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: We aimed to identify predictive clinicoradiologic characteristics of thymidylate synthase (TS) expression

: status in advanced non-squamous non-small cell lung cancer patients. We reviewed clinicoradiologic

: features of 169 patients stratified into TS-negative (n = 84) and TS-positive (n = 85) groups, including

. quantitative CT radiomic features of both primary lung and metastatic lesions from initial CT and
PET. Clinical factors including age and smoking history were significantly associated with TS as well
as radiomic features. The predictive performance for dichotomizing TS expression status was slightly
higher when imaging features of primary lung lesions were added compared to the model based solely
on the clinical features, but without statistical significance (10-fold cross-validated AUC=0.619 and
0.581, respectively; P=0.425). The predictive performance of clinicoradiologic parameters slightly
increased with primary lung lesions only compared to the inclusion of metastatic lesions, but without
statistical significance (10-fold cross-validated AUC=0.619 and 0.554, respectively; P=0.203). Overall
survival was prolonged in the TS-negative group compared to the TS-positive group (P=0.001). TS-

. negativity is a potential prognostic biomarker, and our study presents that although CT radiomic

. features have potential for predicting TS expression status, clinical significance is uncertain. The

. addition of radiomic features to clinical factors did not show significantimprovement in predicting TS-
negativity.

Lung cancer is one of the leading causes of cancer-related mortality in many countries, and non-small cell lung
. cancer (NSCLC) accounts for approximately 80% of all lung cancers'. For advanced NSCLC, platinum-based dou-
. blet chemotherapy remains the standard first-line chemotherapy, especially in tumors not harboring either epi-
. dermal growth factor receptor (EGFR) mutation or anaplastic lymphoma kinase (ALK) translocation?. However,
given that patients with metastatic disease have a 5-year survival rate less than 4% in the US?, the treatment
efficacy and survival outcome of platinum-based doublet chemotherapy are still limited*. Therefore, identifying
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a biomarker that may be helpful in determining a treatment regimen or predicting prognosis in NSCLC patients,
ultimately for improvement in survival rate, is needed.

Thymidylate synthase (TS) is a key enzyme in Deoxyribonucleic acid (DNA) synthesis and is also the main
target of antifolate drugs including pemetrexed. Pemetrexed, which is increasing its therapeutic scope from
second-line therapy to first-line and maintenance therapy, is a multi-targeted antifolate drug that inhibits at least
three enzymes including TS involved in DNA synthesis and folate metabolism, resulting in antitumor effects>®.

Previous studies have reported that lower TS expression level is associated with better clinical outcomes for
pemetrexed-based chemotherapy in NSCLC”!°. A recent phase III study showed survival differences between
histologic types; pemetrexed/cisplatin was superior for survival compared with gemcitabine/cisplatin in nonsqua-
mous NSCLC, although it was inferior in squamous cell histology'!. This result can also be explained by the
higher TS expression level in squamous cell carcinoma compared with other histologic types including adenocar-
cinoma'?. Moreover, several studies have shown the association between low TS expression level and prolonged
overall survival in NSCLC regardless of treatment regimen. Therefore, TS expression itself may be a potential
prognostic factor’*-1>.

Regarding the evaluation of TS expression, different methods have been used including immunohistochem-
istry (IHC) to detect TS expression at the protein level and real-time reverse transcriptase polymerase chain
reaction (RT-PCR) at the messenger ribonucleic acid (mRNA) level. Although IHC has been widely used and
has shown better correlation with objective response rate prediction in patients with lung cancer receiving
pemetrexed-based treatments, factors like tumor heterogeneity, subjective scoring system, or cutoft value are
considered limitations, for which cautious data interpretation is required'®. Also, the assessment of TS expression
requires a tumor biopsy, which may not be possible for every primary tumor site. Therefore, a noninvasive imag-
ing biomarker aiding in the prediction of TS expression level would be of great clinical importance.

Thus, we aimed to evaluate the clinicoradiologic features of NSCLC stratified by TS expression status and to
correlate those with the prognosis in order to identify useful predictive imaging characteristics of TS expression
status and to help develop improved treatment strategies.

Materials and Methods

Our institutional review board approved this retrospective study with a waiver of informed consent (SMC #2015-
07-149). This study was performed in accordance with the principles of the Declaration of Helsinki for medical
research involving human subjects.

Patients. We identified 315 patients who had been histologically diagnosed with advanced non-squamous
NSCLC (stage IIIB, IV, or recurrent disease after complete resection) at Samsung Medical Center (Seoul, Korea)
from July 2011 to January 2014, who were originally included in a biomarker-stratified randomized phase II
trial'”. All patients had immunohistochemical analysis results for TS expression of biopsy specimens and chest
computed tomography (CT) within 3 weeks. Twenty-six patients who had no follow-up CT to evaluate the prog-
nosis were excluded. Twenty-nine patients were excluded for CT review-related factors: non-contrast CT only,
images that could not be used for quantitative CT analysis due to the raw dicom data error, or no measura-
ble lesion on CT by RECIST 1.1'%. Considering the availability of **F-fluoro-2-deoxyglucose (FDG)- positron
emission tomography (PET) imaging, 169 of 260 patients were included in the present analysis. Four of 260
patients who had histology other than adenocarcinoma; pleomorphic carcinoma or not otherwise specified, were
excluded due to prognosis or image-related factors described above. Therefore, the histology of all 169 patients
included was adenocarcinoma.

All patients were stratified into TS-negative or TS-positive groups. Patients for each group were randomly
assigned to receive platinum doublet chemotherapy with or without pemetrexed: either intravenous pemetrexed
(500 mg/m? Alimta, Eli Lilly, Indianapolis, IN, USA) plus cisplatin (70 mg/m? Cisplan, Dong-A ST, Seoul, Korea)
intravenously on day 1 or gemcitabine (1000 mg/m? Gemzar, Eli Lilly, Indianapolis, IN, USA) on days 1 and 8 plus
cisplatin (70 mg/m?) intravenously on day 1. The administration was repeated every 3 weeks, and patients received
a maximum of 6 cycles of chemotherapy until disease progression, unacceptable adverse event, or decision by the
patient or physician. The response was assessed by CT scans every two cycles according to RECIST 118,

Imaging and Analysis. Imaging characteristics of each lesion were evaluated using chest CT and the PET
component of PET/CT. Dedicated chest CT images were obtained with several multi-detector CTs including 8-,
16-, or 64-detector row CT scanners. All CT exams were performed with contrast. Chest CT data were interfaced
directly to a picture archiving and communication system (PACS) (Path-Speed or Centricity 2.0; GE Healthcare,
Mt. Prospect, IL, USA), which displayed all image data on two monitors (1536 x 2048 matrix, 8-bit viewable
grayscale, 60-foot-lambert luminescence). The monitors were adapted to view both mediastinal (width, 400 HU;
level, 20 HU) and lung (width, 1500 HU; level, —700 HU) window images.

Three radiologists (H.Y.L., H.S.H., and E.Y.K.) blinded to the information about the TS group and treatment alloca-
tion performed independent reviews of the radiological data from all randomized patients with at least a baseline and
one follow-up scan and evaluated treatment response prospectively in consensus. A maximum of five lesions including
primary lung lesion for each patient were included and measured at baseline CT according to RECIST guidelines'®.

A thoracic radiologist (S.W.L, with six years of experience in thoracic CT interpretation) who was unaware
of the clinical data and histologic diagnoses retrospectively evaluated the initial CT scans. The size and opacity
of the primary lung lesion, the presence/absence of pleural metastases and lymphangitic carcinomatosis, and the
presence and location of distant metastases were evaluated as CT features. The opacity of primary lung lesion was
characterized as either solid (lesions with increased opacity obscuring pulmonary vessels), non-solid (lesions
with ground glass opacity preserving the bronchial and vascular margins), or part-solid (lesions with mixed solid
and ground glass opacity components).
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Figure 1. A total of 60 CT radiomic features used in this study. The features were classified into four categories of
histogram-based, shape-based, gray level co-occurrence matrix (GLCM), and intensity size zone (ISZ) features.

For quantitative CT analyses, tumors were segmented by drawing a region of interest (ROI) covering the
largest possible area of the whole lesion (Figure S1). Not only the primary lung lesions, but also the metastatic
lesions were segmented by drawing a ROIL. We used Mricro software (http://www.cabi.gatech.edu/mricro/mricro/
version 1.40) to draw the ROIs. Next, voxel-based CT numbers were collected from lesion segmentations.

We computed radiomic features from raw imaging data over an ROI drawn by a thoracic radiologist (S.W.L,
with six years of experience in thoracic CT interpretation)®. A total of 60 features were computed in our study(-
Fig. 1). The features were classified into four categories: histogram-based, shape-based, gray level co-occurrence
matrix (GLCM), and intensity size zone (ISZ) features. Histogram-based features were computed using the inten-
sity (HU) distribution of a given ROL These features reflect intensity information of a given ROI. For histogram
features, we adopted 2 types of histograms as follows: (1) regular histogram of all intensity values within the ROI
(19 features); (2) histogram based on inner and outer portions of the ROI (18 features). A given ROI was parti-
tioned into inner ROI (2/3 of the whole ROI volume) and outer ROI (1/3 of the whole ROI volume) purely based
on the volume. We hypothesized that partitioning the outer part of the ROI would better reflect the aggressive-
ness of the tumor than the total ROI, which may have an offset portion as a whole. As the volume of the tumor
decreased with this partitioning procedure, some of the features were not analyzable separately for inner or outer
portion of the tumor due to its small volume. Therefore, inner and outer ROIs each had nine features. The differ-
ence between inner and outer ROI value was defined as delta ROI, which may signify intra-tumor heterogeneity.
A total of 9 features were included for both outer ROI and delta ROL The total number of histogram-based fea-
tures, including median, energy, min, max, and range, was 37%°. Shape-based features reflect morphological data
of the ROL A total of 10 features including volume, surface area, convexity, and compactness were computed'®?!.
GLCM-related features consider intensity values of a neighborhood instead of one voxel. One could quantify
how similar or dissimilar voxel intensities are within a neighborhood. Thus, GLCM-related features could be
used to quantify texture data??. Image intensities were discretized to 256 level for robust computation of GLCM,
which was consistent with the Freedman-Diaconis formula and other studies?***. GLCMs were computed for 13
directions and the average of 13 matrices were used for feature computation. The GLCM had 11 features including
auto-correlation, and the dissimilarity was computed'. ISZ features were also correlated to texture data, but could
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be quantified beyond the immediate neighborhood. They assumed that an ROI could be further divided into
sub-regions with uniform intensity but variable size. ISZ could quantify how many sub-regions and how often
certain sub-regions occur within the tumor®>*. Image intensities were discretized to 32 level for robust computa-
tion of ISZ matrix. We chose 32 bins as it provided sensitive matrix to quantify number of sub-regions®. A total
of two features, intensity variability and size-zone variability, were computed. Details regarding mainly adopted
features are provided in the Supplementary Table. To increase the reproducibility of results, most of our radiomic
features were computed using open-source platform called PyRadiomics*, available at www.radiomics.io. Only
for 11 features including percentile (2.5%, 25%, 50%, 75% and 97.5%), uniformity of positive gray level pixel val-
ues (UPP), density, mass, convexity, size-zone variance and intensive variance, we used in-house MATLAB code
(Mathworks Inc., MA, USA). The source codes used for the analysis are provided in the supplementary data. PET/
CT was available in 169 patients. Details of PET/CT acquisition are described in Appendix S1.

For semi-quantitative analysis of FDG uptake from PET/CT, ROIs were placed over the most intense area of
FDG accumulation. When nodular FDG uptake could not be assessed on PET component images of PET/CT, an
ROI was drawn in a presumed nodular location based on CT component images of PET/CT. FDG uptake within
the ROIs was calculated as the maximum standardized uptake value (SUVmax).

Thymidylate Synthase Expression Analyses. All specimens obtained from patients with advanced
non-squamous NSCLC were analyzed for TS protein expression by IHC as described previously'’. The speci-
mens used in this study were 4-um-thick sections of paraffin-embedded tissue, and monoclonal anti-TS (4H4B1,
Invitrogen, Carlsbad, CA) was used for the staining of TS protein. IHC staining of TS was assessed by two inves-
tigators (S.Y.H. and ].H.). Based on a previous study using a modified H-score system by Sun et al.'°, we stratified
TS-positive or TS-negative tumors by the cutoff value of 10%. TS-positivity was defined as T'S expression in more
than 10% of tumor cells, and TS-negativity as TS expression in 10% or fewer tumor cells.

Statistical Analysis. To evaluate the association between clinicoradiologic characteristics and TS expres-
sion status from primary lung lesions and mean value of both primary and metastatic lesions, logistic regression
analysis was performed. Characteristics with P-value less than 0.05 were considered to be statistically significant.

For the analysis of progression-free survival (PFS) and overall survival (OS) according to TS expression status,
we used log-rank test with Kaplan-Meier curves. Statistical analyses were performed using SPSS software (SPSS
for Windows, version 11.0, 2001; SPSS, Chicago, IL, USA) or MedCalc software (MedCalc for Windows, version
16.1, 2016; MedCalc Software, Ostend, Belgium)

Internal validation. To evaluate the predictive performance of the prediction model, 10-fold cross-validation
(CV) procedure was used as follows:
Step 1. The total data were randomly divided into ten equally sized subsets.
Step 2. A single subset was used as the validation data, and the remaining nine subsets were used as training
data.
Step 3. The variables were selected using variable selection procedure based on random forests proposed by
Genuer et al. in the training set®.
Step 4. Random forest was applied to the selected variables to fit a prediction model.
Step 5. A fitted prediction model was applied to the validation data and the predicted probabilities were
calculated.
Step 6. Steps 2-5 were repeated ten times.
Step 7. After the cross-validation is complete, the predicted probability values of all patients calculated by 10
fold CV were combined together. A single ROC curve was drawn as in Simon et al. and the area under the
curve (AUC) value was calculated®.
To compare 10-fold cross-validated AUC value of prediction model, the nonparametric approach of DeLong
et al. was used™.

Data Availability. The datasets analyzed during the current study are available from the corresponding
author on reasonable request.

Results
Baseline Characteristics. Eighty-one women (47.9%) and 88 (52.1%) men (median age, 59 years) were
enrolled. All patients are from Korean population. A total of 296 measurable lesions from 169 patients were ana-
lyzed. Among 296 lesions, 169 were primary lung lesions, 93 were metastatic lymph nodes, 15 were pulmonary
metastases, 2 were metastatic pleural lesions, and 17 were distant metastases.

On the basis of T'S expression status, the TS-negative group consisted of 84 patients, and the TS-positive group
included 85 patients (Table 1).

Analysis Dealing With Only Primary Lung Lesions. The association between imaging parameters and
TS expression status was evaluated only for primary lung lesions. Considering the availability of PET/CT imag-
ing, a total of 169 patients with primary lung lesions were included. Younger age and never-smoker status were
significantly associated with TS negativity (P=0.003 and P=0.024, respectively). Higher skewness (P=0.041)
and lower kurtosis (P=0.005) of the whole tumor and higher skewness,, (P=0.020) and lower kurtosis,
(P=0.016) of histogram-based features were also associated with TS negativity. The root mean square (RMS),
mean, ., median,,., and maximumg,, values from histogram-based features and dissimilarity and entropy of
GLCM-based features were significantly associated with TS expression status (Table 2). CT features including
size (P=0.439) and opacity (P=0.152) of the primary lung lesion, the presence/absence of pleural metastases
(P=0.489) and lymphangitic carcinomatosis (P = 0.970), and the presence of distant metastases (P=0.785) were
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Age (years)* 58.5(52.0, 64.8) 60.0 (56.0, 68.0)
Sex

Female 47 (56.0) 34 (40.0)

Male 37 (44.0) 51 (60.0)
Smoking

Never smoker 52 (62.0) 35 (41.0)

Ever smoker 32(38.0) 50 (59.0)
Histologic type

Adenocarcinoma 84 (100.0) 85 (100.0)
Tumor stage

v 84 (100.0) 80 (94.0)

1B 0 (0.0) 4(5.0)

Recurrent 0(0.0) 1(1.0)
Chemotherapy

Pemetrexed/Cisplatin 47 (56.0) 50 (59.0)

Gemcitabine/Cisplatin 37 (44.0) 35(41.0)
EGFR mutation

Positive 38 (45.2) 23(27.1)

Negative 39 (46.4) 59 (69.4)

Unknown 7(8.3) 3(3.5)
Follow-up period (months)* | 15.0 (14.8, 18.5) 11.4 (12.4,16.0)

Table 1. Patient Characteristics (n=169). “Data are median (interquartile range).

Age (yrs) 58.5 (52.0, 64.8) 60.0(56.0,68.0) | 0.508 (0.280-0.919) | 0.003
1 1 k(0
811:11:5;? ghistory” (%) 2 gé?; > g‘s‘;g 0.209 (0.077-0.566) | 0.024
Current or Ex
RMS 926 (79.6,129.1) | 90.6 (77.8,107.6) | 1.970 (1.089-3.567) | 0.008
Skewness 26(—34—16) | —27(—40,—18) | 1.004(1.000-1312) | 0.041
Kurtosis 15.7 (10.1, 22.4) 204(105,325) | 0.746 (0.611-0918) | 0.005
Mean,,.. 289(—333,50.3) | 364(—6.1,530) | 0.976(0.959-0.992) | 0.038
Mediang,e 440 (22.0, 58.0) 52.0(30.0,620) | 0.977 (0.959-0.994) | 0.020
Skewness, 21(=29,—15) | —26(—35,—17) | 1336 (1.089-1.638) | 0.020
Kurtosisomr 10.8 (7.1, 19.6) 127(7.3,253) | 0.155(0.044-0.545) | 0.016
Maximumy, 57(—49,152) | 12.4(—06,30.6) | 0.604(0411-0.889) | 0.009
Dissimilarity 103 (8.3, 12.5) 95(72,129) | 1.136 (1.089-1.638) | 0.007
Entropy GLCM 10.7 (9.9, 11.1) 105(9.9,11.0) | 1.025 (1.008-1.042) | 0.028

Table 2. The result of association between clinicoradiologic variables and TS expression status from primary
lung lesions. Abbreviations: RMS, root mean square; GLCM, gray level co-occurrence matrix. Unless otherwise
indicated, data are median (interquartile range). “Data indicate the number of individuals (percentage).

not significantly associated with TS expression status. SUVmax from PET/CT was not significantly correlated
with TS expression status (P=0.111).

Analysis of Combined Data of Primary Lung Lesions and Metastatic Lesions. The association
between the imaging parameters and TS expression status was evaluated for the primary lung lesions as well as
the metastatic lesions, for which the mean value of primary and metastatic lesions from each patient was used for
analysis. Eighty-four patients had more than one metastatic lesion other than the primary lung lesion. The mean
number of total lesions in each of all 169 patients was 1.75. Younger age and never-smoker were significantly
associated with TS negativity (P=0.043 and P=0.005, respectively). A lower CT attenuation value at the 25
percentile and higher CT attenuation value at the 97.5 percentile from histogram-based features were signif-
icantly associated with TS negativity (both P < 0.001). Inter-quartile range (IQR), RMS, mean, ., median, e,
and maximum,., values from histogram-based features were also associated with TS expression status (Table 3).
SUVmax from PET/CT was not significantly associated with TS expression status (P =0.265).
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Age (yrs) 58.5 (52.0, 64.8) 60.0(560,68.0) | 0.720 (0.014-0.902) | 0.043
evargsteny” 29 35(412) 0.099 (0.022-0.441) | 0.005
Current or Ex (38.1) 50 (58.8)
IQR 67.3(553,81.9) 60.5(480,715) | 1.970 (1.089-3.569) | 0.003
RMS 920(79.6,1267) | 88.4(764,1050) | 1591 (1.119-2.779) | 0.009
25" percentile (HU) | 168 (0.3, 32.0) 210(81,360) | 0.749 (0.611-0918) | <0.001
97.5" percentile (HU) | 137.5 (1134, 163.0) | 135.0 (118.6,155.0) | 1.008 (1.000-1.018) | <0.001
Mean e 292(-80,504) | 364(18,532) | 0.959(0.928-0991) | 0.001
Maximumy, 249.9(2019,297.3) | 230.0(184.3,281.0) | 1.877 (1.022-3.448) | 0.016
Medianye, 44.8(313,59.1) 49.0(318,632) | 0.155(0.044-0.545) | 0.003

Table 3. The result of association between clinicoradiologic variables and TS expression status from the mean
value of both primary and metastatic lesions. Abbreviations: IQR, interquartile range; RMS, root mean square.
Unless otherwise indicated, data are median (interquartile range). “Data indicate the number of individuals
(percentage).
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Figure 2. Comparison of ROC curves for dichotomizing TS expression status between the model using clinical
features and the model with addition of radiomic features. The red line represents the model using clinical
variables only (10-fold cross-validated AUC=0.581). The green line represents the model using both clinical
variables and radiomic features from primary lung lesions (10-fold cross-validated AUC = 0.619). The blue line
represents the model using both clinical variables and radiomic features from the combined data of primary and
metastatic lesions (10-fold cross-validated AUC = 0.554).

Predictive Performance of Clinical and Imaging Parameters for Dichotomizing TS Expression
Status. To compare the predictive performance of clinical and imaging parameters for dichotomizing TS
expression status, 10- fold cross-validation (CV) procedure was used.

10-fold cross-validated AUC of the prediction models using only clinical variables, both clinical variables and
radiomic features from primary lung lesions, and both clinical variables and radiomic features from the combined
data of primary and metastatic lesions were 0.581, 0.619, and 0.554, respectively (Fig. 2).

The performance of predicting the TS expression status was slightly higher when radiomic features of primary
lung lesions were added compared to the model based solely on the clinical features, but without statistical signif-
icance (P=0.425). The predictive model with primary lung lesions showed slightly higher AUC compared to the
added consideration of metastatic lesions, but without statistical significance (P =0.203).

Survival Analyses. The correlations between TS expression status and PFS and OS in 260 patients with
non-squamous NSCLC are shown in Fig. 3. The PFS was not significantly associated with TS expression status
(P=0.144). However, the OS was significantly prolonged in the TS-negative group compared with the TS-positive
group (P=0.001).
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Figure 3. Progression-free survival (PFS, A) and overall survival (OS, B) curves according to TS expression
status. The PFS was not significantly associated with TS expression status (P = 0.144). However, the OS was
significantly prolonged in the TS-negative group compared with the TS-positive group (P=0.001).

Discussion

Recent studies have reported that low TS expression level is associated with better clinical outcome and longer
overall survival®-1¢1>-1517_Consistent with these previous reports, our study also suggests that TS-negativity is a
good prognostic factor. A few studies have shown controversial results that high TS expression level was associ-
ated with improved survival®'*2. These discrepancies are mainly due to tumor heterogeneity. In other words, the
result from a small specimen may not be indicative of the TS status of the entire tumor. Additionally, the invasive
process of obtaining a specimen from the tumor and the non-standardized procedures to evaluate TS expression
level remain critical points. The development of antibodies to detect TS in a sensitive and quantitative assay made
it possible to measure the TS expression level in tumor samples using IHC*. However, TS evaluation with ITHC
is a semi-quantitative and empirical method that depends on the detailed procedures and is therefore difficult to
standardize.

Considering these limitations in detecting TS expression level from tumor samples, predicting TS expression
level based on clinicoradiologic factors determined in non-invasive studies such as CT or PET/CT images of the
NSCLC patients is of great clinical importance. A previous study has described the clinicopathologic charac-
teristics of TS-negative lung cancer, demonstrating that female, younger age, never-smoker status, and adeno-
carcinoma were more frequent in TS-negative patients'®. Since these clinicopathologic characteristics are not
specific for TS expression status, adding radiologic features may increase the predictive probability. Radiomic
features from CT or PET are widely being explored by recent studies for their correlation with prognosis, treat-
ment response or tumor phenotype including EGFR-mutation status in NSCLC patients*~*°. Our study also pre-
sents that some CT radiomic features were univariately predictive of TS expression status. However, the addition
of radiomic features to clinical factors did not show significant improvement in predicting TS-negativity. CT
radiomic features have potential for predicting TS expression status, but there is no clinical significance beyond
the data variability of clinicoradiologic features. SUVmax from PET/CT was not significantly correlated with TS
expression status. To our knowledge, there has been no previous description of the radiologic characteristics of
lung cancers with TS stratification, and our study is the first attempt to better understand both clinical and radi-
ologic characteristics of TS-positive lung adenocarcinomas.

We determined that radiomic features including skewness, kurtosis (histogram-based features), entropy, and
dissimilarity (GLCM-based features) from primary lung lesions reflecting tumoral heterogeneity were signifi-
cantly correlated with TS expression level. Histogram-based features reflect intensity information of a given ROI
and quantify intra-tumor heterogeneity. Lower skewness (a measure of asymmetry of a histogram) and higher
kurtosis (a measure of flatness of a histogram) representing increased heterogeneity were observed in both the
total and outer ROI values of TS-positive tumors. In NSCLC, intra-tumor heterogeneity reflected by CT texture
analysis is known to be associated with MAPK tumor pathway and has potential as a prognostic indicator””. Win
et al. suggested the intra-tumor genomic heterogeneity or tumor hypoxia as the probable reasons for the rela-
tionship between tumoral heterogeneity and prognosis®. In previous studies, both kurtosis and skewness were
associated with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, and epidermal growth
factor receptor (EGFR) mutation status was also correlated with CT texture features®*°. Tumor heterogeneity
reflects the distribution of CT pixel values of the tumor and is related to tumor aggression. Additionally, there is
emerging evidence that tumor segmentation of NSCLC on CT may improve prediction of survival (e.g., necrosis
in the core and proliferation along the boundary)*'. In our study, we partitioned the outer 1/3 of the ROI, and
the mean, median, skewness, and kurtosis of the outer ROI and the maximum of the delta ROI were significant
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predictors of TS expression status. We made an attempt to enhance the value of the tumor partitioning for more
detailed evaluation of tumor texture analysis. For validation of these findings, tumor partitioning must be applied
in a larger study.

Whereas histogram-based features reflect intra-tumor heterogeneity in terms of intensity, GLCM-based fea-
tures, which are textural features, reflect the heterogeneity of spatial distribution of voxel intensities. These fea-
tures consider intensity values of a neighborhood instead of a single voxel. In our study, entropy and dissimilarity
(GLCM-based features) of primary lung lesions were significantly correlated with TS expression level. Entropy
indicates the uncertainty of the GLCM, which reflects the randomness of the matrix. Dissimilarity indicates how
different each element is in the matrix.

Recently, with the development of targeted therapies in NSCLC, determining tumor mutation status is an
important part of diagnosis in many countries to improve treatment outcomes*'. However, in advanced lung
cancer patients, therapeutic decision-making based on the results from primary tumor specimens could be jus-
tified only in cases where the tumor mutation status is similar between primary and metastatic lesions*’. On the
contrary, it is not always possible to obtain primary tumor tissue due to the invasiveness of the procedure, and
a metastatic lesion may be obtained instead of the primary tumor®’. Nevertheless, there is controversy over the
concordance between the primary and metastatic lesions of NSCLC with multiple mutation statuses, including
EGFR, KRAS, p16, and p53*+-°!. Generally, substantial mutation status concordance was observed between pri-
mary and metastatic lesions in previous studies, with the concordance varying from 60 to 100%". Potential causes
contributing to some level of mutation status discordance include the testing methodology; site of the metastatic
sample, and tumor heterogeneity®. Tumor heterogeneity exists not only within a single tumor (intratumor), but
also between tumors of the same type in a patient (intertumor)*. Although there is a close genetic relationship
between the primary and metastatic lesions, cancer is an evolving systemic disease, and the primary and meta-
static lesions could become divergent as they evolve. In a previous study by Shimizu et al.%, patients with EGFR
mutations in both primary and metastatic tumors showed a higher disease control rate compared to the patients
with EGFR mutations in primary tumors only (P =0.062). This suggests that heterogeneity of mutation status
between the primary and metastatic tumors may influence the treatment efficacy.

Allowing for these current concepts regarding primary and metastatic tumors, whether or not metastatic
lesions should be included in the analysis of radiomic features is an important issue. At least, in NSCLC, there
has been no attempt to investigate TS expression in metastases and compare it with the matched primary tumor.
Several studies have been published on the correlation between TS expression in the primary tumor and meta-
static lesions in colorectal cancer patients®->, where the majority of the studies revealed a poor correlation of TS
expression between the primary tumor and distant metastases®*->%*. Discordance of TS expression level in the
primary tumor tissue with the outcome of FU-based chemotherapy for metastatic disease suggests that TS anal-
ysis must be performed on biopsy material obtained from the metastatic site or sites®. Here, our study demon-
strated that clinicoradiologic characteristics of primary lung lesion did not significantly better reflect the TS
expression status obtained from the primary lung lesion itself in comparison with the combined data of primary
lung and metastatic lesions. However, the potential variability of TS expression between different tissues raises
concern over the use of primary tumor tissue to predict treatment response or prognosis in metastatic disease.
Further and preferably prospective studies are needed to evaluate TS expression in NSCLC metastatic lesions in
comparison with matched primary lung lesions and to correlate findings with responsiveness or prognosis.

A potential limitation of our study is its retrospective design from a single institution. However, the patients
originally participated in a phase II trial and were prospectively stratified into TS-positive or -negative groups.
CT or PET/CT exams performed on a several different multi-detector CT scanners and various organs included
for radiologic characteristics evaluation in metastases might be other potential limitations. Regardless of heter-
ogeneity in CT scanners or protocols, we minimized the effect of CT acquisition to radiomic feature analysis by
including CT images with thin slice thicknesses (2.5 mm or less) and standard reconstruction algorithm. Further
studies with a larger sample size of patients from multiple institutions are required to validate our results.

In conclusion, TS-negativity is a potential prognostic biomarker, and our study presents that although CT
radiomic features have potential for predicting TS expression status, clinical significance in uncertain. The addi-
tion of radiomic features to clinical factors did not show significant improvement in predicting TS-negativity.
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