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ABSTRACT
Ophthalmic genetics is a field that has been rapidly 
evolving over the last decade, mainly due to the 
flourishing of translational medicine for inherited 
retinal diseases (IRD). In this review, we will address 
the different methods by which retinal structure can 
be objectively and accurately assessed in IRD. We 
review standard-of-care imaging for these patients: 
colour fundus photography, fundus autofluorescence 
imaging and optical coherence tomography (OCT), as 
well as higher-resolution and/or newer technologies 
including OCT angiography, adaptive optics imaging, 
fundus imaging using a range of wavelengths, magnetic 
resonance imaging, laser speckle flowgraphy and 
retinal oximetry, illustrating their utility using paradigm 
genotypes with on-going therapeutic efforts/trials.

INTRODUCTION
Inherited retinal diseases (IRD) are a heterogeneous 
group of conditions, with unrivalled phenotypic and 
genotypic variability. This group includes rod-cone, 
cone-rod, isolated cone and macular dystrophies 
(MD), and cone and rod dysfunction syndromes.1–5 
Approximately 1 in 2000 individuals worldwide 
are affected by this group of disorders, and 2.7 
billion people are healthy carriers of at least one 
likely disease-causing variant linked to autosomal 
recessive IRD6; with IRD being the most common 
cause of blindness in the working age population in 
England.7

The huge disease burden caused by IRD8 and 
the advancements in retinal genetics, imaging and 
molecular biology, have led to the development 
of clinical trials of novel therapeutics.9–11 Gene 
supplementation, gene editing through clustered 
regularly interspaced short palindromic repeats 
(CRISPR) technology, antisense oligonucleotides, 
optogenetics and stem cell-based therapies are some 
of the techniques currently being tested to improve 
eyesight and/or reduce the rate of disease progres-
sion.1–5 10 12 The multiple on-going and upcoming 
trials emphasise the need for reliable and repeat-
able measurements, for both patient stratification 
and endpoint assessment. Structural evaluation is 
of paramount importance, since most treatments 
target specific cell populations and aim to halt 
degeneration or restore retinal structure, along 
with clinically meaningful functional improvement 
or preservation of visual function.

Multi-modal assessment of retinal architectural 
integrity is employed to explore disease natural 
history, monitor progression, inform advice on 
prognosis, elucidate disease pathogenesis, stratify 

patients and evaluate the effect of therapies. Herein, 
we will review the different methods for structural 
assessment, focusing on specific genotypic para-
digms with on-going therapeutic efforts (table 1).

Colour fundus photography
Colour fundus photography (CFP) is a widely avail-
able tool to document the retinal appearance. To 
begin with, drawings were used for this purpose 
and around the end of the 19th century, fundus 
cameras started to become available, with constant 
evolution ever since, including a broad range of 
digital and widefield options—arguably the two 
most important developments. A basic feature 
of retinal cameras is their optical angle of view; 
ranging from 20° (particularly used to image the 
optic disc), 30° (standard retinal view), wider angles 
such as 45° and 60° and ultra-wide field covering 
200° (approximately 80% of the retina).13 These 
devices can also be classified based on the use of 
confocal optics or flash-based systems. Currently, 
the former is most efficient, suppressing scattered 
light and resulting in sharp, high contrast and high 
chromatic images.14 Different filters have also been 
developed to enhance particular structures. Red 
light improves visualisation of the choroid and its 
pattern; green light (red-free) is best for retinal 
vasculature, haemorrhages, drusen, exudates and 
the overall retina; and blue light is used to focus on 
the anterior retinal layers.15 CFP, and particularly 
ultra-wide field CFP, is almost universally included 
as part of both standard-of-care and research visits 
for trials and studies in IRD, since it facilitates both 
documentation, evaluation and monitoring of for 
example, progression of areas of atrophy,16 treated 
areas and retinotomy sites, inflammatory features 
including vasculitis, retinitis and choroiditis,17 and 
is also valuable for teaching. CFP is frequently used 
for topographical tracking of functional tests, such 
as fundus-guided microperimetry, and moreover, 
can be used to overlay a wide array of functional 
assessments onto the retinal landscape.

Fundus autofluorescence imaging
Fluorophores are molecules that have the capacity 
to emit light when excited by appropriate wave-
lengths, a characteristic called autofluorescence 
(AF).18 Exogenous fluorophores such as fluores-
cein and indocyanine green are broadly used for 
diagnostic purposes in ophthalmology—with their 
application in angiography not discussed herein 
given their limited utility in IRD. Endogenous 
fluorophores like lipofuscin can be found in most 
eukaryotic cells, and in the eye are predominantly 
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in the retinal pigment epithelium (RPE).19 The AF signal corre-
sponds to the concentration of lipofuscin and other secondary 
fluorophores, which also relates to the pace at which photore-
ceptor outer segments (OS) are metabolised by the RPE cells.20

There are two main techniques of fundus autofluorescence 
(FAF) imaging: (i) short wavelength AF (SW-FAF), acquired with 
a 488 nm blue light that excites lipofuscin and N-retinylidene-N-
retinylethanolamine (A2E), with an emission range between 560 
and 700 nm; and (ii) near infrared AF (NIR-FAF), where exci-
tation occurs at 787 nm (thereby also exciting melanin located 
in the RPE and choroid) and emission around 800 nm.19 21 Both 
employ a confocal scanning laser ophthalmoscope (SLO) and 
with both the optic nerve and vessels appear dark due to lack of 

lipofuscin and light absorption by blood, whereas the macular 
appearance differs.22 In SW-FAF, the macular region is hypoauto-
fluorescent, while with NIR-FAF, it is hyperautofluorescent rela-
tive to the surrounding retina.22 These two imaging techniques 
complement each other, as NIR-FAF detects geographic atrophy 
and pigment migration earlier than SW-FAF, while the latter is 
better at detecting areas with photoreceptor loss but intact RPE, 
and subretinal hyper-reflective material.23

Hypoautofluorescence can be due to a reduced concentra-
tion of lipofuscin (eg, RDH5-fundus albipunctatus, figure  1A, 
and RPE65-early onset severe retinal dystrophy (EOSRD)),24 25 
RPE atrophy (eg, choroideraemia, figure  1B),26 fibrotic tissue 
(eg, late-stage BEST1 macular dystrophy, figure 1C)27 or signal 

Table 1  Summary of the current and under development methods for IRD structural evaluation

Imaging modality Characteristics Use in inherited retinal diseases (IRD)

Colour fundus photography Classified based on the use of confocal optics or flash-based systems. Different 
filters can be employed to enhance particular structures: red light → choroid; 
green light (red-free) → retinal vasculature, drusen, exudates; blue light → 
anterior retinal layers.

Fundamental tool that facilitates teaching, documentation, 
evaluation and monitoring.

Fundus autofluorescence imaging (FAF) ►► Short wavelength-FAF (SW-FAF): macula appears hypoautofluorescent. Good 
for evaluation of areas with photoreceptor loss but relatively intact retinal 
pigment epithelium, and subretinal hyper-reflective material.

►► Near infrared-FAF (NIR-FAF): macula is hyperautofluorescent. It detects 
geographic atrophy and pigment migration earlier than SW-FAF.

Its property of revealing the retina’s health and metabolism makes 
it an important tool for diagnosing and monitoring IRD. It also 
provides valuable insights on disease pathophysiology.

Optical coherence tomography (OCT) Enables highly detailed qualitative and quantitative assessments of the retinal 
layers.

Key tool to accurately monitor anatomical changes. Also employed 
intraoperatively in gene therapy clinical trials.

OCT angiography Provides tri-dimensional visualisation of the retinal microvasculature and capillary 
plexi.

Useful to identify choroidal neovascularisation in association with 
IRD.

Adaptive optics Two types: (i) confocal is used to resolve the cone and perifoveal rod mosaics; (ii) 
non-confocal (split detection) identifies cones with abnormal outer segments.

Enables non-invasive cellular imaging. Helpful to increase our 
understanding of IRD. Also used for monitoring progression and in 
research settings.

Optoretinography Allows mapping of stimulus-evoked functional intrinsic optical signal using near 
infrared light.

May be useful for assessing photoreceptor integrity and 
dysfunction (still under development).

Laser speckle flowgraphy Employs the laser speckle phenomenon to quantify in vivo the circulation in the 
optic nerve head, choroid and retina.

Has been used to correlate blood flow with other structural and 
functional parameters in IRD.

Retinal oximetry Measures oxygen metabolism by capturing how haemoglobin absorbs light. May represent an alternative way to assess outer retinal 
degeneration in IRD (still under development).

Functional magnetic resonance imaging Provides high resolution imaging of the brain including the visual cortex. Useful to assess plasticity and remodelling following visual field 
defects, congenital visual impairment and/or interventions.

Figure 1  Examples of fundus autofluorescence patters in inherited retinal disease. Hypoautofluorescent defects secondary to: (A) reduced 
concentration of lipofuscin in RDH5-fundus albipunctatus, (B) retinal pigment epithelium atrophy in choroideraemia and (C) fibrotic tissue in late-
stage BEST1 vitelliform macular dystrophy. Hyperautofluorescent defects secondary to: (D) increase in lipofuscin appearing as flecks in ABCA4-
retinopathy, (E) drusen in EFEMP1-autosomal dominant drusen and (F) window defect in NMNAT1-Leber congenital amaurosis. (A–E) Short-
wavelength and (F) near infrared autofluorescence images.
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absorption by cells or extracellular material overlying the RPE 
(eg, subretinal bleb following gene therapy administration).28 
Hyperautofluorescence, on the other hand, can be explained 
by an increase in lipofuscin (eg, flecks/vitelliform deposition 
in ABCA4/BEST1/PRPH2-associated retinopathy, figure  1D),29 
intraretinal fluid (cystoid macular oedema),30 drusen (eg, 
EFEMP1-autosomal dominant drusen, figure 1E)1 and window 
defects (absence of signal blockage, eg, macular dysplasia in 
NMNAT1-Leber congenital amaurosis (LCA), figure 1F).9 31 32

FAF imaging has become a key tool to diagnose and monitor 
the progression of IRD, because of its property of revealing 
the retina’s health and metabolism. It has also provided valu-
able insights into disease pathophysiology. Generalised lack of 
AF in patients with EOSRD/LCA has typically been associated 
with variants in genes that affect the visual cycle, such as RPE65 
and LRAT.33 Nevertheless, the universal nature of this feature 
has been recently questioned, with retained AF shown in some 
patients with RPE65-retinopathy, mainly at the posterior pole.25 
Hypoautofluorescent lesions have also been of interest, with 
their intensity varying according to the depth of the outer layer 
defect. Using semiautomated software, the decreased AF can 
be graded into definitely decreased or questionably decreased, 
taking as reference the hypoautofluorescence of the optic nerve 
head, and the rate of atrophy enlargement tracked accurately 
over time.34–38 This has been investigated in detail in multiple 
observational Stargardt disease (STGD) studies, and is being 
employed currently as an endpoint in interventional trials.36–39 
In direct contrast, variants in genes that affect the clearance of 
all-trans-retinal from the interior of the outer segment discs, 
increase the accumulation of lipofuscin and related fluorophores, 
resulting in hyperautofluorescence. This characteristically occurs 
in ABCA4- and PRPH2-associated retinopathy and also under-
lies the perifoveal high intensity ring seen in a broad range of 
IRD.1 40 41 The latter annular pattern of increased signal has 
been associated with the boundary where the ellipsoid zone (EZ) 
starts becoming discontinuous, and also with decreased retinal 
sensitivity (assessed by multifocal electroretinography and fine 
matrix mapping).42 43 It is likely to represent ongoing RPE/
photoreceptor stress and an intermediate stage before cell loss. 
The ring can be present in both cone-rod dystrophies (CORD) 
and rod-cone dystrophies (RCD), and by serially measuring (eg, 
area or greatest linear dimension) either its expansion in CORD, 
or constriction in RCD, disease progression can be quantified.44 
The ring can be seen both with SW-FAF and NIR-FAF, with the 
caveat of being smaller in the latter. It has been postulated that 
this phenomenon may indicate that NIR detects earlier cellular 
changes, that will later become visible with SW-FAF.45

Qualitative assessment of the area of decreased AF is also useful 
for longitudinal assessment of patients with RPE atrophy.46 The 
decrease in signal has been correlated with the loss of RPE, and 
has been proposed as a metric in MD such as STGD, and cone 
dystrophies (COD)/CORD.39 47 In conditions such as choroider-
aemia and RCD, where there is conserved macular signal due to 
relatively preserved structure, quantification of the area of intact 
signal can be a meaningful measurement of disease progression 
or prevention of degeneration, clinically and in clinical trials, 
respectively.44 48 Ultra-wide field FAF patterns are also increas-
ingly being used to categorise conditions such as RCD and 
STGD, including identifying the magnitude and extent of mid-
peripheral and far-peripheral retinal involvment.46

A SW-SLO system using a 450 nm blue light has been used 
to image the retina, providing pictures that are referred to as 
‘colour-FAF’.49 The emission spectrum can be subdivided into 
two images: red (560–700 nm) and green (510–560 nm). This 

technique provides additional information about minor fluoro-
phores such as advanced glycation end products and oxidised 
fluorescent form flavin adenine dinucleotide (FAD) of the redox 
pair FAD-FADH2, that appear on the green, short wavelength 
image.50 Lipofuscin and A2E are mostly responsible for long 
wavelength emission (red image). One application for green AF 
has been to monitor subretinal hyper-reflective material over 
Bruch’s membrane,50 and in the characterisation of small, central 
lesions, given its lower absorption by macular pigments.51 
Another tested approach is the use of SW reduced-illuminance 
AF, which employs a custom percentage of the laser power and 
can go as low as 25% of conventional intensity.52 Studies have 
shown a high correlation with standard AF in patients with 
STGD, but with better tolerability—bearing in mind the poten-
tial toxicity of higher intensities for patients with IRD.53

Beyond standard FAF, fluorescence lifetime imaging ophthal-
moscopy (FLIO) is a developing modality for further functional 
imaging, based on the decay time of the fluorescent molecules.54 
FLIO is a promising tool to detect and assess varying meta-
bolic states of the retina, potentially allowing characterisation 
of disease areas before damage is visible with other structural 
imaging methods. It also enables differentiation between zones 
with preserved outer layers, photoreceptor loss and photorecep-
tor-RPE complex disruption. Hyperfluorescent FLIO rings with 
short FAF lifetimes may provide insight into the pathophysio-
logical status of RCD-affected retinas, perhaps providing a more 
detailed/sensitive assessment of disease progression.55

Optical coherence tomography
Since its introduction in 1988, optical coherence tomography 
(OCT) has become the most valuable tool for retinal structural 
assessment, providing an in vivo cross-sectional view of the 
retina that has revolutionised clinical and academic practice.56 
Initially, the signals were time-encoded and these devices were 
referred to as time-domain OCT.57 Later on, spectral-domain 
OCT provided an improved axial resolution (from 10 to 2 µm) 
and faster acquisition speed, by collecting backscattering signals 
through a broad-bandwidth light source.58 More recently, 
swept-source OCT using rapidly tunable lasers with longer 
wavelength, has allowed imaging of deeper structures, improved 
visualisation even with media opacity, higher contrast and wider 
scans.59 60 The higher resolution of OCT not only enabled qual-
itative assessment of multiple retinal layer integrity, but more-
over, allowed repeatable quantitative/volumetric measurements. 
In IRD, OCT has transformed disease characterisation, including 
revealing countless phenotypic features such as retinal tubula-
tions at the margin of the outer retinal loss in choroideraemia 
and other advanced retinal dystrophies,61 62 intraretinal foveal 
schisis in X-linked retinoschisis,63 and thick, abnormally lami-
nated retina in CRB1-associated disease.64

The ability to accurately determine anatomical degeneration 
has changed the IRD landscape. The shortening of photoreceptor 
OS is one of the earliest findings in RCD and can be assessed by 
measuring the length between the inner surface of the hyper-
reflective layer between inner segments and OS of photorecep-
tors, also known as the EZ, and the inner surface of the RPE 
.65 66 The shortening of this layer has been shown to significantly 
correlate with several functional parameters including visual 
field, central retinal sensitivity and best-corrected visual acuity 
(BCVA).67–69 Arguably more robust metrics include serial EZ area 
(EZA) and diameter (EZW, width), which have been explored 
extensively as measurements in RP and LCA monitoring and 
are being used currently as structural endpoints in clinical trials 



1626 Daich Varela M, et al. Br J Ophthalmol 2021;105:1623–1631. doi:10.1136/bjophthalmol-2021-319228

Review

(figure 2A,B).25 44 70 71 In MD and COD/CORD, quantification 
of EZA and EZW loss can also serve as eligibility criteria and 
outcome measurements for intervention (figure 2C,D).72 EZA/
EZW are metrics of great value for elucidating disease natural 
history in IRD. EZA loss has been shown to be greater than the 
area of decreased AF in STGD.47 72 73 These observations support 
the theory that photoreceptor degeneration precedes RPE loss 
in STGD, or that functional RPE loss precedes the structural 
loss of RPE leading to photoreceptor loss before structural 
damage becomes apparent on FAF—importantly, this is in direct 
contrast to prevailing pathogenesis descriptions alluding to RPE 
loss preceding photoreceptor degeneration,74 and may thereby 
necessitate a paradigm shift.

Other useful OCT features are volumetric analysis and thick-
ness assessments. Parameters such as central foveal thickness, 
submacular choroidal thickness (measured with standard and 
enhanced depth imaging) and macular volume are significantly 
reduced in patients with RCD, when compared with normal 
controls.75 However, these latter parameters are not always 
correlated with visual function, thereby measuring the EZ 
remains one of the most sensitive ways of tracking the progres-
sion of RCD.76 In addition, outer nuclear layer-foveal thickness 
has been frequently used as a surrogate measurement of foveal 
cone number, even though studies employing adaptive optics 
cellular imaging have proved the lack of correlation between 
these two parameters in conditions such as achromatopsia 
(ACHM).77–79

A present challenge regarding OCT analysis in patients with 
IRD (particularly CORD and STGD) is that automated retinal 
layer segmentation tends to be unreliable when retinal architec-
ture is altered, requiring time consuming manual correction.80 
To solve this issue, semiautomated segmentation methods have 
been developed, based on the selection and manipulation of a 
subset of scans.80 These methods may provide reliable measure-
ments within particular Early Treatment Diabetic Retinopathy 
Study (ETDRS) rings, resulting in relevant diagnosis and moni-
toring information.81 However, inaccuracies remain regarding 
segmentation of the outer retina and atrophic areas, especially 

in the outer ETDRS ring, which still require manual correc-
tion.82 83 Deep learning approaches will likely be helpful in 
the near future to decrease the need for costly and impractical 
manual correction.

OCT can also be employed intraoperatively to facilitate 
optimal targeting and safe treatment delivery in subretinal injec-
tions of gene therapy products in IRD.84

OCT angiography
OCT angiography (OCTA) provides tri-dimensional visualisation 
of retinal microvasculature and capillary plexi.85 It has become 
an easier, faster and safer alternative to fluorescein and indocy-
anine green angiography; although not entirely replacing angiog-
raphy, which can unlike OCTA, demonstrate leakage. OCTA is 
particularly helpful in identifying choroidal neovascularisation in 
association with vitelliform deposition in IRD. Multiple studies 
analysing the central 3 and 12 mm have shown decreased perfu-
sion and vessel length density in the superficial and deep plexi of 
the choriocapillaris in patients with RCD.86–88 The loss of photo-
receptors causes a reduction in the retina’s oxygen consumption, 
thereby likely leading to the aforementioned vascular changes.89 
A significant association between these and other features, such 
as the width and integrity of the EZ, BCVA and visual field has 
been demonstrated.86–88 90 Recently, reduced microvascular 
density has been associated with a decreased number of cones, 
quantified with adaptive optics imaging.91 It has also been postu-
lated that the observed decline of choroidal vessel density occurs 
at late stages of retinal degeneration and further aggravates 
photoreceptor dysfunction. Therefore, analysing the integrity 
of the choroidal vasculature may be important in predicting the 
progression of IRD, as well as the responsiveness to treatment.92

Adaptive optics
Adaptive optics scanning light ophthalmoscopy (AOSLO) 
allows for non-invasive cellular imaging, thereby helping to 
improve our understanding of IRD.93 An increasing number 
of natural history studies and ongoing/planned interventional 

Figure 2  Optical coherence tomography evaluation of the ellipsoid zone (EZ). Foveal EZ preservation, with peripheral EZ loss, in (A) RPGR-RP 
and (B) RPE65-LCA. Foveal EZ loss, with peripheral EZ preservation, in (C) ABCA4-MD and (D) CNGB3-ACHM. RP: retinitis pigmentosa; LCA: Leber 
congenital amaurosis; ACHM, achromatopsia; MD, macular dystrophies.
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clinical trials exploit AOSLO both for participant selection, 
stratification and monitoring treatment safety and efficacy.93–97 
There are currently two main types of detection: (i) confocal, 
which uses the light that is backscattered by photoreceptors 
with relatively intact OS to resolve the cone and perifoveal 
rod mosaics (figure  3A); and (ii) non-confocal (split detec-
tion), that processes images capturing the light to the right 
and left of the confocal aperture, enabling the identification 
of cones with abnormal OS (figure 3B).93 Several metrics are 
often employed, including cone density and spacing, peak 
cone density, Voronoi analysis of the regularity of the mosaic 
and reflectivity.98

AOSLO advanced retinal phenotyping has provided novel 
insights into IRD. It has been described that at 1° from the 
fovea, a cohort of patients with CORD had 0.7 times greater 
spacing than a control group, and a cohort of patients with 
RCD, 0.2 times greater spacing.99 The more spacing between 
the cells, the less density of cones in that area. While it would 
be predicted that AO imaging and cone density would be 
abnormal in CORD, in RCD, one might expect there to be 
relatively preserved cone function and structure until advanced 
stages. However, AO imaging has shown that in patients with 
RCD (mean retinal sensitivity greater than 35 dB), the cone 
density is decreased, even in areas where the EZ appears 
intact on OCT. Therefore, AO can monitor patients with 
mild RCD before changes are evident on OCT.100 Moreover, 
by detecting change more sensitively and thereby in shorter 
periods of times, AO may be helpful in determining the rate of 
progression in a far more timely fashion compared with other 
modalities.101 Qualitatively, cone-free patches have also been 
demonstrated at the fovea of patients with RCD, while these 
were absent in the normal population.99 Similarly, in STGD, 
AOSLO has shown early parafoveal decrease of photorecep-
tors.29 Nevertheless, despite the exquisite ultra-resolution of 
AO cellular imaging, it is significantly limited by the lack of 
a commercially available compact device and the inability to 
acquire standardised images in the majority of patients with 
IRD—in direct contrast to OCT.

However, AOSLO has been successfully employed in several 
deep-phenotyping studies for ACHM, showing highly variable 
residual cone density for CNGA378- and CNGB377-ACHM 

(both genotypes have on-going gene therapy trials), better 
preserved mosaic in GNAT2102 -ACHM and greater degenera-
tion in ATF679- and PDE6C40-ACHM. AOSLO cone counting 
with split-detection imaging has been reported to have good 
repeatably in STGD, RPGR-RCD and CNGA3- and CNGB3-
ACHM, with variability between different diseases.103 104 
Furthermore, AOSLO can contribute to the differentiation 
between entities, such as oligocone trichromacy (sparse mosaic 
of normal wave-guiding cones at the fovea) and bradyopsia 
(relatively intact photoreceptor mosaic).105 Nonetheless, the 
correlation between AO images and functional parameters is 
still under evaluation; with AO-guided cellular psychophysical 
testing still in early development—and the promise of ‘nano-
perimetry’. Intriguingly, and with potential therapeutic impli-
cations, it has been reported that even with 40% of the normal 
cone density, BCVA and retinal sensitivity remain within 
normal limits.106

Optoretinography
Optoretinography (ORG) is a recent technique that allows 
mapping of stimulus-evoked functional intrinsic optical signal 
(IOS) using near infrared light—‘functional imaging’.107 
During phototransduction, a light stimulus causes slight 
shrinkage of photoreceptor OS by narrowing the inter-disc 
spacing, leading to bleaching and IOS (scattering and refractive 
index, among others).108 Measuring IOS has been correlated 
with photoreceptor integrity, which may, among other poten-
tial applications, have utility in stratification of patients for 
new therapies.109 ORG has been assessed in patients using 
high-speed OCT and AOSLO, although improved instruments 
and software is still required to optimise the technology.110–112 
Preclinical studies have investigated ORG in murine models 
of photoreceptor dystrophy such as RCD, and shown that 
ORG was able to detect photoreceptor dysfunction.113 The 
perfecting of this modality may provide us with deeper eval-
uation of how photoreceptors function and respond to new 
therapies.

Laser speckle flowgraphy
Laser speckle flowgraphy (LSF) employs the laser speckle 
phenomenon to quantify in vivo the circulation in the optic 

Figure 3  Cellular imaging with adaptive optics scanning light ophthalmoscopy (AOSLO). AOSLO imaging in CNGA3-associated achromatopsia: 
(A) confocal image, with red dots marking the ‘dark’ (non-waveguiding) cones. Cones are surrounded by waveguiding rods. (B) Non-confocal (split 
detection) image over the exact same region with overlying red dots showing the cones marked in (A), which colocalise with cone inner segments, 
surrounded by rods. Scale bar: 20 µm.
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nerve head, choroid and retina.114 In RCD, LSF has been 
used to show that decreased macular choroidal blood flow 
was closely associated with reduced central visual function.115 
These findings reinforce the need for further evaluation of 
choroidal blood flow in patients with IRD.116

Retinal oximetry
Retinal oximetry devices have significantly advanced over 
the last decade, associated with improving reproducibility.117 
Oxygen metabolism can be measured due to the different light 
absorption of oxy-haemoglobin and deoxy-haemoglobin. In 
IRD, outer retinal degeneration decreases the overall retinal 
oxygen requirement. Retinal loss also leads to increased diffu-
sion of oxygen from the choroidal circulation into the inner 
layers, reducing the need for oxygen delivery from the retinal 
circulation, and ultimately causing increased venous satura-
tion.118 Using retinal oximetry, oxygen saturation in retinal 
venules has been found to be significantly higher in patients 
with RCD than in controls, and the arteriovenous difference, 
lower.119 120 These findings were significantly associated with 
macular thickness and electrophysiology responses.121 Retinal 
oximetry’s role in IRD requires further evaluation in large 
genotyped cohorts.

Neuroimaging
Magnetic resonance imaging (MRI) affords the ability to 
obtain high resolution structural images of the visual cortex 
and also sensitively record associated responses (functional 
MRI).122 Importantly, several MRI studies have described a 
degree of plasticity/remodelling following visual field defects 
in RCD or MD, and also with congenital visual impairment, 
including in ACHM.123–125 The remapping of the primary 
visual cortex (V1) consists of a shift of central retinal inputs 
to more peripheral locations in V1, and this phenomenon was 
found to be larger in patients with more constricted visual 
fields.125 However, it was noted that individuals with RCD 
did not have marked structural differences compared with 
controls (changes in white matter were mild); but in contrast, 
individuals with early-onset visual loss had thickened striate 
cortical and grey matter.125–128 It is of note that a child with 
ACHM who underwent gene therapy has been described who 
demonstrated cone-driven retinotopically organised signals 
in visual cortical areas, absent before the treatment.129 This 
raises the possibility of using MRI to measure ophthalmic gene 
therapy outcomes.

Deep learning
Imaging in medicine is now being aided by artificial 
intelligence-based algorithms that are intended to reduce 
errors and decrease analysing time. Deep learning consists of 
artificial neural networks that have self-learning algorithms 
based on large volumes of high-quality training data.130 While 
sufficiently large databases may be challenging to obtain for all 
IRD, this technology is already being applied to the IRD field.

Miere et al have used FAF images (n=389) to automatically 
classify IRD into the categories of Best disease, RCD, STGD, 
and controls, with an overall accuracy of 95%.131 Arsalan et 
al chose instead CFP (n=2160) to develop a network that 
segments the retina and detects pigment; with an accuracy 
of 99.5%.132 Masumoto et al used 373 ultra-wide CFPs and 
FAF images to develop a platform that differentiates RCD 
from normal retinas, with a sensitivity and specificity of over 
99%.133 While, Fujinami-Yokokawa et al used OCT scans to 

create an approach that differentiates between retinal dystro-
phies secondary to pathogenic variants in ABCA4, RP1L1 and 
EYS, with a mean accuracy of 90.9%.134 Deep learning has also 
been used to binarize AF images from patients with RCD, and 
accurately identify and outline the hyperautofluorescent ring. 
This method showed statistically significant higher precision 
than subjective visual inspection.135 It is expected that deep 
learning algorithms will continue to improve and become 
integrated into high-definition technologies. This should help 
with more rapid accurate diagnosis and monitoring of disease, 
as well as facilitate trials, treatments and education.

CONCLUSIONS
Advancements in multimodal retinal imaging have trans-
formed the practice of retinal genetics over the last 10 years, 
and no doubt will continue to evolve and expand over the 
next decade. These developments have shed light on disease 
mechanisms, allowed more timely diagnosis (helped to shorten 
the ‘diagnostic odyssey’) and earlier disease detection, prior-
itised genetic testing, facilitated more accurate advice on 
prognosis and more sensitive measurement of rate of change 
over time. They have also helped treatment development, 
cohort characterisation, trial design and outcome validation. 
Further improvements are anticipated, including with respect 
to ultrastructural imaging, metabolic imaging, improved 
structure-function overlays/correlation, and the establishment 
of artificial intelligence-mediated diagnostics to improve care 
and opportunities for patients with IRD.
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