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Abstract

Gut microbes are known as the body’s second gene pool. Symbiotic intestinal bacteria play

a major role in maintaining balance in humans. Bad eating habits, antibiotic abuse, diseases,

and a poor living environment have a negative effect on intestinal flora. Abnormal intestinal

microbes are prone to cause a variety of diseases, affecting life expectancy and long-term quality

of life, especially in older people. Several recent studies have found a close association between

intestinal microorganisms and osteoporosis. The potential mechanism of intestinal flora affecting

bone formation or destruction by mediating nitric oxide, the immune and endocrine systems, and

other factors is briefly described in this review. All of these factors may be responsible for the

intestinal flora that causes osteoporosis. Studying the relationship between intestinal flora and

bone health not only provides new ideas for studying the role of intestinal microorganism in

osteoporosis, but also provides a new therapeutic direction for clinically refractory osteoporosis.

Study of the relationship between intestinal microbiota and osteoporosis is important for main-

taining bone health and minimizing osteoporosis.
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Introduction

There is an average of 100 trillion micro-
organisms in the human intestinal tract,
including bacteria, archaea, fungi, and
viruses. Among the many categories of
microbes that have been identified, thick-
walled bacteria, Bacteroides, microalgae,
actinomycetes, and Proteus account for
the majority of microbes. These microor-
ganisms have far more genetic phenotypes
than humans themselves, but their role in
maintaining the health of the body has
been largely overlooked.1 Intestinal symbi-
otic bacteria play a major role in maintain-
ing balance in humans by aiding food
digestion and absorption, secreting micro-
bial metabolites, and protecting mucosal
barrier function. However, an imbalance
in microorganisms releases proteins,
peptides, and metabolites that act against
organs, causing systemic multiple organ
dysfunction.2

As the load-bearing organ of the body,
bone has active metabolism and is of great
significance in routine activities. Repeated
falls, muscular atrophy, muscle-strength
deficiency, limited activity, and weight loss
can easily cause loss of bone mass, micro-
structure destruction, and other pathologi-
cal changes, such as osteoporosis.3

A dynamic imbalance between osteoblast
and osteoclast populations is the decisive
factor for developing osteoporosis.
Osteoporosis affects more than 200 million
people worldwide, with more than one third
of them suffering from osteoporotic frac-
tures.4 Therefore, osteoporosis places enor-
mous economic and social pressure on
society and individuals.5 As the population
of older people in society increases, so will
the incidence of osteoporosis and the rates
of disability and death due to osteoporosis.
Early intervention during development of
osteoporosis can reduce the burden on fam-
ilies and society and improve the long-term
survival rate and quality of life of patients.

The symbiosis between gut microbiota
and the host requires a delicate balance,
which once disrupted, may increase the
risk of osteoporosis. David et al. found
that intestinal microorganisms affect bone
through inflammation, nutrition, and calci-
um. The significance of inflammation was
highlighted.6 A review also proposed that
the effect of intestinal flora on bone is medi-
ated by effects on inflammation and immu-
nity.7 Under stress, the intestinal tract can
cause changes in vasoactive substances,8

which has an adverse effect on bone forma-
tion. The autoimmunity of germ-bearing
mice affected bone formation compared
with sterile mice.9 The intestinal tract is
also involved in endocrine metabolism,
which is associated with bone homeostasis.
Studying the relationship between intestinal
flora and bone health provides a new theo-
retical basis for delaying osteoporosis and
provides a new therapeutic direction for
clinically refractory osteoporosis. This arti-
cle reviews the potential mechanism by
which gut microbes mediate osteoporosis.

Nitric oxide

Intestinal smooth muscle and intestinal cap-
illary endothelial cells express inducible
nitric oxide synthase (iNOS).10 Nitric
oxide synthase (NOS) is a rate-limiting
enzyme for biosynthesis of nitric oxide
(NO). Microbes can drive the binding of
pathogenic bacteria or bacterial
lipopolysaccharide-inducible transcription
factor nuclear factor (NF-jB) to the iNOS
promoter, thus upregulating iNOS tran-
scription.11,12 The number of osteoblasts
are increased by iNOS under mechanical
stress, but iNOS also promotes osteoclast
production by increasing levels of
RANKL (receptor activator of NF-jB).13

Intestinal microbes also promote the
release of endothelial NOS (eNOS).14

eNOS mRNA regulates production of
osteoblasts and osteoclasts, as well as the

4096 Journal of International Medical Research 47(9)



release of inflammatory mediators, such as

tumor necrosis factor-a, interleukin (IL)-1,

and IL-6. In NOS-deficient rats, trabecular

bone mineralization and chondrocyte func-

tion are reduced, impeding lateral and lat-

eral bone growth in 8- to 10-week-old mice.

Low NO concentrations might affect bone

growth. In a previous study, iNOS-deficient

rats developed more severe osteoporosis

than did eNOS-deficient rats, which indicat-

ed that intestinal microbes mainly main-

tained bone homeostasis by affecting

iNOS activity.15 However, after 12 to

18 weeks of age, the negative effect of

NOS deficiency on bone homeostasis in

mice was eliminated. This might be related

to the negative effect of NOS deficiency on

bone growth being counteracted by sex

hormone-associated bone protection

in mice.
High NO concentrations can impede

osteoclast differentiation and activate the

cGMP-dependent protein kinase G path-

way, thus reducing acid secretion and adhe-

sion.13 However, at high concentrations,

NO can compete for binding to RANKL,

thus hindering the interaction of RANKL

with NF-jB receptor agonists and imped-

ing osteoclast activity.16 These results indi-

cate that the concentration of NO has

opposite effects on bone. Moreover, studies

have shown an association between NO and

vitamin D. Vitamin D, as a direct transcrip-

tional regulator of endothelial NOS, can

positively regulate NO.17 However, epide-

miology suggests otherwise. NO can also

interact with vitamin D, affecting the

number of osteoblasts, as well as their

response under fluid-flow shear stress.18

NO indirectly affects bone homeostasis by

affecting vitamins. Changes in plasma NO

concentrations can also affect changes in

bone blood flow, which may affect bone

homeostasis. NO plays a role in the end-

point of osteoporosis and this can be seen

in various types of osteoporosis.

Immune system

The immune system is a host defense
system. Under normal conditions, intestinal
microbes and the immune system maintain
the health of the body. However, imbalance
of gut flora due to various factors can also
promote development of disease through
the immune system. In sterile mice, trans-
plantation of complex microorganisms can
alleviate depletion of myeloid progenitor
cells and obstruction of monocyte prolifer-
ation.19 This finding suggests that intestinal
flora are related to development of immune
cells. The immune system is inextricably
linked to development of osteoporosis. In
mice, thick-walled bacteria, particularly
Clostridium, promote accumulation of reg-
ulatory T cells (Tregs) in the lamina propria
of the colon. Tregs inhibit osteoclast differ-
entiation and hinder osteoclast formation.
Decreased abundance of Clostridium strains
cause a decrease in factor-b and Foxp3þ

Treg levels and an increase in bone loss.20

However, Treg cells secrete cytotoxic
T-lymphocyte antigen 4, which binds to
CD80/CD86 molecules on osteoclast pre-
cursors, and thus inhibits inflammatory
responses.21 Britton et al.22 found that
Lactobacillus reuteri can decrease the
number of T lymphocytes and inhibit oste-
oclast formation. However, CD4þT cells
interact with CD11c dendritic cells and
develop into functional osteoclasts.23

Bacterial colonization experiments in ani-
mals have also confirmed that CD4þT
cells interact with CD11c dendritic cells to
probably aggravate osteoporosis.9

An imbalance in intestinal microbes
inhibits differentiation of type 1 and 2 T
helper cells (Th1 and 2), as well as Tregs,
thus inducing osteoclast differentiation and
proliferation, and aggravating bone loss.
An imbalance in intestinal flora also indu-
ces differentiation of Th17 cells, which
belong to the CD4þT-cell osteoclast popu-
lation. Th17 cells secrete IL-17a, tumor
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necrosis factors, IL-1, and IL-6, as well as
low levels of interferon-c, which stimulate
osteoblasts to release RANKL.24 Kim
et al.25 found that mouse commensal seg-
mented filamentous bacteria and human
commensal bacteria can promote Th17
differentiation, providing new guidelines
for intestinal microbiota-targeted therapy
for osteoporosis.

B lymphocytes control the RANKL/
osteoprotegrin (OPG) (osteotrophin) ratio
through the phosphoinositide 3-kinase/pro-
tein kinase B (Akt)/mammalian target of
rapamycin (mTOR) signal transduction
pathway, and consequently regulate the
growth rate of bone cells. Intestinal flora
affect the expression of mTOR transcrip-
tion factors in the posterior midgut.
Knocking out TSC1 expression (a negative
regulator of mTOR) causes an increase in
the RANKL/OPG ratio, thus accelerating
osteoclast proliferation.26 Gut microbiota
can also affect B-cell development and
OPG production by B cells.27 The decoy
receptor OPG can directly inhibit
RANKL.28 Furthermore, OPG can inhibit
osteoclast differentiation and bone resorp-
tion by modulating autophagy-related
genes and AMP-activated protein kinase/
mTOR/p70S6K signaling.29 The immune
system may be involved in the pathogenesis
of osteoporosis mediated by intestinal
microorganisms. Immune system abnormal-
ities often result in secondary osteoporosis.

Endocrine system

Endocrine hormones act on various organs
of the body. These hormones are also
involved in development of many diseases.
Estrogen is directly related to the diversity
of gut flora. Among gut microbes, those
encoding b-glucuronidase are involved in
the enterohepatic circulation of estrogen.1

Estrogen accelerates osteoblast differentia-
tion and survival through the NO/cGMP-
dependent phosphorylation pathway30 and

the Fas/Fas-ligand system.31 Moreover,
estrogen increases the OPG/RANKL ratio
that is dependent on the low-density lipo-
protein receptor-related protein 5 pathway,
reduces osteoclast differentiation, and
maintains bone homeostasis.32 Intestinal
microbes affect the enterohepatic circula-
tion of thyroid hormones by modulating
glucuronidase and sulfate activities.33

Among the thyroid hormones, calcitonin
(secreted by thyroid C cells) can inhibit
parathyroid hormone, thus reducing bone
mobilization, promoting osteoclast apopto-
sis, and delaying the onset of osteoporosis.
However, some studies have shown that
calcitonin accelerates bone circulation and
inhibits osteoblast proliferation, which
is mediated by osteoclasts and bone
cells after initiation of bone formation
mechanisms.34 Thyroid hormone
membrane-bound receptors also increase
eNOS activity,35 indirectly stimulating oste-
oblast proliferation and survival through
the cGMP-dependent protein kinase G
pathway. Insulin-like growth factor-1
(IGF-1) is a growth factor that promotes
the quality of life of chondrocytes and
osteoblasts.36 IGF-1 is regulated through
the Akt–mTOR-dependent pathway and
induces a sustained increase in eNOS
levels.37 Intestinal microbial imbalance
indirectly affects osteoblast function and
number by causing a decrease in
IGF-1 levels.38

Glucagon-like peptide 1 (GLP-1), which
is secreted by intestinal L cells, promotes
osteogenic differentiation and inhibits mes-
enchymal stem cells, with conversion
to fat.39 GLP-2 is also secreted by L cells
in the intestinal mucosa. GLP-2 has
a strong intestinal affinity and can inhibit
proliferation of osteoclasts through the
transforming growth factor-b–SMAD2/3–
iNOS–NO–caspase3–B-cell lymphoma
2 signaling pathway.40 GLP-2 can also
upregulate butyric acid levels in the intes-
tine, thus decreasing levels of stress
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byproducts and delaying apoptosis.41

GLP-2 also maintains stability of various

cells in the intestine. Testosterone and

metabolites that protect bone homeostasis

are also modulated by the gut microbiome.42

Insulin-like factor 3 in testosterone affects

the musculoskeletal system through the

insulin-like factor 3/relaxin family peptide

receptor 2 axis.43 Osteoporosis caused by

endocrine dysfunction is often secondary

osteoporosis (Figure 1).

Others

Homocysteine is a non-protein amino acid

that is produced during metabolism of

methionine. Folic acid is an important

cofactor in the metabolism of homocyste-

ine. Intestinal flora disorders lead to

reduced absorption of folic acid in the jeju-

num, leading to hyperhomocysteinemia.

Hyperhomocysteinemia not only causes

degradation of the extracellular matrix

and a decrease in bone blood flow, but

also has a harmful effect on bone health.44

This condition also affects osteoblast

precursors, namely human mesenchymal

stem cells, which attenuate osteoblast dif-

ferentiation.45 Moreover, hyperhomocystei-

nemia causes an increase in reactive oxygen

species production and activation of matrix

metalloproteinases, among which matrix

metalloproteinase-9 and matrix

metalloproteinase-13 play a role in cartilage

osteogenesis.46 Additionally, hyperhomo-

cysteinemia leads to activation of protein

phospholipase 2A. This disrupts the

FOXO1 and mitogen-activated protein

kinase signaling cascades and alters the

redox regulation mechanism of osteoblasts.
Bifidobacteria in the intestine can signif-

icantly enhance transcription of the lactase

gene promoter and promote lactose absorp-

tion,47 thus reducing hypocalcemia-induced

bone mobilization. Lactobacillus helveticus

fermentation further promotes the release

of free calcium and accelerates calcium

deposition.48 Intestinal microbes are also

involved in development of inflammatory

bowel disease. This causes a decrease in cal-

cium and vitamin D absorption in the intes-

tine, and indirectly increases the risk of

Figure 1. Association between intestinal microorganisms and osteoporosis. The figure shows differences in
nitric oxide concentrations, endocrine hormones, immune system-related cells, and antigens in osteoblasts
and osteoclasts. High homocysteine, calcium, and vitamin D levels are also involved in gut microbes and
osteoblasts
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osteoporosis. Intestinal pH values also

change because of intestinal flora, thus

affecting calcium absorption.49 L. reuteri

can inhibit Wnt10b.50 Wnt, which is a

highly conserved signaling molecule, effec-

tively stimulates osteoblast differentiation,

inhibits adipogenesis, and impedes bone

degeneration.51 Wnt shows osteoprotective

effects by affecting the microenvironment

necessary for differentiation of mesenchy-

mal cells into bone precursor cells and pre-

venting osteoblasts from transforming into

chondrocytes.52

Therapy

High-fiber probiotic supplements, short-

chain fatty acid (SCFA) diets, and fecal

transplants are the most studied therapies.

They are anti-inflammatory and maintain

balance of the gut microbiota. Each of

these therapies has its own characteristics.

Among them, SCFAs not only increase

calcium absorption, but also have anti-

inflammatory effects and maintain intesti-

nal microbial balance.6 Additionally,

SCFAs can reduce intestinal pH and inhibit

formation of calcium chelates. SCFAs also

increase calcium absorption by increasing

the level of calcium binding, protein tran-

scription, and upregulation of the vitamin

D receptor.53 These fatty acids also pro-

mote Treg development and stimulate the

Treg immune response, which weaken

immune system abnormalities caused by

intestinal microbes.54 However, SCFAs

play a role in the pathogenesis of hepatic

encephalopathy, and an excessive increase

in SCFAs may aggravate hepatic coma in

patients with liver disease. Even in patients

without liver disease, octanoic acid

(a SCFA) is associated with experimental

hepatic encephalopathy.55 Further research

on the role of SCFAs in liver disease is

required. In recent years, heparin-binding

epidermal growth factor has been shown

to significantly increase NO and may pro-

vide a new treatment for osteoporosis.56

Conclusions and prospects

Many studies have confirmed that there is a

close relationship between gut microbiota

and osteoporosis. Endocrine dysfunction

plays an important role in osteoporosis.

Immune system abnormalities and NO

also affect osteoporosis. Various pathways

work together and eventually lead to oste-

oporosis. The relationship of gut microbes

with osteoporosis requires further research,

especially the role of specific microorgan-

isms in osteoporosis. This article is a pre-

liminary discussion on the relationship

between intestinal flora and osteoporosis.

This review provides a theoretical basis for

new prevention and treatment strategies

for osteoporosis and suggests new ideas

for immunomodulation and targeted treat-

ment of osteoporosis.
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