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Abstract: The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA)
is studied by laser scanning confocal and environmental scanning electron microscopies. As in the
investigated case the direct light scattering analysis is not suitable, we observe the behavior of the
fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of
the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence
emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic
moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster
resonance energy transfer. The environmental scanning electron microscopy images show that DNA
molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent
of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs
and DNA.

Keywords: gold nanoparticle aggregation; deoxyribonucleic acid; laser scanning confocal microscopy;
surface plasmon resonance; Förster resonance energy transfer; hydrophobicity

1. Introduction

Individual particles and assemblies of gold nanoparticles (GNPs) show different optical and
electrical properties. For instance, the color change due to aggregation of GNPs is an indicator
of the surface plasmon shift, allowing potential applications in sensors to recognize DNA or its
components [1].

Life processes strongly depend on nucleic acids and proteins which, therefore, are used as
probes for measurements of other components in biological systems [2]. The development of
nanobiotechnology is helped by a deep understanding of the interaction of GNPs with nucleic acids,
which are used as a basic tool for nanobiotechnological devices [3,4]. Examples of this approach are
the organization of metal and semiconductor nanoclusters [5], several bioanalytical techniques [6],
the biomolecular electronics [7] and nanomechanical systems. Therefore, the DNA efficiency for
inducing GNPs self-assembly is a very interesting subject of research. J. Yang et al. [8] demonstrated
how single-stranded DNA could be used to manage the placement of two different sized GNPs in
a complex particle system. K. N. Ganesh et al. [9] have studied electrostatic assembly of cationic
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surfactants-capped GNPs on DNA duplex. H. Nakao et al. [10] have reported the highly-ordered
assemblies of GNPs in well-aligned and long-range order on DNA molecules.

Color change, UV-VIS spectroscopy, and dynamic light scattering have been used as techniques
for the detection of GNPs aggregation [11–13]. Confocal and two photon microscopies and single-cell
plasmonically-enhanced Rayleigh-scattering imaging spectroscopy were used as imaging techniques
to observe the GNPs aggregation after their accumulation within living cells through endocytosic
processes [14–16]. These approaches take advantage of the characteristic optical properties of plasmonic
GNPs, namely, their ability to strongly scatter light, and the coupling of their plasmonic fields when
particles come into close proximity.

In this work, the laser scanning confocal microscopy (LSCM) is used to observe the
double-stranded DNA induced aggregate growth of cationic surfactants-capped GNPs. The
observation based on the light scattering enhancement from GNPs aggregates is not recommended
in our experiments since there is a strong overlap between the light scattering from DNA/cationic
surfactants complexes and the light scattering from GNPs aggregates (see in Appendix). Therefore, to
skirt this overlap problem we detected the GNP aggregation through the Förster Resonance Energy
Transfer (FRET) process. Nile Blue perchlorate (NB) is used as a probe because, in addition to the NB
molecules ability to be intercalated inside the DNA helix [17,18], it seems that this probe can be also
entrapped within the hydrophobic part of the surfactants bilayer films coating the aggregated GNPs.
This entrapment places this probe in proximity to metallic surfaces leading to FRET. Due to the strong
interaction between NB molecules and the large localized fields induced by the plasmonic coupling,
a highly enhanced fluorescence is produced allowing the localization of GNPs aggregates.

2. Preparation of Samples and Methods

2.1. Gold Nanoparticles

Our experiments are performed by using commercially available GNPs, obtained from Sigma
Aldrich as stabilized suspension in citrate buffer with a core size of 37–43 nm and a mean hydrodynamic
diameter of 48–56 nm. GNPs are usually prepared by using citrate reduction of Au ions in an aqueous
solution; therefore, GNPs surface is negatively charged. To minimize their aggregation, the versatile
surface chemistry of citrate-capped GNPs allows them to be coated with a hydrophilic bilayer film
on their surface via electrostatic interaction. By using a stabilizer, such as cetyltrimethylammonium
bromide (CTAB), which presents a positive hydrophilic ammonium head group and a hydrophobic
long hydrocarbon tail, the surface electric charge is converted from negative to positive [19,20].

The absorption spectrum of the solution containing the dispersed GNPs (Figure 1) was observed
through a UV-VIS-NIR spectrophotometer AVASPE-2048 Avantes. Surface plasmon resonance (SPR)
causes strong scattering as well as absorption of light. Therefore, the absorption spectrum of dispersed
GNPs provides data about the SPR band of GNPs. Our observations show that SPR band of the GNPs
used for this work ranges from 400 nm to 600 nm, with a peak at 525 nm (Figure 1).

Figure 1. Absorption spectrum of GNPs stabilized suspension in citrate buffer.
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2.2. Preparation of the DNA Solution

Nucleic acid solution was prepared by dissolving 10 mg of commercially available
deoxyribonucleic acid (double-stranded (ds) molecule), DNA, fish sperm from salmon testes
(Sigma-Aldrich) in 10 mL of doubly distilled water. 24 h or more were needed for the dissolution at
4 ˝C, accompanied by occasional gentle shaking.

2.3. LSCM Measurements

For the observation of the GNPs aggregation growth induced by DNA based on the NB
fluorescence analysis, four solutions were prepared. The DNA/GNPs/NB solution is prepared
at first. We added to 1.6 g of the GNPs stabilized suspension in citrate buffer, 0.002 g of the crystallized
probe Nile Blue A perchlorate (NB; Figure 2) purchased from Sigma-Aldrich. This mixture is left in a
shaker for 15 min at 50 ˝C in order to dissolve the probe. Then, 1.3 mL from the dissolved DNA was
transported to the previous GNPs/NB mixture. The three other solutions were prepared for control
experiments. The first one was prepared with the same procedure described above except that this
mixture was free from DNA. To have the same concentration of GNPs in DNA/GNPs/NB solution
described previously, 1.3 mL of double distilled water was added to GNPs/NB solution (solution No. 1
for control experiments).

Figure 2. Molecular structure of the fluorescence probe NB.

To study the effect of GNPs on the fluorescence of NB bound to the cationic surfactants present
as stabilizer in the GNPs suspension in citrate buffer, the solution No. 2 was prepared with the same
procedure described above for the GNPs/NB solution (solution No. 1) except that GNPs were removed
from the buffer solution by centrifugation at 3000 rpm for an hour. The final solution for control
experiments (solution No. 3) was prepared by adding 0.002 g of NB to 1.3 mL from the dissolved DNA.
Then, the resulting solutions were gently shaken at room temperature for 5 min, stored at 4 ˝C for 48 h,
and 0.25 mL from each solution was deposited by drop-coating to the glass slide treated by deionized
water. The four coated films on substrate were stored for 24 h at room temperature to let the water
evaporate completely resulting to four precipitates.

(LSCM) was used to image the fluorescent emission on each of the four samples. All samples
were imaged on a Leica TCS SP8 using a 25 ˆ /0.95 numerical aperture water immersion objective
and identical setting. The small droplet of the immersive water was placed on the opposite side of the
coated film on the glass slide with the thickness of 1.13 mm. The 514 nm was used as pump beam and
the fluorescent emission was sent simultaneously to 2 PMTs (PMT1 and PMT2) collecting respectively
the light in the (550–600) nm and (600–750) nm ranges. The SPR of GNPs and the excitation spectrum
of NB have respectively the (400–600) nm and (470–690) nm ranges [21]. Thus, 514 nm was chosen for
the irradiation because this wavelength is within these two ranges.

Since the NB emission depends on the polarity of the environment which is red shifted with
higher polarity, emitted light was detected in (550–600) nm and (600–750) nm ranges [17]. The use of
two PMTs allowed the simultaneous acquisition of two images. In order to enhance the contrast, each
image is colorized by an artificial color, according to the detection ranges of PMT1 and PMT2, where
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the green or the yellow areas are the expression of the fluorescence from NB bound to the hydrophobic
part of cationic surfactants and the red or the grey domains are the expressions of NB bound to DNA.

2.4. Scanning Electron Microscopy

An environmental scanning electron microscope (ESEM) Quanta 400F installed at
Nanotec-Cosenza (Italy) by FEI Europe B.V ( Achtseweg Noord, 5, 5651 GG Eindhoven, The
Netherlands) and FEI Italy (Srl Viale Bianca Maria, 23, 20122 Milano (Mi)) Companies (Milano, Italy)
has been used to image the samples prepared with GNPs at pressure of 1 mbar and voltage 5–10 kV.

3. Experimental Results and Discussion

3.1. Images of LSCM and Fluorescence Spectroscopy

3.1.1. Effect of Gold Nanoparticles on the Fluorescence of NB Bound to Cationic Surfactants

The evaporation of the coated films prepared from the solutions No. 1 and 2 induced, respectively,
a precipitation of aggregated cationic surfactants complexes with and without GNPs. Before the drying
of the coated film (solution No. 2), NB as hydrophobic probe moves closely to the hydrophobic part
of cationic surfactants [17]. As depicted in Figure 3, the fluorescence spectra of the untreated GNPs
precipitation recorded with the lambda scan mode across the (530–775) nm range under an excitation
of 514 nm shows a maximum at the wavelength of 565.59 nm (grey curve, Figure 3). Under the same
excitation, the fluorescence spectra of treated GNPs precipitation recorded with the lambda scan mode
across the same range is broadened and slightly redshifted compared to the fluorescence spectra in
the absence of GNPs (orange curve, Figure 3). For the sample treated with GNPs, the evaporation of
the solution induced their aggregation which was expected since that the dipole-dipole interaction
between these nanoparticles is stronger when the distance between them decreases. The SPR of GNPs
presents a broadening and red shift when they aggregate [22]. Moreover, it seems that NB entrapment
inside the hydrophobic part of the bilayer polymeric film covering aggregated GNPs is responsible
of a FRET between NB (acceptor) and aggregated GNPs (donor) which explains the fluorescence
enhancement in the (565.59–706.59) nm range (Figure 3). When a fluorophore is quite close to a
plasmonic particle, for instance within 10 nm, the electrons of the fluorophore are influenced by the
plasmon field changing their excitation/emission properties. The interaction results in a quenching or
enhancement of the fluorescence [23,24], which improves the performance of the optical response of
the fluorescent contrast agents [25–27].

Figure 3. Effect of gold nanoparticles on the fluorescence spectra of NB bound to cationic surfactants
complexes (grey and orange curves are recorded respectively from precipitations of aggregated cationic
surfactants complexes without and with GNPs). Emission obtained from 514 nm excitation (lambda
scan mode from a confocal microscope) and detected in the (530–775) nm range.
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Thus, the FRET process between aggregated GNPs and NB induced a broadening of the
fluorescence spectra of NB bound to cationic surfactants complexes.

Moreover, the slightly redshift of the fluorescence spectra of NB bound to cationic surfactant
complexes in the presence of GNPs can be attributed to the SPR redshift of GNPs after their aggregation.

3.1.2. Effect of DNA on GNPs Aggregation

In the previous paragraph we showed that the broadening and the redshift of the fluorescence
spectra of NB bound to cationic surfactants complexes was an indicator of GNPs aggregation.

In the following paragraph, the effect of DNA on GNPs aggregation size will be discussed.
As the DNA is concentrated (>1 mg/mL; solution No. 3), the molecules were precipitated into

a liquid crystalline phase after the drying of the solution deposited via drop-coating on the glass
slide [28]. Figure 4 shows emitted fluorescence from NB bound to DNA molecules organized into
the flower like texture which is a highly ordered liquid crystalline form of DNA [29], detected in the
(550–750) nm range under the wavelength of 514 nm. As depicted in Figure 5, the fluorescence spectra
of NB bound to DNA molecules organized into liquid crystalline phase recorded with lambda scan
mode from point marked as A is redshifted compared to the fluorescence spectral of NB bound to
cationic surfactants complexes (Figure 3). This shift is explained by the sensitivity of NB to the polarity
of the environment. The hydrophobic part of cationic surfactants, where NB is placed is non-polar,
whereas in the case of DNA stained with NB, there is an amount of this probe which is bound to the
polar negatively-charged phosphate backbone.

Figure 4. LSCM image of precipitated DNA (evaporated solution No. 3). The 514 nm was used as the
pump beam and the fluorescent emission was detected in the (550–650) nm and (650–750) nm ranges.
The scale bar donates 40 µm.

Figure 6 shows the emitted fluorescence, detected in the (550–750) nm ranges, from precipitated
dried DNA/GNPs/NB solution under the excitation wavelength of 514 nm. A strong emitted light
enhancement (green and yellow regions in Figure 6) is detected in the (550–560) nm range compared
to the untreated sample with GNPs (Figures 4 and 5). The emitted light detected in this range is
attributed to an amount of NB entrapped inside the hydrophobic part of cationic surfactants stabilizing
the GNPs suspension in citrate buffer. Moreover, as shown inside the region marked with the green
color in Figure 6C, brighter spots are detected which suggested that GNPs are aggregated into spherical
clusters. When NB are placed at proximity to the GNPs surface, a fluorescence enhancement is induced
due to the FRET process. Additionally, GNPs plasmonic fields couple together when they are in
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close proximity [16]. For denser GNPs clusters, the plasmonic field coupling is increased, resulting in
significantly higher absorption [30], which induced a higher FRET and brighter signal.

Figure 5. Fluorescence spectra of NB bound to DNA molecules organized into liquid crystalline
phase recorded with lambda scan mode from the point marked as A (Figure 4). Emission obtained
from 514 nm.

Figure 6. LSCM images of precipitated DNA/GNPs/solution. (B) and (C) are images of higher
magnification at respectively the red and blue markets location in image (A). The 514 nm was used
as pump beam. Light detected in (550–650) nm is green (Figure 6A,B) or yellow (Figure 6C) and light
detected in (650–750) nm is red (Figure 6B,C) or grey (Figure 6A). The representation colors have been
chosen to enhance the contrast.
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As shown in Figure 7, the fluorescence spectra recorded at the point marked as in Figure 6B is
the same in point marked as A in Figure 4, whereas the fluorescence spectra recorded at the point
marked as b in Figure 6B is broadened and blueshifted (Figure 7). As explained in the previous
paragraph, the broadening of the fluorescence spectra is an indicator of GNPs aggregation. When
GNPs are aggregated in the presence of DNA, an amount of NB inside the hydrophobic part of cationic
surfactant bilayer film surrounding the GNPs is responsible of the blueshift.

Figure 7. Fluorescence spectra of NB bound to precipitated DNA in the absence (yellow) and in the
presence (blue) of GNPs aggregation recorded with lambda scan mode in respectively points marked
as a and b in Figure 6B. The emission is obtained under an excitation of 514 nm and it is detected in the
(530–775) nm range.

The fluorescence spectra recorded from aggregated GNPs in the presence of DNA (Figure 7 blue
curve) is slightly redshifted compared to the fluorescence spectra recorded from aggregated GNPs
without DNA (Figure 3 orange curve).

This redshift seems to be attributed to a growth of GNPs aggregation size induced by DNA
compared to the spontaneous smaller GNPs aggregation induced by dipole-dipole interaction.

3.2. Images of ESEM

After their observations with confocal microscopy, the two precipitations of GNPs stabilized
suspension in citrate buffer with and without DNA were stored at 4 ˝C for 24 h before ESEM
observations. Figure 8A shows that for the sample untreated with DNA, GNPs are aggregated
into some clusters. As previously discussed, this self-assembly is due to a dipole-dipole interaction
between nanoparticles. In the presence of DNA, the GNPs aggregation size increased. GNPs are
aggregated into denser three-dimensional clusters (Figure 8B). Moreover, for a higher magnification
(100 nm scale bar), GNPs are assembled in 3-D structures following the helix morphology of DNA
(Figure 8C). This aggregation growth is due to electrostatic and hydrophobic interactions between
positive charged hydrophobic head groups of the bilayer cationic surfactants film around GNPs and
negatively-charged DNA phosphate backbone [9,31].
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Figure 8. ESEM images of precipitates of evaporated; (A) GNPs-stabilized suspension in citrate buffer;
(B,C) DNA/GNPs solutions.

4. Conclusions

In this paper, FRET between GNPs (donors) and dyes (acceptors) is used for the detection of GNPs
aggregation through LSCM. Moreover, DNA form Salmon tests was tested for the GNPs aggregation
growth. The 514 nm was used as pump beam to irradiate the sample, since this wavelength is within
the SPR of GNPs and the excitation bandwidth of the fluorescence dye (NB).

Thus, the fluorescence was manipulated with the SPR through the FRET process. The fluorescence
spectra and peak are, respectively, broadened and shifted, which allowed the detection of the GNPs
aggregation. In the presence of DNA, the fluorescence spectrum is more redshifted due to the size
increase of GNPs aggregation induced by DNA. This result is confirmed with ESEM images which also
showed a GNPs assembly into denser clusters in the presence of DNA. Moreover, for a higher ESEM
image magnification, GNPs are assembled in 3-D structures following the helical morphology of DNA.
DNA induced GNPs aggregation growth due to the electrostatic and hydrophobic interactions between
positively-charged head groups of cationic surfactants coating GNPs and negatively-charged DNA
phosphate backbone. Furthermore, these results may be helpful in the world of nanobiotechnology
(gene delivery, cancer therapy, etc) mainly that the DNA-binding NB molecules are not toxic [17,18] and
aggregated GNPs were usually detected via light scattering techniques, which can present problems
since several structures within biological tissues also scatter light strongly. Thus, FRET between
GNPs and dyes detected through LSCM result to be ideal for further bio-applications to discriminate
aggregated GNPs and complex structures of tissue and cells.
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Appendix

The excess of the CTAB amount introduced as a stabilizer in the citrate buffer of the GNPs
suspension is responsible for a strong interaction of these surfactants molecules with DNA which
induced CTAB/DNA complexes in the form of cubic structures as depicted in Figure A1B. In addition
to the strong light scattering from aggregated GNPs, the DNA/CTAB complexes also scatter light. This
strong overlap makes impossible the detection of aggregated GNPs with the light scattering technique
in the presence of CTAB and DNA compounds (Figure A1A). Therefore, to skirt this overlap problem,
we detected the GNPs aggregation through the FRET process, observing the resulting enhanced
fluorescence produced by GNPs aggregates.

Figure A1. The LSCM and ESEM images of the evaporated DNA/GNPs solution precipitate; (A) LSCM
image. The 514 nm was used as the pump beam. Green spots correspond to scattered light from
CTAB/DNA complexes and GNPs aggregations. The red area corresponds to emitted light from NB
bound to DNA molecules, organized in a liquid crystalline phase, detected in the 650–750 nm range;
and (B) ESEM image. The DNA/CTAB complexes are in the form of cubic structures.
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