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AI Pontryagin or how artificial neural networks
learn to control dynamical systems
Lucas Böttcher 1,2,4✉, Nino Antulov-Fantulin 3✉ & Thomas Asikis3,4✉

The efficient control of complex dynamical systems has many applications in the natural and

applied sciences. In most real-world control problems, both control energy and cost con-

straints play a significant role. Although such optimal control problems can be formulated

within the framework of variational calculus, their solution for complex systems is often

analytically and computationally intractable. To overcome this outstanding challenge, we

present AI Pontryagin, a versatile control framework based on neural ordinary differential

equations that automatically learns control signals that steer high-dimensional dynamical

systems towards a desired target state within a specified time interval. We demonstrate the

ability of AI Pontryagin to learn control signals that closely resemble those found by corre-

sponding optimal control frameworks in terms of control energy and deviation from the

desired target state. Our results suggest that AI Pontryagin is capable of solving a wide range

of control and optimization problems, including those that are analytically intractable.
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The problem of how to control complex systems has its
roots in dynamical systems and optimization theory1–4.
Mathematically, a dynamical system is said to be “con-

trollable” if it can be steered from any initial state x0 to any target
state x� in finite time T . Controlling complex dynamical systems
is relevant in many applications such as (i) development of effi-
cient and robust near-term quantum devices5,6, (ii) regulatory
network control7 in cellular biology, (iii) power-grid
management8, (iv) design of stable financial systems9, and (v)
epidemic management10,11.

Historically, an early work by Kalman in the 1960s led to the
formulation of an analytical condition for the controllability of
linear systems based on the rank of the controllability matrix1. An
equivalent condition, the so-called Popov–Belevitch–Hautus test2,
characterizes controllability of a linear system via its eigenmodes.
More recently, concepts from the framework of structural
controllability3 have been used to control complex networks12

with a minimum set of control inputs (i.e., driver nodes) that can
be determined by identifying all unmatched nodes in a maximum
matching problem. The direct application of this framework to
general network controllability problems is, however, complicated
by several factors13. First, finding the minimum set of driver
nodes for an arbitrary network is NP hard14. Second, the design
of an appropriate control signal is not specified in ref. 12 and its
implementation may not be realizable in practice13. Third, in the
presence of nodal self-dynamics, which were not considered in
the controllability framework developed in ref. 12, a single time-
varying input is sufficient to achieve structural controllability15,
challenging the findings of ref. 12.

Even if a certain control policy is able to steer a system towards
a target state, it may not be possible to implement it in practice
because of resource16 and energy17 constraints. To determine
admissible control policies, one typically resorts to optimal con-
trol (OC) methods that rely on cost functions that one wishes to
minimize. Such cost functions may be used to minimize the
strength and frequency of control signals or, more generally, the
“control energy”17. In technical networks, energy has to be sup-
plied to control the action of underlying electrical and mechanical
components. In social and socio-economic networks18, one can
identify control energy with the resources or costs incurred (e.g.,
economic and social costs of distancing policies) when changing
the behavior of individual nodes17. Achieving optimal control of
networked dynamical systems is thus a central task in control
theory19.

The solution of general optimal control problems is based on two
main approaches: (i) Pontryagin’s maximum principle20,21 (neces-
sary condition), which is a boundary-value problem in a Hamil-
tonian framework, or (ii) solving the Hamilton–Jacobi–Bellman
(HJB) partial-differential equation (necessary and sufficient
condition)22. Since the HJB equation usually does not admit
smooth solutions23, different approximate dynamic programming
methods have been developed24,25.

To extend the above approaches (i) and (ii) to complex and
analytically intractable systems, different methods relying on arti-
ficial neural networks (ANNs) have been used to represent certain
functions that appear in the formulation of optimal control pro-
blems. One possibility is to use ANNs to obtain an approximate
solution to the value function of the HJB equation24,26. An alter-
native method is based on the solution of Pontryagin’s maximum
principle via differentiable programming27. Control approaches that
rely on Pontryagin’s maximum principle explicitly account for a
control energy term in the loss function and are based on the
solutions of a system’s evolution and co-state equations. In addition
to relying on an energy regularization term in the loss function, the
control framework of ref. 27 is based on an extension of the max-
imum principle that includes higher-order derivatives, requiring the

underlying dynamical systems to be twice-differentiable. Differ-
entiable programming has been applied to control systems with a
maximum of 13 state variables27, almost two orders of magnitude
smaller than some of the high-dimensional dynamical systems we
study in this work.

Recent advances in automatic differentiation and physics-
informed artificial neural networks28 also contributed to the fur-
ther development of modeling and control approaches. Physics-
informed neural networks use Lagrangian and Hamiltonian-based
formulations of physical models as priors for different learning
tasks29–31. They are useful tools to model partially unknown
systems29 and have been also applied to control tasks30,31.

Contrary to the above approaches, we show that it is possible to
generate control signals that resemble those of optimal control17

without relying on and solving maximum principle or HJB
equations. To do so, we present AI Pontryagin, an ANN that
overcomes several limitations of traditional optimal control
methods resulting from the analytical and computational
intractability of many complex and high-dimensional control
tasks. AI Pontryagin extends neural ordinary differential equa-
tions (ODEs)32 to general control problems, and efficiently steers
complex dynamical systems towards desired target states by
learning control trajectories that resemble those obtained with
optimal control methods. It does so by exploring the vector field
of the underlying dynamical system in a go-with-the-flow man-
ner, without explicitly accounting for an energy-regularization
term in the corresponding loss function. That is, AI Pontryagin
minimizes the control energy17 without evaluating an energy cost
functional, leading to a substantially improved performance
compared to existing control frameworks. Using analytical and
numerical arguments, we show why AI Pontryagin is able to
closely resemble the control energy of optimal control through an
implicit energy regularization, resulting from the interplay of
ANN initialization and an induced gradient descent. Further
applications of such control methods to feedback control and a
comparison with reinforcement learning are provided in ref. 33.

Results
Controlling dynamical systems with AI Pontryagin. Before
introducing the basic principles of AI Pontryagin, we first provide
a mathematical formulation of the control problem of networked
dynamical systems. We consider a network that consists of N
nodes and whose state is represented by the state vector
xðtÞ 2 RN . Initially, nodes are in state xð0Þ and steered towards a
target state x� at time T ði:e:; xðTÞ ¼ x�Þ by means of suitable
control inputs. Interactions between nodes are described by the
dynamical system

_xðtÞ ¼ fðxðtÞ; uðtÞÞ ð1Þ
and are subject to the constraint that the control function uðtÞ 2
RM minimizes the cost functional

J ¼
Z T

0
Lðxðt0Þ; uðt0ÞÞ dt0 þ CðxðTÞÞ : ð2Þ

The function f : RN ´RM ! RN in Eq. (1) accounts for both the
interactions between nodes 1; ¼ ;N and the influence of external
control inputs uðtÞ on the dynamics. Note that the number of
control inputsM is smaller than or equal to N . For linear systems,
we describe node-node interactions and external control inputs by
fðx; uÞ ¼ Ax þ Bu. The first term in Eq. (2) is the integrated cost
over the control horizon T , e.g., the control energy

ET ½u� ¼
Z T

0
kuðt0Þk22 dt0 ð3Þ

if L ¼kuðt0Þk22. The quantity CðxðTÞÞ denotes the final cost (or
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bequest value). Common formulations of optimal control include
the control-energy term (3) directly in the cost functional17,34. In
this case, minimizing the cost functional (2) corresponds to an
explicit minimization of the control energy.

AI Pontryagin offers a complementary approach to reach a
desired target state x� in finite time T . To describe the basic
principles of this control method, we proceed in two steps. First, we
approximate and solve the dynamical system in terms of neural
ODEs32. In particular, we describe the control input uðtÞ by an
artificial neural network with weight vector w such that the
corresponding control-input representation is ûðt;wÞ. Second, we
use a suitable loss function Jðx; x�Þ and a gradient-descent
algorithm to iteratively determine the weight vector w according to

wðnþ1Þ ¼ wðnÞ � η∇wðnÞ Jðx; x�Þ; ð4Þ
where the superscript indicates the current number of gradient-
descent steps, and η is the learning rate. Unless otherwise stated,
the loss function Jð�Þ that we use in this work is the mean-squared
error

JðxðTÞ; x�Þ ¼ 1
N

kxðTÞ � x�k22: ð5Þ

In order to calculate the gradients ∇wðnÞ Jð�Þ, we use automatic
differentiation methods35, where the gradients flow through an
underlying artificial neural network that is time-unfolded36 by
ODE solvers37. We show a schematic of the forward and backward
passes of AI Pontryagin and its coupling to a dynamical system in
Fig. 1.

In the following paragraphs, we will show that AI Pontryagin
approximates optimal control by minimizing the control energy
(3), without including this term in the loss function (5) and
without having any prior knowledge on the structure of optimal
control signals. All neural-network architectures, hyperpara-
meters, and numerical solvers are reported in the Methods.

Approximating optimal control. We now study the control
performance of AI Pontryagin for linear systems
ði:e:; fðx; uÞ ¼ Ax þ BuÞ, for which there exist analytical OC
inputs17

u�ðtÞ ¼ B>eA
>ðT�tÞWðTÞ�1vðTÞ ð6Þ

that minimize the control energy Et ½u� [Eq. (3)]. For the deriva-
tion of Eq. (6), one applies Pontryagin’s maximum principle to
the Hamiltonian H ¼kuðtÞk22 þ λðtÞ>½AxðtÞ þ BuðtÞ�17, where
λðtÞ is an adjoint variable. The vector vðTÞ ¼ xðTÞ � eATx0 in Eq.
(6) is the difference between the target state xðTÞ and initial state
xð0Þ under free evolution. The matrix WðTÞ is the controllability
Gramian and it is defined as

WðTÞ ¼
Z T

0
eAtBB>eA

>t dt: ð7Þ

As an example of linear dynamics17,34, we consider a two-state
system with

A ¼ 1 0

1 0

� �
and B ¼ 1

0

� �
: ð8Þ

The control task is to steer the system from xð0Þ ¼ ð1; 0:5ÞT to
x� ¼ ð0; 0ÞT in finite time T ¼ 1.

In Fig. 2a, we show AI Pontryagin-controlled trajectories of the
considered linear dynamics after 500 (blue), 1000 (purple), 1500
(red), and 30000 (orange) training epochs. The dashed black line
represents a trajectory that we control with OC inputs (6). Note
that the geodesic that connects xð0Þ and x�ðTÞ is not minimizing
the control energy, because it would require large control inputs
to steer the dynamics against the vector field (black arrows in

Fig. 2a). In alignment with the almost identical control
trajectories of AI Pontryagin and OC, we also find that the
energy evolution of AI Pontryagin almost perfectly coincides with
that of OC (Fig. 2b), hinting at an implicit energy regularization
of AI Pontryagin.

Implicit energy regularization. To provide insights into the
observed implicit energy regularization of AI Pontryagin
(Fig. 2b), we show that a gradient descent in the ANN weights w
induces a gradient descent in the control input ûðt;wÞ.

The evolution of the state vector xðtÞ is described by Eq. (1)
and it is a function of ûðt;wÞ. We now expand ûðt;wðnþ1ÞÞ ¼
ûðt;wðnÞ þ ΔwðnÞÞ with ΔwðnÞ ¼ �η∇wðnÞ J for small ΔwðnÞ while
keeping t constant. This expansion yields

ûðt;wðnþ1ÞÞ ¼ ûðt;wðnÞÞ þ J ûΔw
ðnÞ; ð9Þ

where J û is the Jacobian of û with elements ðJ ûÞij ¼ ∂ûi=∂wj.

Note that we can make ΔwðnÞ arbitrarily small by using a small
learning rate η.

Since ΔwðnÞ ¼ �η∇wðnÞ J and ∇wðnÞ J ¼ J T
û∇ûJ , we obtain

ûðt;wðnþ1ÞÞ ¼ ûðt;wðnÞÞ � ηJ ûJ T
û∇ûJ: ð10Þ

According to Eq. (10), a gradient descent in w [Eq. (4)] may
induce a gradient descent in û, where the square matrix J ûJ T

û
acts as a linear transformation on ∇ûJ .

To better understand the implications of this result, we briefly
summarize the control steps of AI Pontryagin. As described in the
prior paragraphs and as illustrated in Fig. 2a, AI Pontryagin starts
with a small initial control signal ûð0Þðt;wð0ÞÞ, then integrates the
dynamical system (1), and performs a gradient descent in w
according to Eq. (4). The closer the final state xðTÞ is to the target
state x�, the smaller the loss (5) and the change in w [and in û due to
Eq. (10)]. If we initialize AI Pontryagin with a sufficiently small
control input and learning rate, it will produce control trajectories
that follow the vector field of the dynamical system in a go-with-the-
flow manner and it will slowly adapt û to reach the desired target
state. Because of the induced gradient descent (10), the resulting
control approximates OC methods that minimize the control energy
(see the comparison between the final control energy of OC and AI
Pontryagin in Fig. 2b, d). This way of controlling dynamical systems
is markedly different from standard (optimal) control formulations38

that are, for instance, based on Pontryagin’s maximum principle and
require one to explicitly minimize the control energy by (i) including
an kuk22 term in the control Hamiltonian and (ii) solving an adjoint
system38. AI Pontryagin thus provides a complementary approach
for solving general control problems.

The induced gradient descent (10) can be directly observed in the
positive correlations between kΔwk22 ¼kwðnþ1Þ � wðnÞk22 and
kΔuk22 ¼ kuðnþ1Þ � uðnÞk22 (Fig. 2c). Black disks indicate statistically
significant correlation coefficients ðp<10�9Þ that are each calculated
for 103 consecutive epochs and solid black lines are guides to the eye.
After initializing AI Pontryagin for the linear two-state system (8)
with weights that describe a small control input, we observe positive
correlations between kΔwk22 and kΔuk22 with a large correlation
coefficient of 0.96 for the first 1000 training epochs. The mean
correlation coefficient is about 0.76. Changes in the correlation
behavior reflect different training stages that are necessary to capture
the strong curvature in the OC control trajectory (dashed black line
in Fig. 2a). Between 1500 and 2000 training epochs, AI Pontryagin
approximates the basic shape of the OC trajectory (solid red line in
Fig. 2a) and then fine-tunes the weights w to match OC as closely as
possible (solid orange line in Fig. 2a). The initial OC approximation
phase that lasts up to about 2000 training epochs (before weight fine-
tuning) is also visible in the evolution of kwk22 and kuk22 (Fig. 2d).
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We again emphasize that the performance of AI Pontryagin and
its induced gradient-descent mechanism depends on the choice of
initial weights w0 (and thus on ûðt;w0Þ). The initialization that we
use to obtain the results shown in Fig. 2 is based on energy values
that are small enough for AI Pontryagin to let it explore the vector
field of the underlying dynamical system and approximate OC.

In the Supplemental Information (SI), we provide additional
results that show that AI Pontryagin is able to control dynamics
on directed networks. In particular, we show that AI Pontryagin
can produce control signals with a control energy resembling that
of the corresponding OC solution, which we verify by calculating

the corresponding optimal control signals if possible. In the SI, we
also study the robustness of AI Pontryagin control with respect to
different noise levels in the observed reached state.

After having outlined the mechanisms underlying the observed
energy regularization of AI Pontryagin, we now turn towards
non-linear systems.

AI Pontryagin control of Kuramoto oscillators. As an example
of a non-linear system, we consider the Kuramoto model39, which
describes coupled oscillators with phases θi and intrinsic

Fig. 1 Overview of AI Pontryagin. a Illustration of a complex, uncontrolled dynamical system represented by ODEs, and discretization steps of a numerical
solver. b Overview of basic elements necessary to control complex systems with ANNs. c Gradient-descent training of ANN parameters over the unfolded
ODE system.
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frequencies ωi ð1 ≤ i ≤ NÞ according to

_ΘðtÞ ¼ Ωþ fðΘðtÞ; uðtÞÞ;
Θð0Þ ¼ Θ0;

ð11Þ

where Θ ¼ ðθ1; ¼ ; θNÞ> and Ω ¼ ðω1; ¼ ;ωNÞ>. In our fol-
lowing numerical experiments, we use natural frequencies and
initial phases that are normally distributed with mean 0 and
standard deviation 0.2. Interactions between oscillators and the
influence of control inputs uiðtÞ on oscillator i are modeled via

f iðΘðtÞ; uðtÞÞ ¼
KuiðtÞ
N

∑
N

j¼1
Aij sinðθjðtÞ � θiðtÞÞ; ð12Þ

where K is the coupling strength and Aij are the adjacency matrix
components of the underlying (undirected) network. As a mea-
sure of synchronization at the final time T , we use the complete
synchronization condition

j _θiðTÞ � _θjðTÞj ¼ 0 for ði; jÞ 2 E; ð13Þ
where E is the set of edges40,41. If Eq. (13) is satisfied, all con-
nected oscillators have constant phase differences. For control
inputs that are equal to 1 (i.e., uiðtÞ ¼ 1 for all i), the oscillator
system (11) has a unique and stable synchronized state if the
coupling constant K exceeds a critical value

K� ¼kLyΩkE;1; ð14Þ
where Ly is the pseudo-inverse of the corresponding combina-
torial graph Laplacian and kxkE;1 ¼ max

ði;jÞ2E
jxi � xjj is the max-

imum distance between elements in x ¼ ðx1; ¼ ; xN Þ> that are

connected by an edge in E42. In all numerical simulations, we use
a subcritical coupling constant K ¼ 0:1K� such that control
inputs uiðtÞ>1 are needed to synchronize the system.

For a global control uðtÞ (i.e., uiðtÞ ¼ uðtÞ for all i), there exists
an OC input u�ðtÞ satisfying

u� ¼ min
u

JðΘðTÞ; uÞ ð15Þ

JðΘðTÞ; uÞ ¼ 1
2
∑
i;j
Aijsin

2ðθjðTÞ � θiðTÞÞ þ
β

2
ET ½u�; ð16Þ

where the parameter β determines the influence of the energy
regularization term on the cost function JðΘðTÞ; uÞ. Note that
minimizing JðΘðTÞ; uÞ is consistent with Eq. (13)41.

An optimal control for the outlined non-linear control
problem, the so-called adjoint-gradient method (AGM), can be
derived using Pontryagin’s maximum principle and a gradient
descent in u41:

uðnþ1Þ ¼ uðnÞ � ~η βuðnÞ þ K
N

∑
N

i¼1
λi ∑

N

j¼1
Aij sinðθj � θiÞ

� �
; ð17Þ

where ~η is the AGM learning rate and λ ¼ ðλ1; ¼ ; λN Þ> is the
solution of the adjoint system

� _λi ¼ �Kuλi
N

∑
i≠j
Aij cosðθj � θiÞ

þKu
N

∑
i≠j
Aijλj cosðθj � θiÞ;

ð18Þ

with λiðTÞ ¼ 1=2∑i≠jAij sinð2θiðTÞ � 2θjðTÞÞ.
We compare the control performance of AI Pontryagin, which

solves Eq. (11) using neural ODEs, with that of the AGM for a
global control function. AI Pontryagin directly learns ûðt;wÞ
based on the following loss function without energy regulariza-
tion term βET[u]/2:

J1ðΘðTÞÞ ¼
1
2
∑
i;j
Aijsin

2ðθjðTÞ � θiðTÞÞ: ð19Þ

The learning rates η [Eq. (4)] and ~η [Eq. (17)] are chosen such
that the ratio of the order parameter values of both control
methods is approximately 1. We discuss in the SI that a high
degree of synchronization can be achieved by controlling a
fraction of all nodes and we show how a maximum matching
approach12 can be used to determine driver nodes for controlling
linear dynamics with more than 1000 nodes. All employed
network architectures and training parameters are summarized in
the Methods and in our online code repository43.

For a complete graph with N ¼ 225 nodes and T ¼ 3, we show
the phase evolution of a system of uncontrolled oscillators with
uiðtÞ ¼ 1 for all i in Fig. 3a. As shown in Fig. 3b, AI Pontryagin
can learn control inputs that drive the system of coupled
oscillators into a synchronized state. A measure of the degree of
synchronization is provided by the order parameter39

rðtÞ ¼ N�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i;j
cos½θjðtÞ � θiðtÞ�

r
: ð20Þ

Here, we used that the square of the magnitude of the complex
order parameter z ¼ reiψðtÞ ¼ N�1 ∑N

j¼1 e
iθjðtÞ can be expressed as

rðtÞ2 ¼ jzj2 ¼ N�2 ∑
i;j
eiðθjðtÞ�θiðtÞÞ

¼ N�2 ∑
i;j
cos½θjðtÞ � θiðtÞ�:

A value of rðtÞ ¼ 1 indicates that all oscillators have the same
phase.

In Fig. 4 we show the evolution of the order parameter rðtÞ and
control energy Et ½u� for both the AGM (solid lines) and AI

Fig. 2 Controlling a two-node system with AI Pontryagin. a Different AI
Pontryagin-controlled trajectories of a linear system with xð0Þ ¼ ð1;0:5ÞT,
x� ¼ ð0;0ÞT, and T ¼ 1 after 500 (blue), 1500 (purple), 2000 (red), and
30000 (orange) training epochs with learning rate η ¼ 0:02. The dashed
black line is the corresponding optimal control trajectory and black arrows
indicate the vector field of the linear dynamical system fðx; uÞ ¼ Axþ Bu
with matrices A and B as in Eq. (8). b Evolution of the control energy Et½u� of
AI Pontryagin after 30000 training epochs (solid orange line) and of
optimal control (dashed black line). c Correlations ρ between squared norm
differences of ANN weights w and control inputs u. d The control energy
ET ½u� (black solid line) and squared norm of ANN weights w (solid gray
line) of AI Pontryagin as a function of training epochs. In panels (b, d), we
indicate the total OC control energy by a dashed red line.
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Pontryagin (dashed lines). We study the control performance of
both methods on a complete graph (black lines), an Erdős–Rényi
network GðN; pÞ with p ¼ 0:3 (blue lines), a square lattice without
periodic boundary conditions (red lines), and a Watts–Strogatz
network with degree k ¼ 5 and a rewiring probability of 0:3
(green lines). All networks consist of N ¼ 225 oscillators.

For all studied networks, we observe that AI Pontryagin
reaches synchronization slightly faster than the AGM (Fig. 4a–d).
We optimized the hyperparameters (e.g., the number of training
epochs) of the artificial neural network underlying AI Pontryagin
such that the control energy and degree of synchronization lie in
a similar range to those of the AGM (Fig. 4e–h). Our results thus

indicate that AI Pontryagin is able to achieve control energies
similar to those of OC also for non-linear networked dynamics.

Next, we discuss the ability of AI Pontryagin to control
oscillator systems with a number of nodes that is about one order
of magnitude larger than that considered in Fig. 4. We again
compare AI Pontryagin with the AGM and set T ¼ 0:5.
Numerical experiments are performed on a square lattice
(without periodic boundary conditions) that consists of N ¼
2500 coupled oscillators. We find that the control energy and
order parameter ratios are EAIP

T ½u�=EAGM
T ½u� � 1:0045 and

rAIPðTÞ=rAGMðTÞ � 0:9999, respectively. AI Pontryagin and the
AGM reach similar order parameter and control energy values at
time T ¼ 0:5, indicating that both methods are able to control the
larger-scale oscillator system.

For a runtime performance comparison, we also measure the
learning time (or wall-clock time) associated with controlling the
larger-scale oscillator system. To do so, we determine the
runtimes of 50 AGM and 50 AI Pontryagin control realizations.
The mean runtimes are 74s and 1.03s for the AGM and AI
Pontryagin, respectively. For the studied oscillator system, the
training time of AI Pontryagin is thus about two orders of
magnitude smaller than that of the AGM. In the SI, we analyze
the differences in runtime between AI Pontryagin and the AGM
in more detail. To identify the main computational bottlenecks in
the AGM, we performed a detailed runtime analysis of all code
segments and found that the adjoint system solver requires very
small step sizes to resolve the interaction between the adjoint
system [Eq. (18)] and the gradient descent [Eq. (17)] in the
control functions.

In a final numerical experiment, we show that AI Pontryagin is
able to steer coupled Kuramoto oscillators to a target state that is
different from the fully synchronized one. As an example of such
a target state, we consider the control target to steer oscillators

Fig. 3 Synchronization of coupled oscillators. The evolution of oscillator
phases θiðtÞ (1 ≤ i ≤ N) in a complete network that consists of N ¼ 225
coupled Kuramoto oscillators [Eqs. (11) and (12)] with a subcritical coupling
constant K ¼ 0:1K�, which does not lead to synchronicity. All phases are
initially distributed according to a normal distribution with mean 0 and
standard deviation 0.2. a The control input is set to uiðtÞ ¼ 1 for all i
(uncontrolled dynamics), leading to increasing phase differences over time.
b AI Pontryagin synchronizes the system of coupled oscillators.

Fig. 4 Controlling coupled oscillators with AI Pontryagin and the AGM. We test the performance of AI Pontryagin and the AGM [Eqs. (17) and (18)] to
control coupled Kuramoto oscillators [a, e complete network (black lines), b, f Erdős–Rényi network G(N, p) with p= 0.3 (blue lines), c, g square lattice
without periodic boundary conditions (red lines), and d, h Watts–Strogatz network with degree k ¼ 5 and a rewiring probability of 0:3 (green lines)]. All
graphs have N ¼ 225 nodes and the total simulation time is T ¼ 3. Panels (a–d) show the order parameter rðtÞ and panels (e–h) show the normalized
control energy ~Et½u� ¼ Et½u�=maxðEAIPt ½u�; EAGMt ½u�Þ. The abbreviation AIP stands for AI Pontryagin. Dashed and solid lines indicate AI Pontryagin and AGM
solutions, respectively.
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either towards �π=4 or π=4. This control goal can be described
by the loss function

J2ðΘðTÞÞ ¼
1
2
∑
N

i¼1
θiðTÞ
�� ��� π

4

h i2
: ð21Þ

We show in Fig. 5 that AI Pontryagin can use the loss function
(21) to reach target states in a lattice where N ¼ 1024 coupled
Kuramoto oscillators with subcritical coupling constant K ¼
0:01K� are arranged in two spatially separated groups, consisting
of oscillators with phase values θiðTÞ (1 ≤ i ≤ N) that are
approximately �π=4 or π=4, respectively. In Fig. 5a, d, we do
not control the coupled Kuramoto oscillators, and we observe
increasing phase differences over time. Using the loss function
J2ðΘðTÞÞ shows that AI Pontryagin can steer the system of
coupled oscillators towards �π=4 and π=4 at the control time T
(Fig. 5b, e). Oscillators that are located in the upper half of the
square lattice in Fig. 5e reached phase values close to �π=4
(indicated by light orange pixels), while oscillators in the lower
half of the same lattice reached phase values of approximately π=4
(indicated by light blue pixels). By employing the loss function
J1ðΘðTÞÞ, we can also use AI Pontryagin to synchronize the same
system of coupled oscillators (dashed black line in Fig. 5c, f).

These results show that AI Pontryagin can be used in conjunction
with different loss functions.

To summarize, AI Pontryagin has two key advantages over
traditional adjoint-system-based control methods. First, approx-
imate optimal control trajectories can be obtained without
deriving and solving the adjoint system. The only inputs
necessary are (i) a dynamical system, (ii) its initial state, and
(iii) a desired target state. Second, the runtime of AI Pontryagin
may be substantially faster than that of adjoint-gradient methods.

Discussion
The optimal control of networked dynamical systems is asso-
ciated with minimizing a certain cost functional, e.g., the strength
and frequency of a control signal, or, more generally, the control
energy (2). Traditional control approaches such as Pontryagin’s
maximum principle or the HJB equation are often analytically
and computationally intractable when applied to complex dyna-
mical systems.

In this work, we demonstrated the ability of AI Pontryagin, a
control framework that is based on neural ODEs, to steer linear
and non-linear networked dynamical systems into desired target
states. AI Pontryagin uses as inputs the underlying dynamical

Fig. 5 Kuramoto dynamics and different target states. The evolution of the phases θiðtÞ (1 ≤ i ≤ N) of N ¼ 1024 coupled Kuramoto oscillators [Eqs. (11)
and (12)] that are arranged in a square lattice without periodic boundary conditions. We use a subcritical coupling constant K ¼ 0:01K� and set T ¼ 10. In
all simulations, oscillator phases are initially distributed according to a bimodal Gaussian distribution with means �π=4 (top half of the lattice), π=4
(bottom half of the lattice), and variance 0.5. The top panels show the evolution of θiðtÞ and the bottom panels show the spatial distribution of oscillator
phases θiðTÞ at time T ¼ 10. Each pixel in the 32 ´ 32 bottom panels represents the phase value of one specific oscillator in the reached state. a, d The
control input is set to uiðtÞ ¼ 1 for all i (uncontrolled dynamics), leading to increasing phase differences over time. b, e AI Pontryagin steers oscillator
phases towards �π=4 and π=4 by minimizing the loss function J2ðΘðTÞÞ [Eq. (21)]. c, f AI Pontryagin synchronizes the system of coupled oscillators by
minimizing the loss function J1ðΘðTÞÞ [Eq. (19)]. The dashed black lines in panels (a–c) are guides-to-the-eye indicating phases with values �π=4, 0, and
π=4. The learning rate is 15 in panels (b, e) and it is 0.12 in panels (c, f).
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system and initial and target states. For the considered linear
dynamics, we compared AI Pontryagin with corresponding ana-
lytical optimal control solutions and found that AI Pontryagin is
not only able to drive undirected and directed complex networks
of dynamical systems into desired target states, but also is able to
automatically learn to approximate the optimal control energy.
We supported this observation with analytical arguments and
further compared AI Pontryagin with an optimal control method
to evaluate the performance of both methods in synchronizing
oscillators in different networks, again showing that AI Pon-
tryagin is able to approximate the optimal control energy.

AI Pontryagin is a very versatile control framework that
complements existing optimal control approaches and solves
high-dimensional and analytically intractable control problems.
Finally, there are various interesting avenues for further research.
One possible direction for future work is the application of AI
Pontryagin to solve complex quantum control problems to
enhance robust performance of quantum systems44. Another
possible direction for future research is to study the ability of AI
Pontryagin to calculate optimal controls that preserve generator
synchronicity during cascading failures, and ultimately avoid
blackouts45,46. For such complex control tasks, it may be useful to
combine physics-informed neural networks, such as those studied
in ref. 29, with the proposed neural-network control approach to
learn and control the dynamics of partially unknown systems.

Methods
Both algorithms, AI Pontryagin and the AGM, are implemented in PyTorch.

All artificial neural networks that we use to represent the control input ûðt;wÞ in
AI Pontryagin take the time t as an input. To numerically integrate the studied
dynamical systems, we apply the Dormand–Prince (DOPRI) method with adaptive
step size during training and evaluation47.

In the following paragraphs, we summarize the ANN architectures and hyper-
parameters that we used in our numerical experiments.

Two-state system. The artificial neural network that we use to control the two-
state system (8) consists of a single hidden layer with 6 exponential linear units
(ELUs). We transform the hidden layer output to the control signal via a linear
layer with 1 neuron that describes the single control input in Eq. (8). We initialize
the ANN weights w with the Kaiming uniform initialization algorithm48. For the
gradient descent in w [Eq. (4)], we use the ADAM optimizer and set the learning
rate η ¼ 0:02. The number of time steps is 40.

Kuramoto model. The graph properties and ANN hyperparameters for controlling
Kuramoto dynamics are summarized in Table 1. Independent of the underlying graph,
we use the same number of hidden layers, hidden layer neurons, and training epochs
for the numerical experiments that we performed to produce the results shown in
Fig. 4. The activation function (ELU) is also the same in all numerical experiments. The
number of time steps is 100. For the runtime comparison between AI Pontryagin and
the AGM, we use the command timeit in python. In accordance with ref. 41, the
energy regularization parameter β of the AGM is set to 10�7 (see the SI for a more

detailed analysis of the AGM control performance on β). Initially, we set all ANN
weights to a value of 10�3. Weight updates were performed using stochastic gradient
descent. For the second numerical experiment involving the loss function (21), we use
the Kaiman initialization method48 and 16 ELU activations in one hidden layer.

Data availability
Data supporting this study are publicly available at https://github.com/asikist/nnc.

Code availability
All source codes and ANN architectures are publicly available at https://github.com/
asikist/nnc.
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