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Abstract
COPD is diagnosed and evaluated by pulmonary function testing (PFT). Chest computed tomography (CT)
primarily serves a descriptive role for diagnosis and severity evaluation. CT densitometry-based emphysema
quantification and lobar fissure integrity assessment are most commonly used, mainly for lung volume
reduction purposes and scientific efforts.
A shift towards a more quantitative role for CT to assess pulmonary function is a logical next step, since
more, currently underutilised, information is present in CT images. For instance, lung volumes such as
residual volume and total lung capacity can be extracted from CT; these are strongly correlated to lung
volumes measured by PFT.
This review assesses the current evidence for use of quantitative CT as a proxy for PFT in COPD and
discusses challenges in the movement towards CT as a more quantitative modality in COPD diagnosis and
evaluation. To better understand the relevance of the traditional PFT measurements and the role CT might
play in the replacement of these parameters, COPD pathology and traditional PFT measurements are
discussed.

Introduction
COPD is a pulmonary disease mainly caused by cigarette smoking, and is the third leading cause of death
worldwide [1]. In COPD, exposure to noxious gases causes airway and lung tissue inflammation, leading
to small airway resistance increase and lung parenchymal destruction (emphysema).

COPD patients are limited in their expiratory capacity, due to increased resistance of the airways, as well
as the reduced elastic recoil of the lung tissue due to emphysema. This causes air trapping and results in
hyperinflation. Due to hyperinflation, the respiratory muscles are placed at a mechanical disadvantage for
effective inspiration [2]. This reduces the overall capacity for respiration, resulting in dyspnoea.

The main current diagnostic parameters are related to this pathophysiology, using pulmonary function
testing (PFT) [3]. Forced expiratory volume in 1 s (FEV1) serves as the primary criterion in COPD
diagnosis when related to expiratory vital capacity (VC). FEV1 is a dynamic parameter indicative of
obstruction, meaning reduced capacity for expiratory airflow, thus referring to a combination of reduced
elastic recoil and increased airway resistance. Total lung capacity (TLC) and residual volume (RV) are
lung volumes that characterise the amount of lung overinflation and air trapping. The RV/TLC ratio is
associated with mortality [4], which indicates its relevance. In COPD, gas exchange is mainly hindered by
diffusion capacity and ventilation/perfusion mismatch [5].

Computed tomography (CT) may enable improvement of COPD diagnostics by using the detailed spatial
information available in CT scan images. This review aims to explore the possibility of chest CT-derived
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biomarkers as a proxy for measuring PFT. That is, for patients that already undergo a CT scan for
descriptive and/or some quantitative evaluation.

One of the most relevant examples for use of quantitative CT, related to COPD, is in evaluation for
treatment by surgical or bronchoscopic lung volume reduction (LVR). For selected emphysema patients
with severe hyperinflation, LVR can be an effective treatment option [6]; the most affected parts of the
emphysemateous lung are removed or collapsed, thereby reducing the disabling hyperinflation to a more
physiological situation [7]. Prior to potential LVR, CT densitometry-based emphysema quantification is
performed for lobar selection, and CT-determined fissure integrity evaluation is performed to assess the
possibility of collateral ventilation [8, 9]. Traditional PFT measurements, including plethysmography,
spirometry and diffusing capacity, are used for further assessment. Even in this area, where the use of
quantitative CT is prominent, CT is mainly used in a supportive role to PFT.

However, CT is a modality that is able to capture the tissue densities of the entire chest. Thereby allowing
evaluation of lobar emphysema type, and assessment of bronchial wall thickness, beyond the usual PFT
results. Clearly, the potential of CT is currently underutilised.

For some of the currently used dynamic parameters, such as FEV1 and diffusing capacity of the lung for
carbon monoxide (DLCO), it remains unclear if similar information can be derived from static CT images.
They lack a clear analogous measurement in the static images provided by CT. The important measures
RV and TLC do have clear analogous CT measurements. Therefore, these measurements are expected to
be the first to be matched by CT and are the main focus of this review. We summarise the current relevant
PFT techniques, review the evidence for measuring PFT parameters by CT, and discuss further
development regarding CT-derived PFT measurements in COPD.

Search strategy and selection criteria
A PubMed search was performed using the terms “computed tomography” or “CT” and “Plethysmography”
or “pulmonary function test” and “volumes” or “volume” or “Total lung capacity”. The exact search query
was: (“computed tomography” [tiab] or CT [tiab]) and (plethysmography [tiab] or “pulmonary function test”
[tiab]) and (volumes [tiab] or volume [tiab] or “Total lung capacity” [tiab] or tlc [tiab]). This search query
produced 345 results on 6 October 2020. The results were filtered for articles that compared either TLC and/or
RV measured by plethysmography to lung volumes derived by CT, with 14 results remaining. These 14
results were further filtered for relevancy by two readers ( J.T. Bakker and D-J. Slebos) and the bibliography
of these articles was scanned for other articles that were deemed relevant. Relevancy consisted of a correlation
between plethysmography and CT derived lung volumes in COPD patients. 10 articles met all relevancy
criteria (table 1). No restrictions on the date of publication were used. Articles published in English were
exclusively included.

Current methods for measuring lung volumes
PFT is most often performed according to the guidelines of the European Respiratory Society/American
Thoracic Society [20]. In COPD patients, body plethysmography is commonly used in obtaining RV and
TLC. Plethysmography derives lung volumes through determination of the intrathoracic gas volume
(ITGV). This differs from the functional residual capacity (FRC), used in gas dilution methods, in that it
includes all compressible air within the thorax [21], whereas the FRC only includes air that is not trapped.
The term FRCpleth (FRC measured by plethysmography) is commonly used as a synonym for ITGV [22].

In plethysmography, the TLC and RV are derived by addition and subtraction of the dynamic lung
volumes acquired (inspiratory capacity and expiratory reserve volume) with spirometry to the ITGV. For
derivation of the ITGV, the patient breathes a small volume against a closed valve back and forth, known
as the panting manoeuvre. Measuring the change in alveolar pressure following a small lung volume
change derives the ITGV, under the assumption that the mouth pressure equals the alveolar pressure. A
greater pressure change signifies a smaller ITGV and vice versa [23]. Since the ITGV measured in
plethysmography includes trapped air, this method provides trustworthy data even in COPD patients.

The panting manoeuvre is normally immediately followed by the VC manoeuvre to establish the dynamic
volumes. A VC manoeuvre consists of complete expiration followed by complete inspiration. These
volumes are measured by means of spirometry and correspond to ERV and IC respectively and together
form the VC. A VC manoeuvre immediately following the panting manoeuvre is referred to as the linked
method. Figure 1 provides a graphical overview of the different volumes, as well as the relationships
between the different volumes.
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Challenges with plethysmography measurement
Several challenges exist regarding plethysmography, particularly in COPD patients. COPD patients are
prone to dyspnoea, which can complicate the measurements. Patients experiencing severe dyspnoea may
experience substantial dyspnoea in performing the panting manoeuvre. Dyspnoea results in an inaccurate
VC manoeuvre when using the linked method [22]. This method may, therefore, be inadequate for some
COPD patients. The unlinked method, where the ITGV and dynamic lung volumes are determined
separately, may be prone to inaccuracy due to a possible shift in the ITGV [24]. A difference in
plethysmography measurements found between hospitals may be explained by the use of the linked versus
the unlinked method [25, 26].

V
T

IC

ERV

RV

VC

TLC

FRC

FIGURE 1 Lung volume measurements that are commonly derived from pulmonary function tests. VT: tidal
volume; ERV: expiratory reserve volume; FRC: functional residual capacity; IC: inspiratory capacity; TLC: total
lung capacity; RV: residual volume; VC: vital capacity.

TABLE 1 Studies comparing plethysmography and computed tomography (CT)-derived lung volumes

First author
[ref.]

Patients
n

COPD
n

FEV1
# CT

modules+
Spirometry

gated
Software TLC R2 RV R2 VC R2

TANTUCCI [10] 37 20 1.16±0.63 L
(46.9±20.6%)

One Yes Aquarius iNtuition, TeraRecon Inc. (Foster
City, CA, USA)

0.97

GARFIELD [11] 59 59 1.08±0.52 L
(41±18%)

Multiple No Pulmonary Workstation Plus, VIDA
Diagnostics, Inc. (Coralville, IA, USA)

0.92

BECKER [12] 28 28 Pre: 22±1%;
post: 29±2%¶

One No Custom Visual C ++ (Microsoft; Redmond,
WA, USA)

0.9 0.84 0.48

COXSON [13] 57 57 0.84±0.23 L
(all ⩽45%)

Multiple No Custom (EmphylxJ; Vancouver, BC,
Canada)

0.79

MATSUMOTO [14] 118 46 multiple No Semi-automated ‘Computer Aided Lung
Informatics for Pathology Evaluation and

Rating’ CALIPER

0.96

BROWN [15] 486 486 Multiple No Automated three-dimensional technique
(no further information given)

0.86 0.67

KAUCZOR [16] 72 25 One No Allegro workstation (ISG Technologies;
Mississauga, ON, Canada)

0.89 0.81 0.7

ZAPOROZHAN [17] 31 31 35±11% One No Custom (YACTA; Mainz, Germany) 0.9 0.83
BROWN [18] 43 4 Multiple No Custom (detailed description of

algorithm provided)
0.91

SONG [19] 172 172 0.767±0.213 L
(27.9±4.6%)

One No PULMO3D software (v3.7.1, Fraunhofer
MEVIS; Bremen, Germany)

0.81 0.66

Patients not included in the COPD group suffer from other pulmonary diseases. FEV1: forced expiratory volume in 1 s; TLC: total lung capacity; RV:
residual volume; VC: vital capacity. #: FEV1 data were not always available or not available for the COPD group specifically; ¶: pre and post refer to
preoperative and postoperative, respectively; +: a set of parameters for a CT scan.
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In plethysmography the assumption is made that sudden changes in pressure measured at the mouth are the
same as changes in alveolar pressure. In COPD patients, however, this assumption may fail because the
airflow obstruction can delay such rapid pressure equilibrium. To prevent overestimation of the TLC, due
to a smaller pressure change in the mouth than in alveolar pressure, panting frequency is required to be
around 1 Hz [27].

Furthermore, plethysmography requires frequent calibration to prevent inaccurate measurements [21, 22].
An accurate plethysmography measurement requires two out of three measurements to be within 10% of
each other [23]. Additionally, plethysmography is not as readily available worldwide as other PFT
modules, such as spirometry and gas dilution methods [28].

Chest CT scan protocol for PFT measurements
Chest CT scanning might pose as a good alternative to plethysmography, since one can derive RV and
TLC from CT. In addition to the inspiration scan, expiration scans are becoming more prevalent (important
for measuring RV).

A reference dose of 650 mGY·cm–1 has been suggested by the European community [29]. In an effort to
minimise radiation, suggestions are that the kVp should be adjusted to the patient size (80–120 kV) and
the tube current should be <250 mA [30]. Multiple acquisitions are not justified according to the as low as
reasonably achievable (ALARA) principle for radiation dose [31].

Furthermore, since COPD patients experience difficulty with expiration and inspiration, scan time will have
to be minimised; with newer CT systems the rotation time of the CT system is <1 s [30].

The CT acquisition suitable for COPD patients consists of chest high-resolution CT, which was originally
intended to provide high image quality for a descriptive evaluation of lung parenchyma. For a descriptive
evaluation CT does not necessarily need to adhere to strict protocols. However, when CT is used
increasingly quantitatively, standardisation will become increasingly important. Since CT acquisition and
reconstruction parameters influence the quantifications directly and thereby indirectly influence the ability
to compare outcomes.

Image reconstruction in CT is a trade-off between sharp, noisy images or smooth, less noisy images.
Naturally, reconstruction parameters have an influence on quantifications obtained from the images [32].
Different reconstruction and kernel settings are to be preferred for visual versus quantitative evaluation.

Lung segmentation in CT
Accurate lung segmentation is required to be able to derive lung volumes from CT images. Several
approaches for segmentation of the lungs exist [33]. According to MANSOOR et al. [34] methods can be
grouped into five different classes. These consist of thresholding-based, region-based, shape-based,
neighbouring anatomy-guided and machine learning-based methods. Simpler methods, such as
thresholding-based methods, are especially prone to failure when there is pulmonary pathology present.
However, these are computationally less expensive. More complex models, such as machine learning-based
methods, handle abnormalities due to pathology better, but they are generally computationally more
expensive. Algorithms often use multiple method classes together to optimally balance accuracy and
computational expenditure [34–36]. Figure 2 shows an example of lung segmentation. The algorithm used
to segment the lungs may influence the results. This could compromise verification of the results.
However, a prior study found strong agreement in segmentation between different algorithms, signified by
a correlation factor of 0.995 when comparing volumes found by two algorithms [37].

RV and TLC measured by CT
With respect to lung volumes based on CT scans, CHONG et al. [38] demonstrated that volumes derived
from breath-holding CT scans, scanned 1 week apart, are reproducible. Several studies have found diverse
correlations between lung volumes obtained through plethysmography and volumes obtained by CT [10–19,
37, 39–42]. Table 1 shows the subset of these studies that included COPD patients in their study cohort.

GARFIELD et al. [11], COXSON et al. [13], MATSUMOTO et al. [14] and BROWN and co-workers [15, 18]
included multiple CT parameter settings in their studies, meaning that scan parameters were not the same
for each patient. As previously mentioned, not standardising CT settings, manufacturers and reconstruction
kernels probably has a negative impact on correlation. The software used by MATSUMOTO et al. [14]
normalised different CT settings, thereby mitigating the negative impact on correlation, which is reflected
in the strong correlations they found.
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Not all studies found the same correlation coefficients or the same regression trends. Results could differ
due to a variety of factors. These factors include difference in CT settings and difference in segmentation
algorithms and, additionally, plethysmography-derived volumes may differ between hospitals, possibly
using the linked method instead of the unlinked method [25]. As previously mentioned, in COPD
especially, reaching optimal in- and expiration is an important factor as well.

Generally, TLC measured by plethysmography yielded a higher value than derived by CT, the difference
typically being around 0.5–1 L. For RV, the situation is reversed, such that CT yielded a higher value than
plethysmography, with the difference ranging from 0.3–1 L. Slight differences between the absolute values
derived through CT and plethysmography are expected due to differences in patient positioning. That is,
seated in plethysmography versus supine in CT [43–45]. YAMADA et al. [41] compared CT-derived
volumes in seated, standing and supine positions and found significant differences (+10% and +9.5%
average increase in seated versus supine for TLC and RV, respectively).

Additionally, inaccuracies in complete in- and expiration are to be expected in CT. The lower TLC
measured in CT compared to plethysmography might be caused due to more air being included in the
plethysmography measurement. For instance, air in the oesophagus and trachea. This is also true for the
RV measurement. However, the therefore seemingly paradoxically higher CT-derived RV is likely due to
the population included. These consisted of COPD patients in many studies. These patients have trouble
with exhaling completely. In PFT the airflow is carefully monitored, which increases the likelihood of
measuring the realistic complete expiration.

Additionally, CT-derived volumes include lung tissue, whereas plethysmography only includes air. This
may artificially inflate the volumes derived by CT. RV may be relatively more affected by the artificial
inflation than TLC, because tissue occupies a relatively larger proportion in this volume measurement.

Expected benefits from spirometry gating
Successful CT-based lung volume derivation is dependent on the performance of full in- and expiration,
the duration of the scan and the synchronisation of these events. By using spirometry gating to time the
CT acquisition, the moment of full in- and expiration is monitored, and the CT can be made accordingly.
Expectations are that spirometry gating will improve the quality of the volumes derived from CT scans.

200 mm

FIGURE 2 Example of chest computed tomography (CT) lung segmentation. The figure shows an axial CT slice
at the main carina level. The brown segmentation is the right lung, the green segmentation is the left lung and
the purple segmentation shows the large airways (reconstruction made using LungQ, Thirona, Nijmegen, The
Netherlands).
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Figure 3 demonstrates how spirometry gating aids in CT timing. Spirometry gating with respect to lung
volume estimation by CT is not yet adequately studied.

Most assessments investigating the value of spirometry-gating focused on densitometry, and not on the
actual measurement of lung volumes [46–49]. This makes sense, since CT attenuation is dependent on the
level of inspiration [50]. Therefore, studies investigating the impact on densitometry by means of
spirometry gating give an indication of the impact spirometry gating will have on lung volume
quantification.

TANTUCCI et al. [10] used spirometry gating for comparison between CT-derived TLC and
plethysmography. They found a correlation factor of 0.98 and a mean difference of 0.07 L for obstructed
patients. This seems to be an improvement compared to comparisons without use of spirometry gating.
However, in this study, plethysmographic measurements were recalculated for supine positioning. CHONG

et al. [38] demonstrated that CT-derived TLC measurements without spirometry gating are reproducible,
suggesting that the breath holding may already be achieved quite consistently in COPD patients.

However, COPD patients mainly experience difficulty in performing complete expiration. RV is, therefore,
expected to benefit the most from using spirometry gating. All studies that included a comparison between
CT-derived RV and plethysmography-based RV found a weaker correlation coefficient compared to the
TLC correlation coefficient. Compared to plethysmography results, studies including CT without use of
spirometry gating found correlation coefficients for TLC ranging from 0.81 to 0.90, and for RV ranging
from 0.66 to 0.84 [12, 15–17].

Possible benefits from measurement of lung volumes by CT
Lung volumes determined by CT provide an opportunity to improve on the lung volume assessments now
provided by plethysmography. For instance, plethysmography includes air in the body not specifically
situated in the lungs, while CT is able to fully isolate the actual lung volumes.

Additionally, based on our experience, the average time to perform a CT scan is approximately 10 min
versus 30 min for plethysmography in patients with severe COPD. Moreover, CT scans are already often
made in addition to plethysmography, thus replacing plethysmography measurements by CT will improve
time efficiency even further.

6
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FIGURE 3 Visualisation of spirometry gating. a) Sagittal computed tomography (CT) slice of the lungs recorded in inspiration. b) Graph depicting
the volumes recorded by spirometry gating over time. Green lines show inspirations and orange lines show expirations. They were recorded at
separate times. Arrows from the CT images show the respective recording times. c) Sagittal CT slice of the same patient as in (a) recorded in
expiration.
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Plethysmographic measurements are performed at least three times in order to establish a measurement that
is as accurate as possible, whereas CT is performed once in accordance with the ALARA principle
concerning radiation exposure [31]. Multiple measurements to improve precision of the measurement are
preferred, however, better agreement in reproducibility has been found in CT volume measurements
compared to plethysmography volume measurements [15]. A measurement without repetition is preferred
from the patient’s perspective. Furthermore, CT is more readily available than plethysmography in many
hospitals worldwide. Although, in many hospitals, spirometry gating is not yet in use. For now, spirometry
gating is mainly used in a research setting and cannot be generalised for the entire COPD population.
However, in our hospital (University Medical Center Groningen, Groningen, The Netherlands) it is used
for lung volume reduction and lung transplantation evaluation. This indicates that is feasible for those
patients who may benefit from spirometry gating.

Possible challenges in measurement of lung volumes by CT
Some patients are ill suited for volume measurements by CT. Patients can have difficulties with the
breathing manoeuvres required to acquire a CT scan at TLC and RV. Spirometric gating may help detect
patients who are not able to perform the breathing manoeuvres accurately, in addition to monitoring
successfully completed and sustained breathing manoeuvres.

Some patients experience difficulty with being in a supine position. A patient in the supine position during
CT is also a challenge as it may influence the lung volumes compared to the seated positioning in a
non-uniform way. This means that the difference in volume acquired may be dependent on height, body
mass index or other factors used to estimate a normal volume value in a complex manner. It may,
therefore, not be possible to convert reliably from existing references values, which would render current
standard values used in plethysmography derived volumes obsolete. Generating new reference values
would require a large amount of research and seems necessary when CT-derived PFT measurements will
be used on a larger scale.

Dynamic parameters: FEV1 and DLCO
The relevancy of parameters in any disease is determined by reflectiveness of the patient health status and
outcome. FEV1 and DLCO are parameters that are associated with survival [51] and, therefore, outcome
surrogates used in diagnosing COPD in general, as well as in preselecting patients for LVR. FEV1

provides a value that is reflective of elastic recoil of the lungs and resistance of the airways, since the first
second of forced exhalation is independent of the force exerted by the respiratory muscles. DLCO is a value
reflective of the ability of the lungs to transfer oxygen in the capillary blood. Both these measurements are
dynamic and therefore not obviously assessable in static CT images. However, some dynamic information
may be derived from the comparison between the inspiratory and expiratory scans. Many values that can
be extracted from CT images are indicative of both FEV1 and DLCO decline, as we will discuss below.

The studies discussed below [52–63] assume, by their associations, that FEV1 and DLCO are reproducible
and representative of the severity of the disease. However, these parameters are still associated with some
problems. First of all, FEV1 and DLCO compound all lung pathology information in a single number. They
can, therefore, not differentiate between types of lung pathology that may lead to differing outcomes.
Secondly, both FEV1 and DLCO are dependent on percentage predicted values to infer information on the
health status of a patient.

However, the fit to a reference model of the average patient does not necessarily reflect the health status of
any individual patient, since the value considered to be abnormal for the general population is not
necessarily abnormal for the individual. This can be interpreted as an additional layer of noise added to the
parameters of interest, namely health status and outcome. Furthermore, FEV1 is not particularly strongly
related to health status [61] and is relatively insensitive to the early stages of COPD, including small
airways disease [62].

Densitometry-based parameters for FEV1 and DLCO

The first CT parameters related to COPD were density based. Emphysema noticeably leads to less dense
tissue in CT, therefore being an obvious target for quantification. Emphysema is usually quantified by
segmenting the lungs and calculating the percentage of voxels below a certain threshold, mean lung
density or a histogram-based percentile value. Several studies have shown relationships between
densitometry-based parameters and other, “more dynamic” PFT measurements, among which are FEV1

and DLCO [52–55]. Densitometry emphysema scores are logically associated with DLCO, since destruction
of lung tissue leads to a decline in gas exchange.
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Parametric response mapping for FEV1 and DLCO

There are two main pathophysiological components that contribute to COPD severity: emphysema and
functional small airways disease. In an effort to separate these two components within CT, parametric
response mapping (PRM) was developed in the following way. The expiration scan is mapped to the
inspiration scan by use of registration. Regions <−950 HU in the inspiration scan and <−856 HU in the
expiration scan are considered as emphysema (PRMemph). Regions that are <−856 HU in the expiration
scan, but >−950 HU in the inspiration scan are considered functional air trapping areas (PRMfSAD) [63].
Both PRMemph and PRMfSAD are correlated with FEV1 predicted and FEV1/forced vital capacity, as well
as the transfer coefficient of the lung for carbon monoxide [64].

Airway wall thickness-based parameters for FEV1 and DLCO

In an effort to represent functional small airways disease, a variety of parameters related to airway wall
dimensions, such as airway wall thickness, length and diameter were introduced. Airway wall thickness is
thought to represent the inflammation present in the smaller airways. One of the parameters most
commonly used is Pi10, which is the square root of the wall area of a hypothetical airway with an internal
perimeter of 10 mm [65]. Several studies successfully related airway wall thickness-based parameters with
a decline in FEV1 [52, 56, 57, 66]. A downside of using these parameters is that they are difficult to
extract, since this process is not yet fully automated.

Tracheal collapsibility for FEV1
Based on the reduced compliance of the airways in patients with COPD, tracheal collapsibility is
frequently associated with COPD [67]. In a study by YAMASHIRO et al. [58] tracheal collapsibility was
negatively correlated with FEV1 % predicted, and positively correlated with in-/expiration lung volume
ratio. In contrast, CAMICIOTTOLI et al. [59] found a positive correlation between tracheal collapsibility and
FEV1, with an additional finding that tracheal collapsibility was positively correlated with in-/expiration
lung volume ratio. SVERZELLATI et al. [68] and BOISELLE et al. [60] did not find any significant relationship
between tracheal collapsibility and FEV1. Another study from BOISELLE et al. [69] found a wide range of
tracheal collapsibility within healthy volunteers.

All these findings seem to suggest that tracheal collapsibility might not be clinically relevant. Other airway
deformity measures, such as tracheobronchial angles, however, are different in COPD patients compared to
healthy individuals [70]. This is, however, more likely related to hyperinflation than to increased resistance
of the airways.

Discussion
Problems with adoption of quantitative CT parameters
For a long time, different quantitative CT parameters for COPD diagnosis and evaluation have been
developed and studied. However, only a few have been introduced into clinical practice. These are the
parameters that provide additional information to the commonly used PFT parameters, such as
densitometry parameters to signify the amount of emphysema or fissure integrity to signify the potential
for collateral ventilation in LVR treatment.

Parameters that lean towards replacement of the traditional PFT parameters have generally not (yet) been
introduced into clinical practice. Multiple factors are responsible for this. First, traditional PFT parameters
are firmly established as the main parameters for COPD diagnosis and evaluation. This is reflected in the
way quantitative CT parameters attempt to prove their worth: by association to the established PFT
parameters. Even when the association is very strong, for example in the association of CT-derived TLC to
PFT-derived TLC, this has not resulted in adoption into clinical practice. The traditional PFT is seen as the
gold standard and it remains unclear what the impact of a switch to a CT parameter would be on the
healthcare provided.

Secondly, CT is generally used in the same descriptive role it was originally intended for and therefore
does not adhere to similar standardised protocols as those used in traditional PFT. Several studies found
that densitometry parameters, currently in use, suffer from unstandardised CT protocols [32, 71].
Hounsfield unit thresholds are used to establish whether a voxel contains emphysema or not. The
thresholds are based on comparisons with pathological assessments [72, 73], without taking into account
scanning parameters that may influence the resulting outcome. For instance, it is known that the kVp used
and the CT manufacturer has an influence on Hounsfield unit values in CT [74].
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Thirdly, distilling meaningful quantifications from a CT dataset is difficult, since CT provides a substantial
number of voxels to represent the tissue densities and precise locations of anatomical structures vary over
the population. Even the most straightforward quantifications, such as lung volume estimations, require
relatively complex algorithms to segment the lungs.

Additionally, while the possibility exists to derive certain parameters (semi-) automatically, such as lung
volumes or densitometry measures, other parameters, such as airway wall thickness parameters and fissure
integrity scores, still require more manual labour.

These factors complicate the introduction of new parameters, such as PRM, Pi10 or machine learning
applications, to clinical practice.

Future directives for replacement of traditional PFT by quantitative CT
There is known added value in the current descriptive role of CT use in COPD. The morphological
information present on the CT is already being used as an essential part of clinical work-up for LVR. CT
allows differentiating types of emphysema (e.g. centrilobular, paraseptal, panlobular) and assessing its
distribution (e.g. lower lobe predominance, homogeneous). In contrast, the PFT results compound all the
morphological information into one, being insensitive to the underlying morphological information.

In order to drive a movement towards more quantitative use of CT in COPD, standardisation of CT
protocols is necessary. This will facilitate improved inter-observer variability and, thus, will allow
sufficient comparison between facilities and help to determine stable reference values for COPD cohorts
and non-COPD patients. Standardisation is, however, difficult to achieve due to a multitude of CT
manufacturers, techniques, reconstruction kernels and lung segmentation algorithms. The techniques,
kernels and lung segmentation algorithms are under constant development, which further complicates the
standardisation. However, for any quantitative modality, differences between individual machines exist.
Standardisation for CT would mean aligning settings between different machines to a maximum extent.
Settings should also be maintained between different observation times.

Another method for achieving low inter-observer variability may be by use of conversion factors to a
reference method. However, it is unknown whether this is feasible and this is probably less effective than
standardisation of the protocols.

The replacement of traditional PFT by CT may be approached in two ways: new parameters replace the
traditionally used PFT parameters or the traditional PFT parameters are mirrored by an analogous
measurement on CT. In the case of RV and TLC, where there is an analogous measurement to be made on
the CT, mirroring is a viable option. Since the measurement is not completely the same when done on CT,
it is clear that for adoption in clinical practice future studies should focus on the impact of healthcare the
provided to the patients and their outcome.

Other functional parameters without a clear analogue on CT images, such as FEV1 and DLCO, are more
difficult to match. Correlation coefficients that have been found are not similar to the correlation
coefficients found for lung volume estimations; it is possible that a complex combination of several
parameters may be sufficient for estimating these functional parameters. For example, a partial least
squares model has already been used in this way [75]. Machine learning methods, which are increasingly
popular within the medical community and have already been used in the classification of COPD [76, 77],
may improve upon prediction of the functional parameters through CT images [78].

When functional parameters in the future can be sufficiently predicted using machine learning
models, PFT may be replaced in COPD diagnosis and evaluation for patients that already undergo a CT
scan. In particular, CT appears to be inherently more sensitive than PFT parameters to early stages of
COPD [62], suggesting that CT can provide more information on the status of a patient compared to PFT
parameters.

For example, therefore, it is worth trying to associate CT directly to outcome with machine learning
methods in an effort to establish improved diagnosis criteria based on CT.

Future directives of investigation providing additional information
CT scans performed in COPD patients contain valuable information concerning LVR preselection. LVR
can be accurately planned and post-operative outcome may be predicted. For instance, it has been
established that the completeness of fissures between lung lobes is an important predictor for reaching
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induced atelectasis [79, 80]. Complete fissures do not allow for collateral ventilation between lobes. The
completeness of the fissures can already be determined from CT scans by visual evaluation or quantitative
algorithms [81]. Furthermore, predictions of surrogate outcome parameters, such as FEV1, based on the
amount of lung volume lost by resection or atelectasis, may be made in a similar fashion as in lung cancer
treatment [82–84].

Comorbidities, affecting the health status of the patient and thereby possibly influencing the LVR
selection, may also be detectable. For instance, due to the relatively high contrast between pulmonary
parenchyma and pulmonary vessels, the vessels can be segmented out of the lung [85]. The segmented
vessels could provide useful information on pulmonary hypertension [86, 87], as pulmonary hypertension
involves vascular remodelling [88, 89]. The segmented vessels might additionally provide some indication
on perfusion [90].

Quantitative parameters concerning cardiac pathologies, such as the Coronary Artery Calcium score, may also
be derived. The Coronary Artery Calcium score is a predictor of cardiovascular event risk due to severe
atherosclerosis [91]. Additionally, bone density assessing osteoporosis can be measured [92], providing a
better indication of body fat and muscle distribution [93]. Furthermore, it has been acknowledged that body
fat distribution has an influence on lung volumes [94]. Therefore another future research possibility is to
investigate the influence of obesity (or body mass index) on normal lung function [95].

Conclusion
Parameters currently used in PFT are related to the pathophysiological situation of COPD, while CT is
used as a descriptive modality. However, CT scans provide a detailed tissue density map of the chest
allowing quantification of COPD parameters, and therefore may aid a better and easier to obtain diagnosis.

For now, quantitative CT is focused on anatomical differences in comparison to the normal physiological
situation. These have been correlated to traditional PFT measurements. CT parameters that seek to replace
the traditional PFT measurements have not yet been adopted in clinical practice, even though correlations
of CT-derived inspiration and expiration lung volume segmentations of TLC and RV with PFT results are
strong. These measurements can be improved by spirometry gating of the CT acquisitions. We expect that
CT-derived analogous measurements, in particular TLC and RV, can be used in a similar fashion to
traditional PFT measurements in the near future.

Dynamic measurements, such as FEV1 and DLCO, lack a clear analogous measurement in CT, and
therefore mirroring is harder to achieve. Adoption of new parameters requires studies that focus on the
impact of the healthcare provided. Additionally, standardisation of CT protocols should be implemented to
achieve minimal inter-observer variability. This can be further exploited by machine learning methods, as
these provide an opportunity to remove inherent subjectivity of multiple observers.
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