study the differential impact of fitness versus BMI on the metabolome. However, the effect of exercise on 
metabolism has largely been constrained to examining normal-weight trained (NWT) runners or overweight/
obese subjects trained from a sedentary state, whereas the population of overweight/obese trained (OWT) 
runners remains understudied. This group is a relevant demographic since they embody a high-fitness yet obese 
state whose study may reveal novel physiological adaptation to exercise (2, 6, 16, 23). Furthermore, numerous 
studies in populations within the normal weight range have interrogated the metabolic responses to acute aer-
obic exercise. However, nearly all metabolic profiling studies of overweight populations have focused on the 
sedentary state, or the impact of prolonged exercise interventions and weight loss.

Genomics and epigenomics platforms have uncovered mechanistic drivers at the interface of  lifestyle, 
environmental influences, and metabolic outcomes (24). Metabolomics technologies have also revealed 
prospective metabolic drivers of  obesity pathogenesis and cardiometabolic complications (25). Metabolo-
mics consists of  untargeted and targeted approaches that focus on semiquantitative or quantitative mea-
surements, respectively. Targeted metabolomics provides absolute quantities of  metabolites; however, only 
a subset of  predefined and validated metabolites are under investigation for formal quantification. On the 
other hand, mass spectrometry–based (MS-based) untargeted metabolomics surveys global metabolic shifts 
among samples by measuring the fluctuations of  multiple chemical feature abundances detected as m/z 
signals (26, 27). Though untargeted pipelines also capture a large number of  artifactual signals, an ever-
improving toolbox supports chemical validation that allows data set curation and, ultimately, selection of  
signals for formal validation and quantification (28–33). Therefore, untargeted metabolomics provides a 
unique opportunity to discover new biomarkers (34–37).

While metabolomics tools have been applied to measure the differences between MHO and MUO, or 
untrained versus trained groups, here we make the comparison between NWT and OWT groups regarding 
metabolome differences in the resting state and in response to acute aerobic exercise (16, 20, 38–41). To 
increase the metabolome coverage that spans polar and nonpolar metabolites, liquid chromatography (LC) 
methods can be combined. Using serum samples from NWT and OWT participants before and after acute 
aerobic exercise, we utilized hydrophilic interaction chromatography with negative electrospray ioniza-
tion (HILIC-ESI[–] MS/MS) and reverse phase (RP) chromatography with positive electrospray ionization 
(RP-ESI[+] MS/MS) to profile serum metabolites (42). NWT and OWT populations were matched for age, 
sex, fitness level, and the absence of  clinical insulin resistance. Our findings indicate acute aerobic exercise 
unmasks a latent metabolome in NWT versus OWT participants, supporting an approach that potentially 
increases the resolving power in the prediction of  clinical outcomes, compared with the analysis of  samples 
collected at baseline. Finally, this work also provides a convergent workflow that leverages the complemen-
tary strengths of  untargeted and targeted metabolomics pipelines.

Results
Participant characteristics and study design. We enrolled normal-weight and overweight/obese participants with 
a self-reported history of  running 3–5 sessions per week for a minimum of  30 minutes. Trained, rather than 
sedentary, participants were studied to limit the effects of  a deconditioned acute stress response. The cohort 
consisted of  25 runners (OWT, n = 11; NWT, n = 14; Table 1). The 2 groups differ by BMI (kg/m2, 30.9 ± 
0.4 versus 22.1 ± 1.5; P < 0.01) and body fat (body fat percentage, 34.0 ± 1.9 versus 19.1 ± 3.1; P < 0.01). 
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However, the differences in covariates, such as age, sex distribution, and maximum oxygen consumption 
(VO2max) (mL/kg lean body mass/min) were not significantly different between the groups as determined 
by 2-tailed t test. Though HOMA-IR was higher in the OWT group than the NWT group (1.6 ± 0.1 versus 
0.9 ± 0.2, P = 0.01), the absolute value of  HOMA-IR in the OWT group remained within the range for 
normal participants (43). Due to absence of  cardiometabolic disease, OWT participants met basic criteria 
defining MHO (2). Correlation analysis with VO2max revealed a moderately strong negative relationship 
between VO2max and BMI (R = –0.64, P < 0.001; Figure 1A) and a stronger relationship between VO2max 
and percent body fat (R = –0.92, P < 0.0001; Figure 1B). For this study, VO2max measures were normalized 
to lean body mass, which did not significantly differ between groups. These results indicate that fitness is 
negatively associated with excess body fat, even in trained groups.

At least 1 week prior to this acute running intervention study, the maximum oxygen consumption of  
each participant was assessed (Figure 1C). The study involved a single 90-minute run at 60% of  individual 
VO2max, after overnight fast (at least 8 hours). During the run, participants wore a heart rate monitor; 
study staff  directly supervised each participant to ensure they maintained a heart rate consistent with 60% 
VO2max exertion. Blood samples were collected immediately before and after the running bout. In par-
allel, all serum samples (n = 50) were spiked with 2 internal standards (IS; metabolite naturally absent in 
the serum) whose signal was monitored to ensure method repeatability. All serum samples were extracted 
and analyzed using an optimized LC-MS metabolomics protocol (Figure 1D and ref. 44). To ensure the 
highest metabolome coverage, we acquired the data in positive and negative ionization modes using HILIC 
(HILIC-ESI[–] MS/MS) and RP (RP-ESI[+] MS/MS) methods (42). Data analyses were performed after 
ensuring the IS AUCs in all analyzed samples were consistent across the batch (relative SD [RSD] < 10%). 
Our untargeted workflow removes redundancies that would hinder identification of  metabolites of  interest 
in complex LC-MS signal matrices obtained for biological samples. After sample processing, positive and 
negative mode data sets were merged, and 680 putative metabolites in total were found to be significantly 
altered relative to preexercise or NWT participants (adjusted P < 0.05, log2 fold change > 1). We then 
used targeted LC-MS analyses to formally identify 73 of  those metabolites via MS/MS fragmentation that 
matched with The Human Metabolome Database (HMDB), Metlin, or mzCloud databases (45–51) (Sup-
plemental Tables 1–4 indicate level of  confidence for identifications; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.158037DS1).

Exercise reveals latent differences in the serum metabolome of  trained runners. We performed 4 different com-
parisons: (a) NWT group, before versus after exercise; (b) OWT group, before versus after exercise; (c) 
before exercise, NWT versus OWT groups; (d) after exercise, NWT versus OWT groups. After correcting 
for multiple testing by FDR, exercise impacted the abundance of  349 and 241 metabolites in NWT or 
OWT groups, respectively (Figure 2, A and B, and Supplemental Tables 1 and 2). On the other hand, 
comparison of  metabolome between NWT and OWT groups either before or after a running bout showed 
that BMI influenced only 53 and 159 differentiating metabolites, respectively (Figure 2, C and D, and Sup-
plemental Tables 3 and 4). To determine the effect of  exercise versus BMI, Principal Component Analysis 
(PCA) was performed using log10-transformed abundance of  metabolites that significantly differed after 
correcting for multiple testing. Metabolomics shifts in LC-MS serum profile, and thus PCA group separa-
tions, were stronger in NWT or OWT groups where exercise was the studied factor (Figure 2, A and B). 
The impact of  BMI on preexercise serum metabolome was less easily separated by PCA, and this may 
suggest latent differences in serum metabolome between BMI groups not evident in the resting state (Figure 
2, C and D). Euclidean distance was calculated to determine the extent of  distinct clustering. For the preex-
ercise metabolic profile comparing NWT with OWT participants, 2 distinct clusters do indeed describe the 
PCA results (Figure 2E). However, consistent with the larger number of  differentially regulated metabolites 
between the NWT and OWT groups after exercise, compared with before exercise, acute aerobic exercise 
caused metabolic profiles between OWT and NWT groups to cluster 97.7% farther apart by PCA (Figure 
2F). Additionally, distance of  OWT participants from the NWT participants cluster centroid is significantly 
greater after exercise compared with before exercise (Figure 2G). Together with the larger number of  dis-
rupted putative metabolites in exercise-induced profiles (349 and 241 for NWT and OWT groups, respec-
tively), these data indicate stronger impact of  acute aerobic exercise than BMI on the serum metabolome of  
trained runners, with acute aerobic exercise unveiling latent differences between NWT and OWT groups.

Exercise-induced metabolic profiles correlate with circulating cytokines in OWT participants. In addition to 
serum metabolomics, 12 samples (NWT = 6, OWT = 6) were used to measure cytokines before and 
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after exercise. At baseline, OWT participants had significantly increased serum monocyte chemoattrac-
tant protein-1 (MCP-1) (+98.9% ± 23.3, P = 0.014) and TNF-α (+66.4% ± 9.3, P = 0.012) compared 
with NWT participants (Figure 3A and Supplemental Table 5). MCP-1 was also elevated after exercise 
(+150.1% ± 46.4, P = 0.016) compared with NWT participants. With exercise, OWT participants had 
significantly increased circulating MCP-1 (65.5% ± 17.0%, P = 0.022) and IL-6 (318.3% ± 126.3%, P = 
0.05) (Figure 3B and Supplemental Table 5). A correlation analysis between cytokine abundance and 
intersecting metabolic profiles (152 putative metabolites that did not vary between BMI groups; Figure 
2A) revealed that OWT participants exhibited stronger associations with cytokine abundance compared 
with NWT participants (Figure 3, C and D). Specifically, putative metabolites in the NWT profile group 
clustered around a Pearson coefficient (R) = 0, suggesting low correlation between significantly altered 
metabolome and cytokine production. Conversely, profile correlations in the OWT participants were 
much stronger, with most clustering higher around R = 0.7 or lower around R = –0.5. Statistical signif-
icance was determined through Fisher Z scores comparing NWT and OWT group Pearson correlation 
coefficients for each putative metabolite. After adjusting for multiple correction, 8 putative metabolites 
differentially correlated to IL-6 in OWT participants (q = 0.05) (Supplemental Table 6). Together, these 
data suggest that changes in the metabolome are more directly related to changes in cytokine profiles in 
OWT participants than in NWT participants.

Untargeted metabolomics pipeline identifies canonical metabolic profile of  exercise. Untargeted metabolomics 
is an important tool for assessing changes in metabolite pools across various groups; however, due to 
the diversity of  methods available for profiling samples, validation of  an untargeted method’s workflow 
for biologically significant features is required. The methods applied in this study revealed several puta-
tive metabolite classes known to increase with acute aerobic exercise. Among them were acylcarnitine 
species, whose identities were supported by comparison of  MS/MS fragmentation patterns against the 
Metlin database (Figure 4A); the ketone body β-hydroxybutyrate (βOHB), which was validated using an 
authentic internal standard (Figure 4B); and putative free fatty acids (FFA) (Figure 4C). The abundances 
of  these metabolites were significantly increased in both NWT and OWT groups after acute running and 
confirmed the expected augmentation of  adipose tissue lipolysis and hepatic fat oxidation during aerobic 
exercise. Among these metabolites, no significant differences were observed between NWT and OWT 
groups after exercise. To validate the observations revealed by the semiquantitative untargeted metabolo-
mics pipeline, FFA species and βOHB were formally quantified using validated shotgun lipidomics and 
targeted ultraperformance LC–MS/MS (UPLC-MS/MS) approaches, respectively (52, 53) (Supplemen-
tal Table 7). These targeted and formally quantitative approaches confirmed those generated through 
the untargeted metabolomics pipeline: acute aerobic exercise increased βOHB concentrations 2.1- and 
3.7-fold in NWT and OWT groups (exercise effect was statistically significant in both groups, but no sig-
nificant differences between NWT and OWT groups were observed), and FFA concentrations increased 

Table 1. Participant characteristics.

NWT (n = 14) OWT (n = 11) P value
Age (years) 28.6 ± 1.6 32.0 ± 1.6 0.1
Sex 6F/8M 7F/4M 0.3
BMI (kg/m2) 22.1 ± 1.5 30.9 ± 0.4 <0.01
Body fat (%) 19.1 ± 3.1 34.0 ± 1.9 <0.01
Lean mass (kg) 50.1 ± 3.8 59.5 ± 2.5 0.05
Lean body (%) 75.8 ± 2.0 63.7 ± 3.1 <0.01
VO2max (mL/kg lean mass/min) 73.3 ± 5.3 62.0 ± 2.1 0.07
Insulin (μU/mL) 4.5 ± 0.6 7.4 ± 0.9 <0.01
Glucose (mg/dL) 81.4 ± 2.0 83.9 ± 2.6 0.46
HOMA-IR 0.9 ± 0.2 1.6 ± 0.1 0.01
Visceral mass (g) 157.9 ± 29.5 602.8 ± 77.5 <0.0001
S.c. mass (g) 498.6 ± 81.6 1951.8 ± 304.0 <0.0001
Total fat mass (kg) 11.8 ± 1.1 30.8 ± 3.3 <0.0001

Data are shown as mean ± SEM. NWT, normal weight trained; OWT, overweight/obese trained. 
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after exercise between 1.3- and 4.6-fold in both groups, where exercise effect was statistically significant 
but where with no significant differences between NWT and OWT groups were observed (Supplemental 
Figure 1). Similar exercise-associated increases in acetoacetate, an oxidized ketone body redox partner 
of  βOHB, were also observed in both NWT and OWT groups (Supplemental Table 7).

In addition to exercise-engaged lipid metabolites, a small set of  metabolites, the purine nucleobases, 
or nucleosides, including adenosine, hypoxantine, inosine, guanine, guanosine, and xanthine, were signifi-
cantly increased between 1.6- and 7.1-fold in the OWT group, both at baseline and after exercise (Figure 
4D). Identities of  these chemical features were confirmed by comparison of  MS/MS fragmentation pat-
terns against the Metlin and HMDB databases. These purine metabolites were among the top contributors 
to differentiating NWT from OWT participants both before and after exercise (Supplemental Table 3, 
Supplemental Table 4, and Figure 2, C and D). Previous studies identified inosine and hypoxanthine as 
biomarkers of  obesity and cardiometabolic disease (39, 54–56). Our analysis confirmed that inosine abun-
dance shows a strong positive correlation with percent body fat (R = 0.67, P < 0.0001; Figure 4E) and an 
inverse correlation with VO2max (R = 0.70, P < 0.0001; Figure 4F). Further analysis of  the relationship 
between putative inosine and fat mass depots revealed a positive association with s.c. fat (R = 0.57, P = 
0.003) (Figure 4G) but not visceral fat (R = 0.34, P = 0.1). Taken together, the observations generated 
through our untargeted metabolomics pipeline were supported by targeted approaches and were consistent 
with the literature, validating our workflow to study the effect of  exercise on NWT and OWT participants.  

Figure 1. Study design and untargeted metabolomics analytical pipeline. (A and B) Scatter plots of maximal oxygen 
consumption (VO2max) against BMI and percent body fat. Strength of correlation expressed as Pearson correlation 
coefficient (R). n = 25. (C) Schematic of study design and sample collection time points. (D) Schematic of analytical 
pipeline for data acquisition. ***P < 0.001, ****P < 0.0001. NWT, normal weight trained runners; OWT, overweight/
obese trained group; IS, internal standard; Phe, phenylalanine; Val, valine; βOHB, β-hydroxybutyrate; RP, reverse phase 
chromatography; ESI, electrospray ionization; (+), positive mode; (–), negative mode; HILIC, hydrophilic interaction 
chromatography; CD 2.0, Compound Discoverer version 2.0; MS/MS, tandem mass spectrometry.
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Intriguingly, abundances of  known exercise-induced metabolites (FFAs, ketone bodies, acylcarnitines) did 
not vary between NWT and OWT runners, while the serum metabolomics profile differed primarily by 
purine metabolites associated with obesity.

Fatty acid esters of  hydroxy fatty acids (FAHFAs) decrease in serum with acute exercise in the NWT group. 
Untargeted metabolomics also revealed significant exercise-induced signals that matched the m/z of  sev-
eral species from the lipid class FAHFAs. FAHFA lipokines have been associated with antiinflammatory 
and antidiabetic effects (57, 58). Palmitic acid ester of  hydroxy stearic acid (PAHSA) increases in serum 
and adipose tissue of  elderly women after a 4-month training period, though no study has revealed the 
responses of  FAHFAs to acute aerobic exercise in trained runners (59). Given the relevance of  FAHFAs 
to obesity, we directly quantified FAHFA lipid species with a validated shotgun lipidomics approach using 
NWT and OWT serum samples from pre- and postexercise conditions (60). Consistent with prior reports, 
baseline concentrations among 16 FAHFA species were diminished 2- to 8-fold in OWT serum compared 

Figure 2. Summary of untargeted metabolomics differential analysis. (A–D) Metabolic profile differential analysis summary and PCA for 4 group com-
parisons: exercise effect in NWT (A); exercise effect in OWT (B); BMI effect at baseline serum conditions (C); BMI effect immediately after running (D). 
Blue arrow, decreasing abundance after exercise/OWT; red arrow, increasing abundance after exercise/OWT. Venn diagrams represent overlapping m/z 
and retention time pairs in NWT versus OWT and pre versus post analyses. Percentages on PCA axes represent fraction of explained variance captured by 
first 2 principal components (Dim1, Dim2). Points inside PCA represent individual samples. Spheres represent normal distribution of group clusters, added 
after unsupervised PCA analysis in R (FactoMineR and Factoextra packages). (E and F) Euclidean distance of individual NWT (Dim1, Dim2) and OWT (Dim1, 
Dim2) from intragroup centroids compared with distance of all individuals from center of all points (denoted H0, as the null hypothesis) for preexercise 
metabolic profile (E) and postexercise metabolic profile (F). (G) Euclidean distance of OWT individuals (Dim1, Dim2) from center of NWT cluster before and 
after exercise. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001, by Student’s t test. Data represent mean ± SEM.
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with NWT (Figure 5A and Supplemental Table 7) (60). Baseline concentrations of  PAHSA, commonly 
observed to be downregulated in obesity, was decreased 1.8-fold in OWT serum relative to NWT. Other 
FAHFA species, such as stearic acid ester of  hydroxy oleic acid (SAHOA, 5.9-fold lower in OWT relative 
to NWT serum), were even more suppressed in OWT compared with NWT participants (Figure 5A). 
Strikingly, acute aerobic running decreased the concentrations of  22 of  25 quantified FAHFA species by 
34%–94% in the NWT group, while in OWT participants, only 5 of  those were decreased, by 40%–79% 
(Figure 5B). In fact, in the OWT group, 1 FAHFA species, a linoleic acid ester of  hydroxy stearic acid 
(LAHSA), was significantly increased (median increase of  73%) with acute running, while no FAHFA 
species increased with running in the NWT group. Notably, both the acute running-induced decreases in 
the NWT group and the dysregulated dynamic responses observed in the OWT group were in contradis-
tinction to the conserved increases in FFA levels after exercise in both NWT and OWT runners that were 
observed using both untargeted and targeted approaches (Figure 4C and Supplemental Table 7).

The disparate effect of  acute aerobic exercise between BMI groups on static FAHFA concentrations sug-
gests that FAHFA turnover during exercise may be modulated by body fat and/or relative insulin resistance. 
To determine if  baseline FAHFA concentrations were related to specific adipose depots, we performed Pear-
son correlation analysis, which revealed that many species were negatively correlated with visceral fat mass, 
total body weight, and BMI (Figure 5C) but not s.c. or total body fat mass. Several of  the species with the 
strongest negative associations (e.g., palmitic acid hydroxy ester of  oleic acid [PAHOA], oleic acid hydroxy 
ester of  oleic acid [OAHOA], and SAHOA) were those that decreased with exercise in both NWT and OWT 
groups, despite OWT showing lower circulating concentrations before exercise. As expected, FAHFAs also 
negatively correlated with HOMA-IR (Figure 5C). Because specific adipose depots have a differential impact 
on circulating cytokines, we next determined if  the observed variations in exercise-induced changes in FAH-
FA concentrations unveiled latent relationships between BMI and circulating inflammatory cytokine levels.  

Figure 3. Exercise-induced metabolic profiles correlate with circulating cytokines in OWT. (A) Fold change in 
concentration of circulating MCP-1 and TNF-α in OWT samples relative to NWT; significance symbols without bracket 
show OWT/NWT comparison, while symbol with bracket shows effect of exercise. (B) Fold change in concentration of 
circulating cytokines relative to before exercise; significance symbol shows pre- to postexercise comparison. (C and D) 
Pearson correlation coefficients of 152 intersecting putative metabolites from exercise-related NWT (C) and OWT (D) 
profiles against IL-6, MCP-1, and IL-10. Putative metabolites are ordered by m/z. *P ≤ 0.05 by Student’s t test. N = 6 per 
group. Data represent mean ± SEM.
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Linear correlation analysis of  covariance revealed that numerous FAHFA species showed a strong, inverse 
relationship with circulating IL-6 abundance in the NWT group (Figure 5D and Supplemental Table 8), 
while the OWT group showed nominally positive relationships to IL-6. The species exhibiting these rela-
tionships are those that decrease with exercise in NWT, but not in OWT. Therefore, while IL-6 was not 
significantly different between BMI groups (Figure 3B and Supplemental Table 5), this correlation suggests 
that there are pathways linked to IL-6 and acute aerobic exercise involving FAHFAs that are dynamically 
regulated by adipose tissue mass. Taken together, integrated, adipose depot–specific, and FAHFA species–
specific mechanisms may modulate both FAHFA turnover and cytokine production. Furthermore, exer-
cise-responsive regulation of  FAHFAs could depend on selective adipose depots and cytokine action, as 
several FAHFAs are selectively regulated in OWT, despite depleted abundance at baseline.

Figure 4. Validation of analytical pipeline. (A) Abundances of putative acylcarnitine (AC) species in NWT and OWT groups relative to their respective pre-
exercise abundance. (B) Postexercise abundance of βOHB in NWT and OWT groups relative to their respective preexercise abundance, identified by internal 
standard. (C) Abundances of putative free fatty acid (FFA) species in NWT and OWT groups relative to their respective preexercise abundance. Significance 
symbols (A–C) denote pre- to postexercise comparison; symbols with brackets denote NWT to OWT comparison. (D) Putative purine nucleoside abundance 
in OWT before and after exercise relative to NWT level; significance symbols indicate OWT to NWT comparison. (E–G) Scatter plot baseline abundance 
of inosine for NWT (black circles) and OWT (blue squares) groups against percent body fat (E), VO2max (F), and s.c. fat (G). R value of correlation pre- and 
postexercise (NWT + OWT) abundance to study measurements; significance symbols denote comparison to Pearson correlation R = 0. Putative species 
identified by m/z and MS/MS fragmentation. *P ≤ 0.05; ¥P ≤ 0.01; #P ≤ 0.001; ‡P ≤ 0.0001 by Student’s t test with Benjamini-Hochberg correction for 
multiple testing. Data represent mean ± SEM.
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Exercise reveals BMI impact on FAHFA and FFA fold changes in trained runners. As described above, we 
observed an increased number of  significantly altered putative metabolites between NWT and OWT 
groups after exercise and surprising differences in metabolite associations to circulating cytokines (Figure 
2, D and G, and Figure 3, B–D). As a result, we postulated that metabolomics signatures could predict 
anthropometric and/or performance indices. Therefore, we performed regression modeling of  intersect-
ing metabolic profiles for OWT and NWT groups to determine if  exercise-induced changes in metabolite 
abundance are associated with BMI. The log2 fold-change of  absolute quantities of  FAHFA and FFA spe-
cies acquired using formally quantitative shotgun lipidomics methods were individually regressed against 
BMI (in +10 kg/m2 increments), total fat mass (per +10.0 kg), visceral fat mass (per +0.5 kg), and s.c. fat 
mass (per +1.0 kg). β Coefficients captured the effect of  increments on lipid species fold change. Many 
FAHFA species are influenced by BMI, s.c. fat mass, and visceral fat mass with an FDR < 0.05, while 
FFA species are impacted by BMI and s.c. fat but not by visceral fat mass (Figure 6, A and B). The FAH-
FA species whose fold-change with exercise is most impacted by visceral fat mass are OAHOA, SAHLA, 
and SAHOA — species whose baseline concentrations negatively correlated with visceral fat mass (Figure 
5D). Notably, exercise-induced fold-change of  PAHSA was not found to be significantly influenced by 
BMI or visceral fat in this trained population. FFA species most impacted by BMI during exercise were 

Figure 5. FAHFAs decrease in serum with acute aerobic exercise in NWT but not OWT. (A) OWT baseline concentration of circulating FAHFAs rel-
ative to NWT; significance symbols indicate OWT/NWT comparison. (B) Exercise effect on FAHFA concentration relative to preexercise in NWT and 
OWT; significance symbols indicate pre- to postexercise comparison. *P ≤ 0.05; ¥P ≤ 0.01; #P ≤ 0.001; ‡P ≤ 0.0001 by Student’s t test with Benjami-
ni-Hochberg correction for multiple testing. Data represent mean ± SEM. (C) Pearson correlation coefficient of fat mass measurements, circulating 
insulin, and HOMA-IR scores against baseline FAHFA concentrations in NWT and OWT. (D) Pearson correlation coefficient of exercise-induced 
changes in FAHFAs versus IL-6; significance symbols indicate difference in Pearson correlation between NWT and OWT. Significance determined by 
adjusted P value (q) after computed Fisher Z score. *q ≤ 0.05; ¥q ≤ 0.01; #q ≤ 0.001 by Student’s t test. Error bars represent 95% confidence intervals.
 

https://doi.org/10.1172/jci.insight.158037


1 0

C L I N I C A L  M E D I C I N E

JCI Insight 2022;7(7):e158037  https://doi.org/10.1172/jci.insight.158037

unsaturated 18:2 (linoleic acid) and 18:3 (linolenic acid). Long chain fatty acids, 22:5 (docosapentaenoic 
acid [DPA]) and 20:3 (eicosatrienoic acid [ETE]) are precursors to eicosanoids, and other lipid mediators 
that are derived from elongation steps of  18:2 and are also significantly impacted by BMI. Together, 
these results underscore that BMI and specific fat depots are differentially associated with FAHFA and 
FFA turnover. Targeted shotgun lipidomics showed modest differences in FFA fold change with exercise 
between NWT and OWT that were not statistically significant, suggesting that variation in FFA is related 
to underlying differences in metabolic activity of  s.c. adipose depots (Supplemental Figure 1).

To evaluate the ability of  combined preexercise FAHFA, FFA, and purine nucleoside abundances 
to predict BMI and cardiovascular fitness (VO2max), we applied a machine learning approach to these 
data. To prevent model overfitting, we applied regularized regression models (ridge regression), which 
include a penalty during model fitting to yield sparse models that depend only on the most influential 
metabolites. Resulting models applying FAHFA + FFA + purine profiles predicted BMI with an average 
R2 = 0.33 (explaining 33% of  variance in BMI, P = 0.03), while prediction for VO2max reached R2 = 
0.53 (explaining 53% of  the variance in VO2max, P = 0.002; Figure 6, C and D); these are magnitudes 
consistent with other metabolomics correlation studies (39). The most significant contributors for BMI 
and VO2max are shown in Figure 6, E and F (all model coefficients can be found in Supplemental 
Tables 9 and 10). A positive model coefficient indicates a direct relationship to the predicted vari-
able (BMI or VO2max), while negative coefficients indicate an inverse relationship with the predicted 
variable of  interest. Interestingly, purines grouped with several FAHFA species, including PAHSA, 
with a negative relationship to VO2max, while the remaining highly ranked FAHFAs had the opposing 
sign. Among these, palmitic acid ester of  hydroxy palmitoleic acid (PAHPO), palmitoleic acid ester 
of  hydroxy linoleic acid (POHLA), and palmitoleic acid ester of  hydroxy stearic acid (POHSA) were 
among the few FAHFAs that did not differ significantly between NWT and OWT at baseline and may 
be important species for training adaptation independently of  BMI (Supplemental Table 7). Notably, 
PAHSA was not highly ranked for predicting BMI. Oleic acid ester of  hydroxy oleic acid (OAHOA), 
the FAHFA with an exercise-induced fold change that was most influenced by visceral fat mass, also 
contributed to the prediction of  both BMI and VO2max (Figure 5D and Figure 6, E and F). SAHOA 
also contributed to both BMI and VO2max, while some FAHFA species selectively contributed to only 
BMI or VO2max prediction. While the significance of  fatty acid chain versus hydroxy fatty acid chain 
is not well understood in the synthesis of  FAHFAs, our results show they tend to change to similar 
degrees with exercise. More study is required to determine how particular FAHFA composition, includ-
ing regioisomerization, is to physiological impact (61). These data suggest that FAHFAs play a role in 
the training effect of  chronic running and may be in opposition of  adenine metabolism–related effects. 
FAHFAs have been primarily studied in relation to their influence on insulin sensitivity, but this study 
reveals a novel role in acute aerobic exercise adaptation.

Discussion
This study recruited an understudied population of  OWT participants to assess differences in the serum 
metabolome compared with NWT counterparts before and immediately following nonexhaustive aero-
bic exercise. The OWT group shares similarities with MHO, an important demographic, whose fitness 
may preempt transition to MUO. NWT and OWT groups did not differ in their fitness levels, as deter-
mined by VO2max, allowing evaluation of  BMI and body fat effect on the response to exercise. Notably, 
BMI was not associated with substantial differences in serum metabolome either before or after acute 
aerobic exercise in trained OWT or NWT runners. Lipidomics measurements showed exercise-induced 
depletion of  circulating FAHFA lipokines in NWT individuals, including several species that have yet 
to be studied in depth (Figure 5B). Finally, a machine learning approach also revealed that FAHFAs 
strongly predict VO2max (Figure 6, D and F).

The mechanisms of  FAHFA turnover, including acyl chain specificity in FAHFA formation, have not 
been completely elucidated. Thus, the differential influence of  individual FAHFA families is of  interest. 
FAHFAs were first identified by Kahn and colleagues as a class of  Glut4-regulated lipids that positively 
correlated with insulin sensitivity (58). Chronic PAHSA treatment in mice fed a high-fat diet improved 
glucose uptake and insulin sensitivity in heart, skeletal muscle, and liver and protects against colitis in the 
gut (62, 63). Efforts to identify regulation of  FAHFA synthesis have linked these lipids to the Nrf2-regu-
lated antioxidation pathway (64). While studies to uncover regulation of  FAHFA synthesis and hydrolysis 
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are ongoing, carbohydrate response element binding protein–regulated (ChREBP-regulated) de novo lipo-
genesis and the Nrf2 antioxidant system in adipose tissue may play important roles (58, 64). Nrf2 is acti-
vated during exercise, increasing activity of  antioxidant defense pathways (65, 66), and suggests a possible 
role of  FAHFAs in response to training. Brezinova et al. identified increases in baseline PAHSA synthesis 

Figure 6. BMI and visceral fat impact FAHFA turnover after acute running in trained groups. (A and B) Regression coefficients with 95% CI for impact of 
incremental BMI and fat mass measurements on fold-change (before to after exercise) of FAHFAs (A) and FFAs (B); significance symbols denote adjusted P 
value of relationship between fat depot and metabolite fold change. (C) Scatter plot true BMI versus predicted BMI after 5-fold cross-validation. (D) Scatter 
plot VO2max versus predicted after 5-fold cross-validation; significance symbol indicates comparison to Pearson correlation R2 = 0. (E and F) Median values 
with IQR of top positive and top negative coefficients from ridge regression predicting BMI (E) and VO2max (F). Median determined after 5 different models, 
1 for each training set split (see Methods for details). *P ≤ 0.05; **P ≤ 0.01 by Student’s t test with Benjamini-Hochberg correction for multiple testing.
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after 4 months of  training in sedentary, elderly women (59). Further research into the role of  FAHFAs in 
training are necessary and may reveal novel adipose tissue physiology in exercise adaptation.

Exercise produced similar yet distinct metabolic profiles between NWT and OWT groups that dif-
ferentially associated with circulating IL-6, further suggesting an underlying influence of  BMI on the 
physiological effect of  acute running. During exercise, IL-6 mediates crosstalk between skeletal muscle 
and target organs, including adipose tissue, possibly stimulating lipolysis and mobilization of  nones-
terified fatty acids (14, 67–70). IL-6 can also be induced by Nrf2 under conditions of  oxidative stress. 
Previous study of  the association between IL-6 production and lipid metabolite abundance in lean, 
male runners saw only a minor relationship after endurance running (71). Thus, our study is the first 
to our knowledge to show BMI-related shifts in metabolites that present a stronger relationship to IL-6 
and MCP-1 production and may represent an important difference in exercise physiology due to excess 
body weight. Circulating metabolite and cytokine abundance is limited in its ability to reveal direction-
ality. Correlations suggest a possible relationship between IL-6 and FAHFA clearance from circulation 
in NWT participants. Dynamic turnover of  circulating FAHFAs could be attributable to numerous 
mechanisms that are not mutually exclusive, including synthesis, hydrolytic catabolism, or uptake/
release within tissues. Our lipidomics platform measures FAHFAs composed of  16:0, 16:1, 18:0, 18:1, 
and 18:2, with complement hydroxy fatty acids, which decreased during exercise. Depletion of  FAH-
FAs during exercise may be due to hydrolysis to provide fatty acids for oxidation during a long running 
bout (60). However, FAHFAs may also regulate glucose transport through activation of  GPR120; thus, 
their downregulation during exercise may be due to metabolic switch from glucose to fatty acid oxida-
tion (57, 58). However, FAHFA roles in skeletal muscle remain largely unknown. Our results are consis-
tent with the notion of  metabolic crosstalk between specific adipose tissue depots and skeletal muscle. 
Further study of  FAHFAs in trained contexts is needed to elucidate this relationship.

Together with FAHFAs, purine nucleosides contributed to VO2max prediction by machine learning 
models. Purines, including putative inosine and hypoxanthine, were among the top metabolites contribut-
ing to variation between NWT and OWT participants before and after exercise and were highly associated 
with percent body fat. Inosine showed fold-changes of  2.4 before exercise and 3.7 after exercise in OWT 
over NWT participants. Elevation in adenine catabolism products has been reported in metabolomics anal-
yses of  pathologies associated with obesity, and its levels improve with exercise training (55, 72–75). A 
recent multiomics analysis identified a downstream metabolite of  purine nucleotides, uric acid, as highly 
associated to BMI in participants with an abnormal metabolome (39). Exercise training of  db/db mice 
showed restoration of  uric acid and its intermediates in skeletal muscle (74). Increasing levels of  hypoxan-
thine have also been observed in human adipose tissue under hypoxic conditions (56). These results may 
reflect ongoing risk for obesity-related pathologies in OWT (14, 67–71, 76–78).

Exercise is a “formidable regulator of  insulin sensitivity and overall systemic metabolism” (14). 
Acute and chronic effects of  exercise force adaptation in several systems, including adipose tissue, skel-
etal muscle, and the liver. For this reason, exercise continues to be the most effective intervention for 
metabolic diseases, such as type 2 diabetes and cardiovascular disease, and could be an important strat-
egy in preventing MHO to MUO conversion. This study showed that FAHFAs and purine nucleosides 
significantly contributed to variation in VO2max after normalizing for lean body mass. Intriguingly, 
FAHFAs were negatively associated with visceral fat mass, while inosine was positively associated with 
s.c. fat. These relationships may indicate competing metabolic impacts from specific adipose depots 
that influence overall metabolic health. Future studies to uncover the role of  FAHFAs in both acute 
and chronic exercise may provide insight into adipose tissue remodeling in exercise and offer a node for 
therapeutic intervention.

Limitations. This study has several important considerations. We report the metabolomics shift in 
serum of  well-trained participants with normal and high BMI. Previous studies have demonstrated that 
BMI incompletely characterizes metabolic health (39). Some participants within the OWT group had 
very low body fat, and their exercise-induced changes were minimal for the identified metabolic profile 
(Figure 2B). This cross-sectional study sought participants with an established exercise habit and did 
not acquire further details on training history, diet, or body composition prior to training. These fac-
tors need to be considered in future human studies. Due to the small sample size, additional studies of  
FAHFAs in both untrained and trained participants are required to demonstrate reproducibility of  the 
relationships among FAHFAs, cardiovascular fitness, and long-term health outcomes.
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Methods
Study participant details. We recruited OWT (n = 11) and NWT (n = 14) participants who self-reported 
aerobic exercise (3–5 sessions/week) from the Twin Cities metro area (Minneapolis, Minnesota, USA) 
between July 2014 and April 2017. We preferentially recruited participants from recent running events, to 
ensure that they are capable of  completing a prolonged (90-minute) run. Inclusion criteria included: (a) age 
between 18 and 40 years and (b) regular aerobic exercise, preferably running, at least 3 to 5 sessions/week. 
Participants with (a) self-reported clinically significant medical issues (e.g., diabetes, cardiovascular disease, 
uncontrolled pulmonary disease), (b) abnormal electrocardiogram indicating cardiac disease (study elec-
trocardiogram performed), or (c) current pregnancy (screening pregnancy test performed) were excluded. 
Participants were recruited with the goal to achieve similarity in age and sex between the 2 groups.

Assessment of  insulin sensitivity. Blood was drawn after an 8-hour fast to measure insulin and glucose 
levels to calculate insulin sensitivity, as estimated by HOMA-IR (fasting serum insulin [μU/mL] × fasting 
glucose [mmol/L])/22.5) (43, 79).

Body composition. Body composition was measured by dual-energy X-ray absorptiometry (DXA). Body 
composition was measured by a DXA scanner, the GE Healthcare Lunar iDXA (GE Healthcare Lunar with 
enCORE software version 16.2).

VO2 max. Subjects were instructed to refrain from intentional exercise for 72 hours and to eat a light 
snack 2–3 hours before testing. VO2max was evaluated by indirect calorimetry using 1 of  2 metabolic carts, 
either at the Human Performance Teaching Laboratory (Ultima Medgraphics CPX-D, Medical Graphics 
Corporation, St. Paul, Minnesota, USA) or Masonic Clinical Research Unit (ParvoMedics TrueOne 2400 – 
OUSW 4.3.4 [20160202], Sandy, Utah, USA). Fitness was quantified by VO2max, normalized for lean mass.

Acute aerobic exercise intervention. The acute aerobic exercise intervention was scheduled at least 1 week 
after the VO2max testing to minimize influence of  the strenuous exercise from the VO2max test. Subjects 
were instructed to avoid intentional exercise for 2 days before the second visit and arrive after an overnight 
fast (at least 8 hours). The exercise bout was a prolonged run designed to promote fat oxidation. The heart 
rate reserve (HRR) was calculated from the subject’s resting heart rate and maximum heart rate from the 
VO2max testing. For the supervised exercise bout, all subjects ran for 90 minutes on a treadmill. Each sub-
ject’s run pace was initially selected by adjusting the speed and incline that achieved 60% HRR during the 
VO2max, to keep all participants running at 0% grade. Heart rate was monitored during the entire run by 
study staff  to maintain proper running intensity with the Polar heart rate monitor and the Polar Beat Multi-
Sport Fitness Tracker smartphone app (Polar Electro Inc.). If  a heart rate fluctuated by more than 5% of  the 
HRR, study staff  adjusted the treadmill speed in 0.2 mph increments until the target heart rate was main-
tained. Subjects were offered free access to water during their exercise bout. Plasma samples were collected 
before and after the acute aerobic exercise intervention.

Cytokine analysis. For a subset of  the participants (n = 6/group), IFN-γ, MCP-1, TNF-α, IL-6, IL-8, and 
IL-10 were measured before and after acute aerobic exercise. Samples were tested by the Cytokine Refer-
ence Laboratory (CRL, University of  Minnesota). Samples were analyzed using the Luminex platform and 
done as a High-Sensitivity multi-plex assay. The magnetic bead set (catalog LHSCM000; lot no. P127677) 
was purchased from R&D Systems. Samples were assayed according to manufacturer’s instructions. Fluo-
rescent color-coded beads coated with a specific capture antibody were added to each sample. After incu-
bation, and washing, biotinylated detection antibody was added followed by phycoerythrin-conjugated 
(PE-conjugated) streptavidin. The beads were read on a Luminex instrument (Bioplex 200), which is a 
dual-laser fluidics based instrument. One laser determines the analyte being detected via the color coding; 
the other measures the magnitude of  the PE signal from the detection antibody, which is proportional to 
the amount of  analyte bound to the bead. Samples were tested using singlet testing, and values were inter-
polated from 5-parameter fitted standard curves.

Sample preparation for untargeted metabolomics study. Samples were stored at –80°C and extracted just 
prior to the analysis using the protocol from Ivanisevic et al. with modifications (42). For quality control, 
serum was spiked with IS of  d8-Phe, d8-Val, and 13C4-βOHB (10 μM each in final extract), normally absent 
in the serum and ion intensity monitored along the batch analysis. Briefly, 20 μL of  serum was extracted 
with 80 μL of  cold (–20°C) MeOH/AcN (1:1, v/v) solution and submitted to the vortexing and bath soni-
cation (10 minutes). The samples were incubated at –20°C for 1 hour, spun to remove proteins, transferred 
to a fresh tube, evaporated, and reconstituted in 100 μL of  1:1 AcN/H2O (1:1, v/v). Prepared samples were 
vortexed, sonicated (10 minutes), centrifuged (10 minutes, 20,000g at 20°C), and analyzed.
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Untargeted LC-MS metabolomics analysis. The untargeted analysis was performed on Dionex Ulti-
mate 3000 RSLC liquid chromatograph hyphenated with Thermo Q-Exactive Plus mass spectrometer 
equipped with heated ESI source. Samples were analyzed using positive or negative MS mode using 
either RP or HILIC-LC separation conditions, respectively. RP separation was carried out using pos-
itive mode on Atlantis T3 (150 × 1 mm, 3 μm) column using mobile phase A (water + 0.1% formic 
acid), and mobile phase B (AcN + 0.1% formic acid) with binary gradient of  5%–95% B for 50 minutes, 
95%–5% B for 7 minutes, and 5% B for 13 minutes. HILIC separation was performed using negative 
mode on Luna Aminopropyl (150 × 1 mm, 3 μm) using mobile phase A, 10 mM ammonium acetate/10 
mM ammonium hydroxide in 95% water, and mobile phase B, 10 mM ammonium acetate/10 mM 
ammonium hydroxide in 95% water, 5% AcN. Separation was performed using binary gradient of  100% 
to 0% B for 50 minutes, 0% B for 7 minutes, and 100% B for 13 minutes. All separations were performed 
at flow rate 50 μL/min and column temperature at 30°C. HILIC analyses used an injection volume of  
4 μL, and RP used an injection volume of  1 μL. The mass spectrometer operated in negative full scan 
(FS) mode (m/z 68–1020) was used with optimized heated electrospray ionization (HESI) source condi-
tions: auxiliary gas 10, sweep gas 1, sheath gas flow at 35 (arbitrary unit), spray voltage –3 kV, capillary 
temperature 275°C, S-lens RF 50, and auxiliary gas temperature 150°C. For positive FS mode (m/z 
68–1020), the optimal conditions were: auxiliary gas 10, sweep gas 3, sheath gas flow at 30 (arbitrary 
unit), spray voltage 4 kV, capillary temperature 350°C, S-lens RF 50, and auxiliary gas temperature 
120°C. The AGC target was set at 1 × 106 ions and resolution at 70,000. Samples within the sequence 
were injected in randomized order to minimize the possibility of  column carryover. The signals of  d8-
Phe, d8-Val, and 13C4-βOHB were extracted from all analyzed samples, and the RSD of  the area among 
all samples was below acceptable 10%.

To identify selected metabolites, MS/MS analysis was performed on a Thermo Vanquish liquid chro-
matograph, with all other LC-HESI conditions unchanged. Data were first acquired in FS to assess reten-
tion time drift between the LC systems, revealing a 10-minute global retention time shift. Features of  inter-
est were targeted by parallel reaction monitoring (PRM) using a 1.0 m/z window and 5-minute retention 
time window for each signal. For targeted MS/MS of  ions, the following MS/MS settings were applied: 
resolution at 35,000; AGC target of  2 × 105, and maximum IT of  100 ms. Normalized collision energy was 
applied in steps from 20% to 40%, to 100%.

Data processing. Untargeted metabolomics RAW files were treated using Compound Discoverer 2.0 soft-
ware. Positive and negative mode data processing used the following parameters: mass tolerance, 5 ppm; 
maximum retention time drift, 4 minutes using the adaptive curve algorithm, minimum scans per peak 
totaled 5; and maximum peak width (full-width-half-height), 0.5 minutes. We excluded background signals 
using parameter setting Sample/Blank signal ratio > 3 and merged chemical features corresponding to iso-
topes and adducts into 1 putative metabolite (29). Results from negative- and positive-mode data were ana-
lyzed separately. Differential abundance analysis was performed to analyze the effect of  (a) BMI or (b) acute 
exercise. Peaks with log2 fold change > 1 and P < 0.05 were selected and evaluated using Compound Discov-
erer 2.0 visualization tools for quality of  spectra, peak picking, and area integration. Poorly integrated peaks 
of  interest were manually integrated in Thermo Quan Browser. Further negative and positive results were 
manually merged. Metabolites of  interest were targeted using MS/MS, and the identification was based on 
the MS/MS spectra available in publicly accessible HMDB, Metlin, or mzCloud databases (45–51).

Quantitation of  FAHFA and FFA. Quantification of  FAHFA and FFA was carried out using the val-
idated internal standard addition methods. FAHFA and FFA species were identified and quantified 
through multidimensional MS-shotgun lipidomics, as previously described (53, 60). Briefly, serum were 
spiked with an appropriate amount of  IS d4-16:0 FFA or 12-PAHSA-d4, and lipids were extracted using 
modified Bligh and Dyer protocol. FAHFA samples underwent solid-phase extraction with a HyperSep 
silica SPE cartridge at room temperature. After conditioning the SPE cartridge with 15 mL hexane, 
previously dried-down samples were reconstituted in 200 μL chloroform and loaded into the cartridge. 
Neutral lipids were eluted with 15 mL of  5% ethyl acetate in hexane, followed by elution of  FAHFAs 
with 10 mL of  ethyl acetate. Eluent was dried under N2 stream.

FAHFA and FFA extracts were derivatized with N-[4-(Aminomethyl)phenyl]pyridinium (AMPP) 
agent, as previously described (53, 60). Briefly, 10 μL of  ice-cold acetonitrile/N,N-dimethylformamide 
(4:1, v/v) was added to lipid extracts. Then, 10 μL of  ice-cold 640 mM (3-[dimethylamino]propyl)-eth-
ylcabodiimide hydrochloride aqueous solution was added. After vortexing, 10 μL of  ice-cold 10 mM 
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N-hydroxybenzotriazole and 10 μL of  30 mM AMPP (dissolved in acetonitrile) were added. Each tube 
was vortexed, filled with N2, capped, and incubated at 68°C for 1.5 hours. Derivatives were then extract-
ed with 4.5 mL of  CHCl3/MeOH/H2O (1:1:1, v/v/v). The bottom layer was collected, dried under N2 
stream, and resuspended in 50 μL of  CHCl3/MeOH (1:1, v/v).

Derivatized extracts were infused in TSQ triple quadrupole mass spectrometer (Thermo Fisher Scien-
tific) equipped with an automated nanospray device (Trivers Nanomate, Advion Biosciences). Identifica-
tion and quantification of  derivatized FFA was performed using selected precursor ion mode scans using 
in-house automated software. FAHFA identification and quantitation was performed in product-ion analy-
sis. Optimized collision-induced dissociation was also used for neutral-loss scanning (60). Data processing 
was performed as previously described (80).

Quantification of  Ketone bodies. Ketone bodies were quantified using a fully validated UPLC-MS/MS 
method as described elsewhere (52). Briefly, serum samples were extracted using cold ACN/MeOH (1:1 
v/v) with addition of  d4-βOHB and [13C4]-acetoacetate (AcAc) as internal standards; it was then vortexed 
and centrifuged in 4°C at 15,000g for 10 minutes. The LC-MS/MS method can be found in previously pub-
lished protocol (52). Absolute concentration was determined through Thermo Quan Browser.

Statistics. Descriptive data are expressed as mean ± SEM for continuous measures and n (%) for cat-
egorical measures (Table 1). Comparisons between the NWT and OWT groups were performed using 
paired 2-tailed t test. Statistical significance was defined as P ≤ 0.05 due to the sample size and explorato-
ry nature of  this study. All statistical analyses of  metabolite profile used Benjamini-Hochberg to adjust 
for multiple testing across metabolites (81). Cytokine analyses were performed using SAS 9.3 (SAS Insti-
tute). PCA used log10-transformed raw intensities and R packages FactoMineR and Factoextra.

The correlation between metabolic profiles and cytokines IL-6 and MCP-1 was computed for each 
metabolite individually using the Pearson correlation in the R base package, based on log-transformed raw 
intensities and cytokine abundance. The significance of  differential correlations were calculated using the 
Fisher Z score, corrected for multiple testing, and graphed to show 95% CI.

The relationships between exercise-related change in metabolite levels (difference in log2 concentrations 
between post- and preexercise results) and preexercise BMI, total fat mass, visceral fat mass, and s.c. fat mass 
were examined using linear models of  metabolite changes, in univariate models and in models including sex 
and age covariates. Effects are reported as model coefficients with 95% CI after correction for multiple testing.

For predictive models for BMI and VO2max, ridge regression was used to build models using glmnet 
library in R. LASSO was also tested but was outperformed by ridge in terms of  model generalizability; thus, 
results from ridge are reported here. Due to small sample size, 5 unique models were generated and are 
summarized. Samples were randomly sampled without replacement for 5 unique training and testing sets of  
combined NWT and OWT (80/20 split), and the sampling was constrained to maintain the participant sex 
distribution in each split to remove sex differences as a confounding factor. For each training/test set split, the 
lambda parameter was tuned based on the training set only using 10-fold cross-validation. The optimal lamb-
da was chosen on the basis of  the training set cross-validation performance, and the resulting model was then 
used to predict BMI or VO2max on the test set. All correlation analyses with model predictions are based on 
test set predicted values. Model variables included scaled concentrations of  FAHFA and FFA species, scaled 
intensities for putative purine species, scaled age, and sex. Performance was evaluated based on the Pearson 
correlation coefficient between the test set predicted values and actual values. Additional models were trained 
with the inclusion of  sex and age; however, these did not significantly improve model performance. Optimal 
lambda values and variable coefficients for each training set can be found in Supplemental Tables 9 and 10. 
Data were plotted and statistical analysis was performed on Prism (GraphPad) v9.0 and in R Studio (v3.6.3) 
unless otherwise noted. Numbers of  observations, assessments of  normal distributions, and statistical tests 
applied are provided in the figure legends.

Study approval. The University of  Minnesota’s IRB approved the study protocol and methods. All par-
ticipants provided written informed consent before study participation. The study is registered at Clinical-
Trials.gov, accession NCT02150889.
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