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Simple Summary: In high-yield cows, most production diseases occur during transition periods.
Alpha-tocopherol, the most biologically active form of vitamin E, declines in blood and reaches
the lowest levels (hypovitaminosis E) around calving. Hypovitaminosis E is associated with the
incidence of peripartum diseases. Therefore, many studies which have been published for more than
30 years have investigated the effects of α-tocopherol supplementation. This α-tocopherol deficiency
was thought to be caused by complex factors. However, until recently, the physiological factors
or pathways underlying hypovitaminosis E in the transition period have been poorly understood.
In the last 10 years, the α-tocopherol-related genes expression, which regulate the metabolism,
transportation, and tissue distribution of α-tocopherol in humans and rodents, has been reported in
ruminant tissues. In this paper, we discuss at least six physiological phenomena that occur during
the transition period and may be candidate factors predisposing to a decreased blood α-tocopherol
level and hypovitaminosis E with changes in α-tocopherol-related genes expression.

Abstract: Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum,
reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the
disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition
dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data
about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition
dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence
of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels
as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring
vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during
the transition period was scarce until the 2010s. Pioneering studies conducted with humans and
rodents have identified and characterised some α-Toc-related proteins, molecular players involved in
α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the
six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the
digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as
an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic
α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum,
may be involved in α-Toc deficiency during the transition period. However, the mechanisms and
pathways are poorly understood, and further studies are needed to understand the physiological
role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying
hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in
dairy cows.

Keywords: alpha-tocopherol/vitamin E-related gene; calving; colostrum; high-yield dairy cows;
inflammation; health; lactation; liver; mammary gland; oxidative stress
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1. Introduction

Calving is an unavoidable event in the production of milk and young cattle in dairy
farms. However, during the transition period (from three weeks before calving to three
weeks after calving), high-yield dairy cows experience severe energy and nutrient defi-
ciencies [1,2], metabolic and endocrine changes [3,4], peripartum stress [2], and inflamma-
tion [5]. This leads to an imbalance between pro-oxidants and antioxidants, eventually
resulting in oxidative stress [6] and immune dysfunction [7], which increases the risk
of peripartum diseases. Indeed, most production diseases (mastitis, ketosis, digestive
disorders, and laminitis) occur before and soon after calving [8,9].

Vitamin E (VE) has essential antioxidant functions and is an important nutrient for
cows. It is well known that blood VE levels decline gradually throughout prepartum,
reaching the lowest levels (hypovitaminosis E) after delivery [2,10–13]. Several studies
have documented that lower blood VE concentrations are associated with the incidence
of peripartum diseases such as mastitis [14], retained foetal membranes [15] and left
displaced abomasum [16]. The effect of VE supplementation, as a practical measure to
counter hypovitaminosis E and the high risk of peripartum diseases, have been often
controversial in published literature for more than 30 years. To the best of our knowledge,
many detailed reviews reported in the last 30 years, focused primarily on the disease
risk and the effect of VE supplementation on the health of dairy cows and heifers in
transition period (two databases, PubMed and Web of Science were searched using key
words: vitamin E, dairy cows, tocopherol, 1990–2021, and reviews were picked up whose
full-text is currently available online; 1990s: [17–22], 2000s: [1,23–27], 2010s: [28–32]). This
VE deficiency may be caused by complex factors, such as changes in VE intake and its
transfer into colostrum around calving [26]. However, the physiological factors underlying
hypovitaminosis E in the transition period of high-yielding dairy cows were less well
understood until recently. In the last 10 years, several studies have shown evidence that
the ovine [33,34] and bovine [35] liver may play an important role in the regulation of VE
disposition because of the high expression of VE-related molecules. In addition, other
peripheral tissues showed unique expression patterns for VE-related molecules and VE
accumulation properties in cattle [2,35–38]. These findings indicate that the expression of
VE-related genes in the liver and non-hepatic tissues may be involved in the regulation of
VE status in cows. Therefore, it is necessary to explore and discuss the physiological factors
underlying hypovitaminosis E in dairy cows based on the latest reports on the expression
of VE-related genes in bovine tissues. Especially during peripartum period in dairy cows,
dramatic changes in lipid metabolism [39], physiological stress and inflammation may lead
to hepatic injury, dysfunctions [40] and hepatocyte apoptosis [41]. Furthermore, during
the onset of lactation, the mammary gland undergoes dramatic functional and metabolic
changes during the transition period [42]. Novel knowledge about the changes in the
expression of VE-related genes in the liver and mammary glands of transition dairy cows
is compelling.

Thus, the current study aimed to understand the occurrence of hypovitaminosis E
during the transition period, and contribute to the development of an effective feeding
system for the health and high performance of dairy cows. Therefore, the aims of this
review are: (1) to summarise the basic information about VE and VE-related molecules
from the latest literature; (2) to re-evaluate the physiological roles of VE and the relationship
between the risk of peripartum diseases and hypovitaminosis E in transition dairy cows;
and (3) to discuss the physiological factors underlying hypovitaminosis E in relation to
changes in the VE-related genes expression levels, especially in the liver and mammary
gland from late pregnancy to early lactation.

2. Vitamin E and VE-Related Molecules
2.1. Vitamin E (α-Tocopherol)

In 1922, Evans and Bishop [43] discovered VE as an essential micronutrient for repro-
duction in rats. Subsequently, considerable research has been conducted on VE function
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and metabolism globally during the last one-hundred years. Vitamin E is considered the
most effective, fat-soluble trace compound and chain-breaking antioxidant, which protects
cell membranes from peroxidative damage [44]. It also plays specific roles beyond its an-
tioxidant function, such as cellular signalling and regulation of gene expression [45,46]. The
clinical importance of VE is significantly increasing to prevent various diseases in humans;
VE deficiency can lead to neurological abnormalities, such as ataxia [47] and blindness [48].
The importance is also well recognised in animal production and medicine to maintain the
health of livestock. Vitamin E cannot be synthesised in the mammalian body and must
therefore be provided through food or supplementation. The VE family is composed of
four tocopherols and four tocotrienols (α, β, γ and δ). Tocopherols have a saturated phytyl
side chain, whereas tocotrienols have a three-fold unsaturated isoprenoid side chain [44].
Unlike other nutrients, the body cannot interconvert among these forms. In the plasma
and tissues of humans and animals, one form, α-tocopherol (α-Toc), is the predominant
congener and the most biologically active form of VE [44] because other tocopherols and
tocotrienols are usually found at very low-levels compared to α-Toc. Alpha-tocopherol
regulates key cellular events by mechanisms unrelated to its antioxidant properties, such
as the inhibition of protein kinase C activity [44]. Furthermore, the expression of many
genes has been found to be under the non-antioxidant control of α-Toc [45,49], suggesting
the high availability of α-Toc in protection against disease in humans and animals.

Natural α-Toc (RRR-α-Toc (2,5,7,8-tetramethyl-2R-(4′R,8′R,12-trimethyltridecyl)-6-
chromanol)) has the highest biological activity and is maintained at the highest level in
plasma and tissues of humans and animals [50]. However, most of the α-Toc used for
supplementation of food and feed is synthetic in origin, designated as all-rac-α-Toc (2,5,7,8-
tetramethyl-2RS-(4′RS,8′RS,12-trimethyltridecyl)-6-chromanol). All-rac-α-Toc (dl-α-Toc)
has three asymmetric carbons at positions 2, 4′ and 8′ and consists of an equimolar mixture
of eight stereoisomers (RRR, RRS, RSS, RSR, SRR, SSR, SRS and SSS). The measurement
of α-Toc activity in terms of IU was based on fertility enhancement by the prevention of
spontaneous abortions in pregnant rats [51]; 1 IU of α-Toc is defined as 1 mg of all-rac-
α-tocopheryl acetate, as 0.74 mg of RRR-α-tocopheryl acetate, and as 0.67 mg of RRR-
α-Toc. Data from cows comparing the bioavailability of various Toc stereoisomers are
contradictory, and insufficient consistent data are available to determine IU conversion
factors for VE for ruminants [52]. However, Meglia et al. [53] showed that RRR-α-Toc was
the most predominant stereoisomer, constituting more than 86%, whereas the remaining
part of α-Toc was made up of three synthetic 2R isomers, while the 2S isomers contributed
less than 1% of the total α-Toc in plasma and milk from dairy cows supplemented with
all-rac-α-tocopheryl acetate. Jensen et al. [54] showed that after a single dose injection of
all-rac-α-tocopheryl acetate, the RRR-α-Toc was retained in plasma for the longest time
and secreted into milk at the highest concentration followed by RRS-, RSS-, and RSR-
α-Toc leaving the Σ2S-α-Toc to be retained in plasma for the shortest time and secreted
into milk at the lowest concentration. In dairy cows during early lactation, the serum
concentrations (nM) of γ-Toc, α-, β-, γ- and δ-tocotrienol were far lower than those of
α-Toc (approximately 1/56, 1/214, 1/3947, 1/5000 and 1/2500, respectively) [55]. Among
the naturally occurring forms of the VE family, α-Toc only meets VE requirements and
α-Toc stereoisomers have different bioactivities because α-Toc transfer protein (αTTP) has
a different affinity for VE (described in Section 2.2.1) and play an important role in the
circulation and disposition of α-Toc in cattle. Throughout this review, the terms “VE” and
“α-Toc” are used interchangeably and the plasma/serum concentrations of α-Toc is unified
and expressed in “µg/mL” (1 µM = 0.43 µg/mL).

2.2. Alpha-Tocopherol Transfer Protein and Other α-Toc-Related Molecules

Alpha-tocopherol shows tissue-specific distribution in animals [56], and this property
may affect the α-Toc potencies for each tissue. However, until recently, the molecular mech-
anisms underlying this tissue distribution and the action of α-Toc were poorly understood
in cattle. Pioneering studies from the 1990s conducted with humans and rodents have
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identified and characterised some α-Toc-related proteins, molecular players involved in
α-Toc regulation, followed by a study in ruminants from the 2010s.

2.2.1. Alpha-Tocopherol Transfer Protein

A cytosolic protein that specifically binds to α-Toc was purified from rat and human
liver [57], and the full-length cDNA sequence of the rat and human homolog has been
reported [58,59]. The protein is called α-Toc transfer protein (αTTP) encoded by the
TTPA gene, which is classified as a member of the Sec14 like protein family, which has
a CRAL-TRIO lipid-binding domain. Humans carrying mutations in the TTPA gene
revealed a low α-Toc level in plasma and neurological disorders associated with elevated
oxidative stress termed as ataxia with VE deficiency (AVED), indicating the importance of
αTTP in regulating plasma α-Toc levels [60,61]. In agreement with this fact, αTTP-/- mice
demonstrated AVED-like symptoms [48]. Arita et al. [62] reported that α-Toc secretion
was markedly stimulated when αTTP was overexpressed in a cultured rat hepatocyte
cell line. These reports indicate that hepatic αTTP regulates α-Toc secretion from the
liver into the circulation. In intracellular transfer mechanisms, αTTP binds to α-Toc in
the endosomal membrane and enables its transport to the plasma membrane, where the
αTTP interacts with phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] or [PI(3,4)P2] for the
release of α-Toc and its incorporation into the plasma membrane [63]. Mutations in the TTPA
prevent its binding with the membrane PIPs and transfer α-Toc to the membrane [63–65].
Alpha-tocopherol transfer protein translocate to the hepatic endosomal compartment to
transfer available α-Toc [66–68], and the intracellular localisation of αTTP in hepatocytes
is dynamic and responds to the presence of α-Toc [67]. Moreover, the regulation of TTPA
expression in tissues in response to α-Toc supplementation is unclear, with complicated
reports on rodents genes. Concerning the effect on TTPA mRNA expression in the liver,
there were conflicting reports that α-Toc supplementation in rats was up-regulated [69],
down-regulated [70] and showed no [71] effective actions on gene expression. Recently,
higher expression of TTPA mRNA in chicken liver, in response to dietary α-Toc content,
was reported, and the result may suggest its crucial role in the transport of α-Toc in chicken
liver [72]. The αTTP, which is mainly expressed in the liver, regulates α-Toc secretion from
the liver into circulation, and is also observed in other peripheral tissues and/or cells, such
as mouse uterus [73], human leukocytes [74], human placental trophoblast cells [75], mouse
lung [76], chicken small intestine, intestinal mucosal layer and adipose tissues [72].

Molecular cloning and characterisation of the full-length cDNA of ovine and bovine
TTPA genes were conducted [33,77], which contained 2740 nucleotides, and the open
reading frame contained 846 bp encoding 282 amino acids with 88% identity with the
human genes. Bovine and ovine αTTP have an additional five amino acids (GEEVT) at the
C terminus, which goat, bison, deer, dolphin, and killer whale αTTPs contain, whereas
human, mouse, and rat αTTPs do not have, suggesting that the C-terminal sequences of
αTTP are specific to Cetartiodactyla animals [77]. Zuo et al. [78] demonstrated the expression
of TTPA mRNA in non-hepatic ovine tissues, including the heart, spleen, lung, kidney,
and muscle. Haga et al. [35] reported the distribution of TTPA mRNA expression in 20
major tissues in calves, including metabolic, reproductive, endocrine, immune, digestive,
and absorptive tissues. Furthermore, the hepatic [2,55,79] and mammary [2] TTPA mRNA
expression in dairy cows was also investigated (described in Section 4). These reports
suggest that αTTP is expressed not only in the liver, but also in various non-hepatic
tissues in cattle, and may also play a crucial role in regulating α-Toc circulation and local
α-Toc status.

2.2.2. Afamin

Another potential candidate protein for α-Toc binding and transport to plasma and
extravascular fluids is afamin (AFM) encoded by the AFM gene [80,81]. Afamin belongs
to the albumin (ALB) gene superfamily, which comprises ALB, α-fetoprotein, and vita-
min D-binding protein [82] and has multiple binding sites for both α-Toc and γ-Toc [80].
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Afamin is primarily expressed in the liver [82] and secreted into circulation, where it is
partially associated with apolipoprotein A1 (ApoA1), which contains high density lipopro-
tein (HDL) subfractions in human plasma [81]. In women, nearly a two-fold increase
in serum AFM concentrations was observed during uncomplicated pregnancy [83] and
the elevated serum concentrations were associated with the presence of metabolic syn-
drome [84]. These findings suggest that plasma/serum AFM concentrations have the
potential to serve as predictive markers for various medical conditions. However, AFM
and α-Toc concentrations are significantly correlated in follicular and cerebrospinal fluids,
but not in plasma or serum [81,85,86]. The expression of AFM has also been confirmed
in other organs such as the human kidney [83], and Kratzer et al. [87] reported that AFM
is synthesised by brain capillary endothelial cells and mediates α-Toc transport into the
central nervous system across the blood-brain barrier. According to these reports, AFM
might be a specific binding/transport protein contributing to α-Toc circulation and its
status in various local tissues.

Haga et al. [35] reported the distribution of AFM mRNA expression in the liver, renal
cortex, testis, thymus, duodenum, and jejunum tissues of calves. Although hepatic and
mammary AFM mRNA expression in dairy cows was investigated, the AFM transcript in
mammary gland tissue was not detected [2]. The understanding of the physiological role
of AFM in ruminants is minimal. However, in dairy cows, 3% of plasma α-Toc was not
associated with the lipoprotein fractions in circulation [88]; thus, AFM might be involved
in α-Toc transportation in plasma and extravascular fluids.

2.2.3. Tocopherol-Associated Protein

Studies have reported the identification of tocopherol-associated protein (TAP/
SEC14L2) in the cytosol of bovine liver, and TAP has a sequence that is homologous
to the proteins with the CRAL-TRIO structural motif in common with αTTP [89,90]. Re-
combinant human TAP could bind only to α-Toc but not to other tocopherols, as shown by
ligand competition analysis and α-Toc-dependent nuclear translocation and transcriptional
activation properties in transfected COS-7 cells [91]. This report suggested that TAP might
be associated with intracellular metabolism, non-antioxidative function, and the regula-
tion of gene expression of α-Toc [92]. However, TAP, expressed in mouse mast cells, was
predominantly localised in the cytoplasm and its subcellular localisation was not changed
by α-Toc [93]. These results suggest that the physiological role of TAP in mast cells is not
α-Toc-related, while as an α-Toc binding protein, TAP can promote α-Toc retention and
thus increase its concentration in breast cancer cells [94]. SEC14L2 mRNA has also been
observed in various human tissues [89,90]; however, the biological roles of TAP in each
tissue are still poorly understood.

Haga et al. [35] reported the distribution of bovine SEC14L2 mRNA expression in 20
major tissues of calves. Furthermore, the hepatic [2,55] and mammary [2] SEC14L2 mRNA
expression in dairy cows was also investigated (described in Section 4).

2.2.4. Scavenger Receptor Class B, Type I

Some lipoprotein receptors and transporters might also be important for the control
of α-Toc distribution in tissues because HDL, low density lipoprotein (LDL), very low-
density lipoprotein (VLDL), and chylomicron (CM) are the major carriers of α-Toc in the
bloodstream because of the hydrophobic properties of α-Toc [95]. Several studies using
knock-out mice and over-expressing cells [95], and specific antibodies and a chemical
inhibitor in enterocytes [96], have suggested that selective cholesterol ester uptake from
HDL by scavenger receptor class B, Type I (SRBI), rather than endocytosis (Ex. VLDLs
and LDLs), are important factors for α-Toc delivery into cells. Scavenger receptor class
B, Type I, encoded by the SCARB1 gene, is a member of a multiligand family that plays a
well-established role as an HDL receptor [97]. In SRBI-deficient mutant mice, there was a
significant increase in plasma α-Toc that was mostly distributed in HDL-like particles and a
significant decrease in the α-Toc concentrations in bile and several tissues, including ovary,
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testis, lung, and brain, but not in the liver, spleen, kidney, or white fat [95]. These reports
suggest that SRBI plays an important role in transferring α-Toc from plasma lipoproteins
to specific tissues and the nervous system [98]. In addition, SRBI was also shown to
mediate α-Toc efflux from the cytosolic compartment of Caco-2 cells to the apical medium,
suggesting a potential regulatory role in α-Toc absorption [96].

In cattle, HDL is the major lipoprotein in the plasma and follicular fluid [99,100], and
α-Toc is mainly located in HDL among lipoproteins [37]. Rajapaksha et al. [101] sequenced
bovine SCARB1 cDNA, which contains 509 amino acids. The changes in SCARB1 mRNA
levels were evaluated in developing bovine ovarian cells; however, the relationship between
the mRNA level and α-Toc concentration in follicular fluid is unknown [99,100]. By contrast,
Higuchi et al. [37] clarified that the upregulation of SCARB1 mRNA in neutrophils in cattle
supplemented with α-Toc and the cellular α-Toc contents were decreased after anti-SRBI
treatment. These results suggest that SRBI is a crucial receptor in bovine neutrophils for the
uptake of HDL-associated α-Toc. A study investigating the distribution of SCARB1 mRNA
in six tissues from cows demonstrated that their levels were high in the adrenal cortex and
corpus luteum [101] because these organs take up large amounts of cholesterol from the
bloodstream HDL to synthesise steroid hormones. Haga et al. [35] also reported high α-Toc
accumulation in the adrenal gland and testis, with the highest expression levels of SCARB1
mRNA among the 20 tissues in calves. These results suggest that the high expression of
SRBI in these tissues may take up some α-Toc along with HDL.

2.2.5. ATP-Binding Cassette Transporter A1

ATP-binding cassette transporter A1 (ABCA1/ABCA1) is a cholesterol efflux regula-
tory protein. It is known that ABCA1 is involved in the regulation of cholesterol efflux
from cells, and mutations in ABCA1 genes cause HDL deficiency [102]. In hepatocytes,
lipid-free apoA1 is secreted to ABCA1, which localises on the plasma membrane and into
intracellular sites, and nascent HDL (preβ-HDL) particles are formed [103,104]. It was also
reported that ABCA1 mediates cellular secretion of α-Toc because hepatic α-Toc secretion is
suppressed by ABCA1-RNAi or probucol (inactivator of ABCA1) in a rat hepatoma cell line
and C57BL/6Cr mice in vivo [105]. Kono and Arai [66] demonstrated that αTTP transports
α-Toc to the plasma membrane, where it is picked up by ABCA1 and excreted from the
hepatocyte. The expression profile of human ABCA1 mRNA in different tissues has been
previously reported [106,107]. In non-hepatic cells, forced expression of ABCA1 markedly
stimulated α-Toc efflux in baby hamster kidney cells [108]. Therefore, the regulation of the
transportation and distribution of α-Toc must be closely linked to the complex mechanisms
of cholesterol, lipoprotein and especially HDL metabolism via ABCA1.

Sequence analysis of bovine ABCA1 cDNA revealed that the open reading frame
of this gene consists of 6786 bases and encodes a protein of 2261 AA with a predicted
molecular weight of 254 kDa [109]. Haga et al. [35] reported that the ABCA1 mRNA level
in Japanese Black beef calves was the highest in the liver, followed by heart muscle, lung,
adipose, spleen and adrenal gland, which did not agree with the report of Farke et al. [109],
who detected the highest mRNA level in the lungs of an adult lactating Holstein–Friesian
cow. This discrepancy might be attributable to the differences in the bovine breeds and
the life stages of the animals because of the different lipid metabolisms. In particular, the
differences in cholesterol status may affect the distribution of ABCA1 mRNA expression in
tissues because ABCA1 transcript activity is reportedly regulated by the liver X receptor and
sterol regulatory element-binding protein (SREBP) 2, which are key proteins in cholesterol
metabolism [102,110]. Hepatic gene expression in transition dairy cows has been reported
in recent studies [2,111,112]. Furthermore, it is notable that the expression and localisation
of ABCA1 in the bovine mammary epithelial cells, mammary gland, and milk fat globules
have an important role in cholesterol homeostasis and milk fat synthesis [36,112–116]. The
mammary expression of ABCA1 may be involved in the regulation and mechanism of
α-Toc transfer into colostrum and milk.
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2.2.6. Cytochrome P450 Family 4, Subfamily F, Polypeptide 2

Cytochrome P450 family 4, subfamily F, polypeptide 2 (CYP4F2/CYP4F2), is a member
of the CYP4F subfamilyω-hydroxylate leukotriene B4 [117–119]. In addition, tocopherols
and tocotrienols are also metabolised by side chain degradation initiated by CYP4F2-
catalyzedω-hydroxylation, followed byβ-oxidation, mainly in the liver [120]. The resulting
water-soluble metabolites, carboxyethyl hydroxychromans (CEHC), are excreted in the
urine [121,122]. Cytochrome P450 family 4, subfamily F, polypeptide 2 exhibited markedly
higher catalytic activities for γ-Toc than α-Toc, resulting in preferential physiological
retention of α-Toc and elimination of γ-Toc [120]. In particular, sesamin potently inhibited
tocopherol-ω-hydroxylase activity exhibited by CYP4F2 [120], and dietary sesame seeds
elevated α-Toc concentrations in the brain, liver and serum, and lowered the oxidative
stress marker, thiobarbituric acid reactive substance (TBARS), in the brain of rats [123].
These data also emphasise the importance of CYP4F2 in α-Toc metabolism. The α-Toc
levels in the body may be influenced by changes in the mRNA expression and enzyme
activity of CYP4F2. In fact, the reduced expression of hepatic TTPA, AFM and CYP4F2
genes probably leads to decreased plasma α-Toc levels and elevated α-Toc levels in the
liver of streptozotocin-induced type 1 diabetes rat models [124]. Sterol regulatory element-
binding proteins can transactivate CYP4F2 transcription in hepatocytes [125], and decrease
SREBP-1 proteins expression, resulting in reduced expression of CYP4F2, which slows the
breakdown of α-Toc in experimental non-alcoholic fatty liver disease model mice [126].

In calves, the CYP4F2 mRNA level was the highest in the liver, followed by the testis,
adrenal gland, duodenum, and jejunum, which have high α-Toc accumulation [35]. The
CYP4F2 mRNA in lactating Holstein cows was significantly higher in the kidney than in the
liver, lung, mammary gland, heart, skeletal muscle, spleen and uterus [38]. Furthermore,
the hepatic [2,55] and mammary [2] CYP4F2 mRNA expression in transition dairy cows
was investigated (described in Section 4). The contribution of CYP4F2 to circulating α-
Toc concentrations in transition dairy cows is not yet well understood. However, it is
believed that the evidence of α-Toc metabolism by CYP4F2, similar to the metabolism of
polyunsaturated fatty acids, can provide information regarding the physiological factors
underlying hypovitaminosis E and the importance of CYP4F2 in the maintenance of dairy
cow health [127].

As described above, in bovine species, the expression of TTPA, AFM, SCARB1, ABCA1,
SEC14L2 and CYP4F2 genes in various tissues may play important roles in the regulation
of α-Toc disposition (metabolism, transportation, and tissue distribution) (Figure 1). These
genes may not be the whole explanation of α-Toc disposition mechanism [128–130]; how-
ever, the evidence of the expression of these α-Toc-related genes has the potential to help
understand the physiological factors underlying hypovitaminosis E in the transition period
of high-yielding dairy cows.
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Figure 1. The possible mechanism of α-Toc disposition (metabolism, transportation, and tissue distribution) with the ex-
pression of α-Toc-related genes in cattle. Abbreviations: α-Toc, α-tocopherol; α-CEHC, α-carboxyethyl hydroxychromans; 
αTTP, α-tocopherol transfer protein; TAP, tocopherol associated protein; AFM, afamin; SRBI, scavenger receptor class B, 
Type I; ABCA1, ATP-binding cassette transporter A1; CYP4F2, cytochrome P450 family 4, subfamily F, polypeptide 2; CM, 
chylomicron; HDL, high density lipoprotein; VLDL, very low-density lipoprotein; LDL, low density lipoprotein; MFG, 
milk fat globules. 
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3.1. Changes in α-Tocopherol Status in Transition Dairy Cows 

It is well known that the plasma/serum concentrations of α-Toc in high-yield dairy 
cows gradually decrease throughout prepartum, starting from several weeks before calv-
ing, reaching a nadir at calving, and remaining at lower levels during the puerperal period 
(about 3–7 d), and increasing thereafter [2,10–13]. According to the fundamental research 
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3. Hypovitaminosis E in Transition High-Yield Dairy Cows
3.1. Changes in α-Tocopherol Status in Transition Dairy Cows

It is well known that the plasma/serum concentrations of α-Toc in high-yield dairy
cows gradually decrease throughout prepartum, starting from several weeks before calving,
reaching a nadir at calving, and remaining at lower levels during the puerperal period
(about 3–7 d), and increasing thereafter [2,10–13]. According to the fundamental research
conducted by Weiss in 1990s [11,12,21,131–133], others [10,134] and NRC [52], based on
disease risk and immune function in dairy cows, plasma/serum concentrations of α-Toc
should be more than approximately 3 µg/mL in peripartum period; below this cut-off
level is an α-Toc deficiency namely hypovitaminosis E. From 2000s to 2020s, the occur-
rence of hypovitaminosis E around calving has been still reported [2,13,15,16,79,135–138].
According to the NRC [52] recommendation to maintain this cut-off value, dry cows and
heifers fed stored forages during the last 60 d of gestation require approximately 1.6 IU of
supplemental α-Toc/kg BW (1120 IU/d for cows weighing 700 kg BW or approximately 80
IU/kg of DMI). However, the effect of supplementation and optimal dose may be far from
certain. In cows supplemented with 1000 IU α-tocopheryl acetate per day (approximately
108 IU/kg of DMI) from 30 d prepartum to two weeks postpartum, the occurrence of
hypovitaminosis E around calving was observed but with a lower decrease in plasma α-Toc
concentration. However, when compared to the group with no α-Toc supplementation, the
plasma α-Toc concentration was regained earlier after calving [135]. Hypovitaminosis E
after calving also occurred in cows that were administered 1000 IU α-tocopheryl acetate
per day (approximately 110 IU/kg of DMI) from 60 d prepartum to calving [139]. In
agreement with these reports, the serum α-Toc concentration in high-yield dairy cows fed
approximately 97 mg of α-toc/kg of DM from five weeks prepartum to calving, was less
than 3 µg/mL during the prepartum period and approximately 1.5 µg/mL after calving [2].
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By contrast, high-dose VE supplementation (3000 IU/day/cow) from eight weeks before
the predicted calving date was sufficiently high to prevent hypovitaminosis E [140].

3.2. Disease Risk in Hypovitaminosis E and the Effects of α-Toc Supplemantetion in Transition
Dairy Cows

To our knowledge, numerous detailed reviews about the disease risk of hypovita-
minosis E and the α-Toc supplementation effect on the health of transition dairy cows and
heifers have been published in the last 30 years (two databases, PubMed and Web of Science
were searched using key words: vitamin E, dairy cows, tocopherol, 1990–2021, and re-
viewed full text is currently available online, 1990s: [17–22], 2000s: [1,23–27], 2010s: [28–32]).
Based on three recent reviews published in the last 10 years [30–32], α-Toc supplementation
has the potential to affect the incidence of mastitis, including milk somatic cell count (SCC)
values, and retained foetal membranes (RFM). Some studies suggest that α-Toc supplemen-
tation at the level 1000 to 4000 IU/day/cow during the dry period can reduce the frequency
of intramammary infection and the occurrence of clinical mastitis, as well as the levels of
SCC in milk [17,133,141], suggesting that α-Toc deficiency may be a critical risk factor for
the increased frequency of infection and duration in mammary glands during the transition
period. Many studies have provided evidence suggesting that α-Toc supplementation can
mitigate the immune dysfunction that occurs during the transition period [21,142–146].
The overproduction of reactive oxygen species (ROS) may contribute to several metabolic
disturbances, resulting in the appearance of RFM [147]. The meta-analysis [148], performed
to consolidate the results of studies that have evaluated the effect of α-Toc supplementation
during the dry period on the incidence of RFM and found that α-Toc supplementation
was associated with a decrease in the incidence of RFM. However, there are insufficient
studies which have evaluated the effect of α-Toc alone on RFM, and much of the apparent
significant benefit of α-Toc may be mediated by Se. The results of published studies were
equivocal, and further work is required to assess α-Toc supplementation.

Next, we focus on relevant papers published in the last 10 years and present some
novel data about the disease risk of hypovitaminosis E and α-Toc supplementation effects
in transition dairy cows.

3.2.1. Left Displaced Abomasum

Left displaced abomasum (LDA) occurs in multiparous cows during the first month
of lactation as part of the peripartal disease complex. Hasanpour et al. [149] reported that
cows with LDA had approximately 42% lower serum α-Toc concentrations than healthy
cows as control (2.7 vs. 4.7 µg/mL, respectively), and suggested use of supplementary α-
Toc with Se for the LDA cattle. Qu et al. [16] investigated a retrospective case-control study
to determine whether the lower serum α-Toc concentrations precede or remain after LDA
in the transition period. Seven multiparous Holstein cows diagnosed with LDA between
days 6 and 32 postpartum and 10 healthy cows from the same herd were analysed. Before
calving, all 17 cows were visually healthy. These cows fed a TMR contained supplemental
all-rac-α-tocopheryl acetate at 167 and 24.5 IU/kg DM before and after calving, respectively.
Each cow in LDA had other diseases before LDA diagnosis (five cows had ketosis, four
cows had metritis, two cows had milk fever, and one cow each retained placenta after
twins, mastitis, or laminitis). Most cows had diseases after LDA correction (until day
49 postpartum: four cows had ketosis, one cow had mastitis, and one cow died from an
intestinal ulcer 2 d after LDA diagnosis at day 34 postpartum). Serum α-Toc concentrations
decreased dramatically in the first week postpartum in all cows; however, the nadir α-Toc
concentration at day 7 postpartum in LDA cows was lower than that in controls, and the
level (about 2.2 µg/mL) was diagnosed as hypovitaminosis E. Furthermore, cows with
LDA during the first month postpartum (for 28 days) had, on average, lower serum α-Toc
concentrations than the cut-off value. In control cows, α-Toc concentrations returned to
prepartal concentrations (approximately 6.0 µg/mL) by four weeks postpartum, while
serum α-Toc in cows with LDA remained lower than controls during the entire postpartum
sampling period (seven weeks postpartum). A lower DMI might be a probable causative
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factor for the lower serum α-Toc concentrations in LDA cows, however, there was an
absence of DMI data in the study [16]. The authors suggested that these findings indicate
that lower serum α-Toc concentrations are a potential early indicator for the development
of LDA in multiparous cows.

3.2.2. Retained Foetal Membranes, Stillbirth, and Reproductive Performance

Retained foetal membranes are an established risk factor for other peripartum diseases
and fertility. Multiple physical, endocrine, and cellular factors are involved in RFM, and
the immune and antioxidant potential before calving are important predisposing factors.
Qu et al. [15] investigated the risk indicators of RFM using a nested case-control design
and compared multiparous dairy cows that developed RFM with cows that remained
healthy or cows that developed other diseases (metritis, mastitis, ketosis, or laminitis) in
early lactation (each n = 32). These cows fed a TMR contained supplemental VE at 167
and 24.5 IU/kg DM as all-rac-α-tocopheryl acetate before and after calving, respectively.
During the three weeks pre-calving, RFM cows had lower serum α-Toc concentrations than
healthy cows. In addition, RFM cows tended to have lower serum α-Toc concentrations
between three and two weeks prepartum than cows that developed other diseases. After
calving, the α-Toc concentrations in RFM and other diseased cows were lower than the
cut-off values (<3 µg/mL). Pontes et al. [150] evaluated the effects of injectable α-Toc
supplementation during the last three weeks prepartum on the incidence of RFM and
stillbirth, and reproductive performance in cows fed limited amounts of dietary α-Toc.
During the prepartum period, cows were fed with less than 500 IU of supplemental dl-
α-tocopherol per day. Cows were randomly assigned to remain as untreated controls
(n = 441) or to receive three intramuscular injections of 1000 IU each of dl-α-tocopherol
administered at three, two, and one week before calving (VitE group, n = 449). The serum
α-Toc concentration at three weeks prepartum was similar between the control (n = 75)
and VitE (n = 66), with an average of 2.97 µg/mL. The results showed that treatment with
injectable α-Toc decreased the RFM rate from 20.1% to 13.5% and, decreased the incidence
of stillbirth from 14.9% to 6.8%. In addition, cortisol is known to suppress leukocyte
function in cattle, and its serum levels in cows receiving α-Toc were lower than those in
control cows at 1 week before calving. The authors suggested that improved immune-cell
function, through either antioxidant effects or other cellular signalling pathways activated
by α-Toc, is likely to underlie the reduction in the incidence of RFM. Cows with VitE also
tended to have improved pregnancy per insemination at first AI (36.7 vs. 30.1%) because of
decreased pregnancy loss than control cows. Despite a similar insemination rate, VitE cows
had a 22% higher pregnancy rate than control cows. The authors concluded that feeding
dairy cows with less than 500 IU of VE per day during the last weeks of gestation may
result in an inadequate level of plasma α-Toc that leads to compromised-peripartum health
and subsequent reproduction.

3.2.3. Udder Health (Mastitis and SCC Values) and Milk Yield

Politis et al. [14] investigated the relationship between the incidence of clinical mastitis
and blood α-Toc levels during dry off and calving. All cows (n = 146) were supplemented
with all-rac-α-Toc at a rate of 3000 and 50 IU/cow per day during the dry period and
lactation, respectively. According to the blood α-Toc concentrations, three groups at dry off
were created: high (>6.25 µg/mL), medium (4.25–6.25 µg/mL), and low (<4.25 µg/mL). In
addition, three groups at calving were created: high (>3 µg/mL), medium (2–3 µg/mL),
and low (<2 µg/mL). No differences were observed in the incidence of mastitis between
the three α-Toc groups during the dry-off period, however, the incidence of mastitis was
four times lower in the high- (>3 µg/mL) and medium- (2–3 µg/mL) α-Toc groups than
that in the low-α-Toc group (<2 µg/mL) at calving. In fact, cows with mastitis had lower
concentrations of α-Toc (1.9 µg/mL) than healthy cows (2.74 µg/mL) at calving. These
results also suggest that supplementation with all-rac-α-Toc at a rate of 3000 IU/cow per
day during the dry period cannot always prevent hypovitaminosis E around calving.



Animals 2021, 11, 1088 11 of 23

Several other factors affect α-Toc availability and its physiological functions in cows,
including the source of the α-Toc active substance, other fat-soluble nutrients in feeds,
timing and period of supplementation, inclusion of Se, α-Toc content of the basal feeds,
and method of administration (e.g., ruminal pellets or premixes in diet, or iv, sc and im
injection). Moghimi-Kandelousi et al. [151] evaluated the effects of α-Toc supplementation
on the serum level, milk yield, and SCC values of transition cows by considering a large
set of variables that might influence the responses to α-Toc supplementation. To conduct
a comprehensive meta-analysis of α-Toc supplementation effects during the transition
period, after a broad search in journals and databases with keywords related to transition
cows supplemented with VE and appropriate filtering of the results, 36 papers including
53 trials were selected from 528 publications (from 1979 to 2018), and their data were
extracted into a database. Overall, 22 studies were conducted on Holstein cows, and the
rest used other breeds. In 10 studies, primiparous and multiparous cows were studied,
whereas in the remainder, treatments were applied only to multiparous cows. Six papers
(12 independent trials) were used in the meta-analysis of milk yield, in which eight trials
reported positive effects of VE supplementation. Furthermore, meta-regression showed
that breed, Se supplementation, number of days treated prepartum, parity, and method of
administration did not alter the effect of VE administration on milk yield in the first month
of lactation. By contrast, the overall results of the meta-analysis showed non-significant
changes in milk SCC with VE supplementation. The meta-analysis and meta-regression also
showed that VE supplementation improved the reproductive performance of transition
cows, such as shorter days open, reduced the number of services per conception, and
decreased the odds of RFM. In conclusion, the authors suggested that up to 3600 IU/day
of VE as an oral supplement during the transition period affects the milk production and
reproduction performance of cows with Se supplementation.

As mentioned above, relevant papers published in the last 10 years with novel data
indicated that hypovitaminosis E in the transition period is a risk factor for peripartum
disease and lower performance in dairy cows. Alpha-tocopherol supplementation is
an important method for the effective prevention of peripartum disease in high-yield
dairy cows, although supplementation during the dry period cannot always prevent
hypovitaminosis E around calving.

4. Physiological Factors Underlying Decreased Blood α-Toc Level and
Hypovitaminosis E in Transition Period

The α-Toc deficiency may be caused by complex factors such as changes in the amount
of α-Toc intake, increased oxidative stress and lipid peroxidation, and transfer of α-Toc into
colostrum around calving. However, until recently, the physiological factors or pathways
underlying hypovitaminosis E in the transition period of high-yielding dairy cows have
been less well understood. Dramatic changes in lipid metabolism [39], endocrine sta-
tus [3,4], physiological stress [2] and inflammation [5] occur and may damage the hepatic
functions [40,41], playing a crucial role in the metabolism and disposition of α-Toc [33–35]
during peripartum in dairy cows. Therefore, we discuss the candidate physiological factors
underlying decreased blood α-Toc levels and hypovitaminosis E during late pregnancy to
early lactation period.

4.1. The Decline in α-Toc Intake by Decreasing DMI from Close-Up Period to Calving

In dairy cows, daily intake of DM gradually decreases during the dry period, especially
during the close-up period, and the DMI drops sharply to a nadir level at calving and
increases thereafter toward early lactation [53,152,153]. It is believed that the major cause
of the decline in DMI may be reduced rumen volume and capacity beyond the space
requirement of developing foetuses in the close-up period, and physical and physiological
stress-induced parturition. Decline in DMI is an unavoidable physiological phenomenon
in dairy cows. If the α-Toc content in the feed is not different during this period and no
supplementation is provided, its intake amount decreases with the decline in DMI [2].
Thus, to determine whether the decrease in serum α-Toc concentrations reflects the decline
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in α-Toc intake due to decreasing DMI around calving, Haga et al. [2] compared the
rate of change between the serum α-Toc concentrations and its intake using monitoring
data from high-yield Holstein cows (n = 28). During the close-up period, the α-Toc
intake gradually decreased, declining at calving. After calving, DMI and α-Toc intake
progressively recovered and increased with time. The serum concentrations of α-Toc
decreased during the close-up period, reaching a nadir after parturition until 0.5 week
after parturition. A comparison of the changes in α-Toc intake levels and serum α-Toc
concentrations around the calving period (−2 to 2 weeks relative to parturition) revealed
that, in prepartum, the decreasing α-Toc rates were similar between intake and blood;
however, after calving, increasing serum α-Toc levels were significantly delayed compared
to the recovery of α-Toc intake. These results suggest that decreased α-Toc intake levels
may be one of the causes that strongly influence the decrease in serum α-Toc concentrations
until pre-calving, but not the only influencer during post-calving.

4.2. Changes in the Digestive and Absorptive Functions of α-Toc with Change in the Expression of
α-Toc-Related Genes

It was reported that all-rac-α-tocopheryl acetate was stable in the rumen of high-
yielding dairy cows [154]. However, these cows are at the risk of subacute ruminal acidosis
(SARA; diagnosed when reticulo-ruminal pH is <5.6 for more than three hours per day)
during the periparturient period [155]. The stability of α-Toc under SARA conditions is
not well known.

Blood was sampled through a trial from sheep with a ligated pylorus that received
α-Toc, suggesting that no significant amount of α-Toc was absorbed from the preintestine
region to the blood stream in ruminants [156]. This finding was indirectly supported
by Haga et al. [35], who investigated the expression of α-Toc-related genes and α-Toc
accumulation in weaned calves with and without oral administration of α-Toc. These
results indicated that, in the gastrointestinal (GI) tract (rumen to the colon), the jejunum
and duodenum had high α-Toc content and expressed high levels of SRB1, AFM, TAP and
CYP4F2 mRNA. The functions of αTTP and TAP in the GI tract have not been clarified,
however, these results suggest that the expression of α-Toc-related genes is involved in the
regulation of absorbed dietary α-Toc in the GI tract. Thus, these small intestine regions may
be the major oral α-Toc absorption sites in cattle. However, to the best of our knowledge,
there has been no detailed investigation of the changes in the digestive and absorptive
function of α-Toc in the GI tract of high-yield dairy cows during the transition period,
although there may be a possibility of changing the function with changes in the expression
of α-Toc-related genes. Although challenging, further studies investigating in detail about
the changes in the digestive and absorptive function of α-Toc, with α-Toc-related genes
expression, in the GI tract of high-yield dairy cows are needed.

4.3. The Decline of Plasma HDL Level as an α-Toc Carrier from Close-Up Period to Calving

Alpha-tocopherol, a fat-soluble vitamin, requires a carrier system for bloodstream
transportation. Herdt and Smith [88] investigated the distribution of α-Toc and cholesterol
among the various lipoprotein density fractions in the blood of lactating Holstein cows; the
percentage of total plasma α-Toc and cholesterol were VLDL (2% and 2%), LDL (17% and
22%), and HDL (77% and 72%, respectively). In addition, the α-Toc:cholesterol ratios were
not significantly different among the lipoprotein fractions. These results indicated that α-
Toc and cholesterol were distributed in equal proportions among lipoprotein fractions and
HDL is a major lipoprotein carrier of α-Toc in the plasma of dairy cows. These results were
supported by Higuchi et al. [37]. During the transition period, plasma HDL, VLDL, LDL,
and cholesterol levels in dairy cows gradually decreased throughout prepartum, reaching
a nadir at calving, and increasing thereafter [2,112,157]. This decline in lipoproteins may be
caused by (1) the reduced DMI intake [2,53,152,153]; (2) changes in lipid metabolism and
increased plasma NEFA and BHBA [39,158]; (3) the impaired hepatic export mechanism
with reduced secretion of ApoB100 (decreased mRNA) and apoA1 [159], and (4) enhanced
transfer of these compounds into the fat rich-colostrum [112]. Based on the changes
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monitored in blood α-Toc/HDL ratio, which assesses the rate-limiting levels of HDL
concentration as an α-Toc carrier, from −2 to 2 weeks relative to parturition, Haga et al. [2]
confirmed that the α-Toc/HDL ratio was significantly lower during the post-calving
period than during the pre-calving period. These results suggest that remaining at lower
serum α-Toc concentrations after calving might not result in lower HDL concentrations. It
appeared that other causes might determine the lower serum α-Toc concentrations during
the first week after calving in addition to changes in the levels of α-Toc intake and plasma
HDL concentrations.

4.4. Increasing Systemic Oxidative Stress and Consumption of α-Toc as Antioxidant
around Calving

Oxidative stress in living organisms is generated when free radical production ex-
ceeds the capacity of antioxidant mechanisms. Considerable evidence [2,14,160–163] and
reviews [6,164] suggest that high-yield dairy cows experience severe oxidative stress
around calving and during the onset of lactation. Bernabucci et al. [165] reported that
dairy cows with higher BCS and higher body condition losses are more prone to oxidative
stress during the periparturient period. It was confirmed that the increase in systemic
oxidative stress around calving roughly coincided with a decrease in blood α-Toc con-
centration [2]. Furthermore, mRNA expression of the major antioxidant enzymes in the
liver was markedly downregulated at calving [2]. Since α-Toc is considered an important
antioxidant, these results suggest that both systemic and hepatic antioxidative/oxidative
balance may be lower, and the consumption of α-Toc increases around calving. In fact, sup-
plementation with α-Toc could reduce the markers of oxidative damage, serum/plasma
malondialdehyde (the product of lipid peroxidation) [139,166] and heat shock protein
70 [139].

4.5. Decreasing Hepatic α-Toc Transfer to Circulation with Change in the Expression of
α-Toc-Related Genes

The study on bovine tissues distribution [35] demonstrated that the liver may play a
central role in the regulation of α-Toc disposition, as inferred by the high hepatic expression
of six α-Toc-related genes (see Section 2.2 about the information and references). However,
high-yield dairy cows experience physiological stress [2], systemic inflammation [5], ox-
idative stress [139,160,167], hepatic endoplasmic reticulum (ER) stress [2,168], hepatocyte
apoptosis [41], hepatic injury (necrosis-like cell death) [79] and development of fatty liver
resulting in severe negative energy balance (NEB) because of high milk production imme-
diately after calving [41,159,169]. Thus, liver function will be changed and substantially
inhibited around calving.

Gessner et al. [168] showed the upregulation of ER stress-induced genes of the un-
folded protein response (UPR) markers in the liver at one week postpartum compared
to three weeks prepartum. The expression levels of these genes decreased from 1 week
postpartum to later lactation. Sadri et al. [55] reported that the hepatic TTPA and TAP
mRNA in dairy cows during the transition period tended to be lower than those during
the peak lactation period (105 d relative to parturition), although the changes in these
gene expressions were not observed during the transition period (day −21, 1 and 21 d
postpartum). However, using consecutive liver tissue biopsies in the peripartum period
(−4, −1, 0, 1 and 4 weeks postpartum) [2] demonstrated that TTPA, AFM and TAP mRNA
expression were strongly downregulated immediately after calving. In the experiment, the
expression of ALB mRNA, a negative acute-phase protein that plays the most basal hepatic
function, was also downregulated, and hepatic ER stress-induced UPR and acute-phase
response occurred at calving. After the first week postpartum, when the mRNA expres-
sion of TTPA, AFM, TAP and ALB recovered, the elevated UPR markers and haptoglobin
mRNA expression decreased. These results suggest that α-Toc transfer from the liver into
the bloodstream may be suppressed in the first days after calving because of temporal
downregulation of TTPA and AFM. Ongoing research [79] showed that the hepatic mRNA
expression levels of TTPA and ALB were continuously downregulated at least during the
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3 d after calving. These changes in the hepatic expression of α-Toc-related genes might
be associated with the maintenance of lower serum α-Toc concentrations during the first
week after calving. However, there is insufficient knowledge about the hepatic expression
of α-Toc-related genes and proteins in transition high-yield dairy cows. More studies are
needed to delineate the relationship between hepatic α-Toc transfer and metabolism and
the occurrence of hypovitaminosis E around calving.

4.6. Increasing Mammary α-Toc Transfer from Blood to Colostrum with Change in the Expression
of α-Toc-Related Genes at Calving

It is well known that in multiparous dairy cows the α-Toc concentration in colostrum
is approximately 5- to 8-fold higher than that in mature milk [13,170]. Alpha-tocopherol
is a lipid-soluble micronutrient and its concentration is strongly affected by the level of
milk fat; however, the α-Toc concentrations in colostrum, which were normalised by the
milk fat value, were also approximately five- to eight-fold greater than those in mature
milk [2,137]. The calculated α-Toc efflux with milk (concentration×milk yield) was highest
in colostrum and declined in transition milk (2–3 d relative to parturition), reaching nadir
levels in mature milk after one week relative to parturition [2]. In addition, the estimated
mammary extraction ratios [137,171,172] of α-Toc after calving (colostrum) and at 6 weeks
lactation (mature milk) were at 1.3 and 0.05%, respectively [2]. These estimations suggest
that α-Toc uptake during colostrum production might be more than 20-fold greater than
that in mature milk production. Furthermore, α-Toc did not accumulate in precolostrum
(at one week before parturition) [2]. These results indicate that high α-Toc concentration in
colostrum might be caused by the presence of a mechanism that temporarily augments a
specific α-Toc transfer from the blood to colostrum across the mammary gland at calving,
which might be a mechanism contributing to a lower serum α-Toc concentration at calving.

To test the possibility of this mechanism, Haga et al. [2] measured the mRNA expres-
sion levels of α-Toc-related genes in biopsied mammary gland tissues. SRBI and ABCA1
play pivotal roles in cholesterol transport, milk-fat globule synthesis and these secretions
from the mammary gland [36,114,115,173]. These genes might also contribute to blood
α-Toc transfer into colostrum or mature milk. However, SCARB1 mRNA expression in
mammary gland tissues was downregulated after calving. In various mouse tissues, there
are SRBI-dependent and -independent pathways for tissue α-Toc uptake [95]. These ob-
servations suggest that further studies are needed to investigate the expression of other
receptors, such as LDL-R and Niemann-Pick C1-Like 1 [129,173], which may be involved in
α-Toc uptake in bovine mammary glands. The ABCA1 mRNA [113,114] and protein [115]
levels in bovine mammary glands during the dry-off period were higher than those during
lactation. In agreement with these findings, in the transition period, ABCA1 mRNA levels
declined after calving [2]. By contrast, Mani et al. [115] demonstrated that the subcellular
distribution of ABCA1 changed throughout the pregnancy-lactation cycle, and ABCA1
was present in milk-fat globule membranes isolated from fresh mature milk. It has been
reported that key acceptors of cholesterol and α-Toc efflux by ABCA1, apoA1, were present
in milk-fat globule membranes and the protein level was significantly higher in milk fat
globule membranes prepared from colostrum than in mature milk [174]. These results
suggested that ABCA1 proteins could share a function in the regulation of α-Toc transfer
through localisation in the basal, apical membranes, and cytoplasm of mammary epithelial
cells. The expression of TTPA, SEC14L2 and CYP4F2 mRNA in bovine mammary gland
tissue and the changes in these gene expression levels during peripartum were observed [2].
The functions of αTTP and TAP in mammary epithelial cells have not been clarified, how-
ever, these results suggest that α-Toc-related genes expressed in mammary gland tissues
may play an important role in the transfer of α-Toc from blood to colostrum. Further
investigation to explore the physiological function of these genes in mammary glands
during peripartum is needed.

A comparison of blood α-Toc profiles between mastectomized and intact dairy cows
can determine the cause of decreasing blood α-Toc because the metabolic demands of
colostrum production and lactation are eliminated, with only the calving effect remaining.
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Goff et al. [152] demonstrated that mastectomies reduced but did not eliminate loss of
plasma α-Toc around calving, and strengthening the mammary transfer to colostrum does
not exclusively affect the blood α-Toc concentration.

Based on recent literature, six physiological factors may be involved inα-Toc deficiency
and hypovitaminosis E during the transition period of high-yielding dairy cows (Figure 2).
However, the mechanisms and pathways are less well understood, and further studies are
needed to understand the physiological role of α-Toc-related molecules in the GI tract and
mammary gland.
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5. Foresight

Many reviews on α-Toc and dairy cows, until Politis [30], focus primarily on the effects
of supplementation on health and performance, and the utility of α-Toc as a biomarker
for periparturient cow diseases has not yet been thoroughly considered. However, Qu
et al. [16] indicated that lower serum α-Toc concentration is a potential early indicator
for the development of LDA in multiparous cows. The same group [15] also implied
that the best predictive indicators for disease were lower serum α-Toc concentrations and
higher NEFA and BHBA concentrations during the prepartum period. Most recent studies
on biomarkers for disease risk and milk production in periparturient dairy cows [138]
performed a longitudinal, herd-based epidemiologic investigation of serum β-carotene,
retinol, and α-Toc concentrations in dairy cattle on five commercial farms at three spe-
cific time points through the non-lactating and early lactation periods. The serum α-Toc
concentrations, from dry-off to close-up, decreased (p < 0.01; LSM ± SE, 4.69 ± 1.09 to
3.00 ± 1.09 µg/mL) and then further decreased from close-up to early lactation (p < 0.01;
3.00 ± 1.09 to 1.44 ± 1.09 µg/mL). Higher α-Toc concentrations were associated with
greater ME305 (305-d mature-equivalent milk yield), especially among cows in parity 1.
Higher α-Toc concentrations were associated with decreased odds of disease among cows
in parity 1, but were associated with increased odds of disease among cows in parity 2.
The mechanism behind this finding is unknown, but may be associated with the increased
stress cows’ parity 1 experience in the peripartum period. No vitamins were significantly
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associated with lameness or mastitis in multivariable models. The authors suggested that
future studies should further investigate the association between serum concentrations
of lipid vitamins and periparturient cow diseases to establish serum ranges at which
these biomarkers indicate increased disease risk. According to a recent study [175], whole
blood samples can be directly used, and the measurement of lipid vitamin levels can be
performed effortlessly in less than 5 min, even at the cow-side, using a field-portable
fluorometer/spectrophotometer (iCheck) without further sample preparation. Based on
this new development, the concentrations of VE, β-carotene, and vitamin A in the blood
can be used as nutritional biomarkers to directly optimise nutritional interventions at the
farm, together with stakeholders such as veterinarians, farmers, nutritional advisors, and
feed consultants. Thus, the wave of the future, using serum vitamin concentrations as
biomarkers for disease risk during the periparturient period, in addition to monitoring
dietary supplementation, may prove to be an effective tool for improving animal health.
Furthermore, a better understanding of the physiological factors underlying the cause of
hypovitaminosis E in the transition period will improve the utility of α-Toc as a biomarker
for periparturient high-yield dairy cow diseases.

6. Conclusions

Numerous studies and reviews about the disease risk of hypovitaminosis E
(<3 µg/mL) and the effect of α-Toc supplementation on the health and performance
of transition dairy cows and heifers have been published in the last 30 years. However, the
risk and supplemental effects are controversial because several factors affect the availability
of α-Toc and its physiological functions in cows. In the current review, we focused on
relevant papers published in the last 10 years and presented some novel data about the
disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition
dairy cows. These data strongly demonstrate that hypovitaminosis E in the transition
period is a risk factor for the occurrence of peripartum disease and lower performance
in dairy cows. Alpha-tocopherol supplementation of more than 3000 IU/day during the
prepartum period can be important for the effective prevention of peripartum disease
in high-yield dairy cows. Furthermore, a study on the effectiveness of using serum vi-
tamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid
field test (cow-side assay) for measuring vitamin levels using whole blood was developed.
By contrast, evidence for how hypovitaminosis E occurred during the transition period
was scarce until the 2010s. Pioneering studies conducted with humans and rodents have
identified and characterised some α-Toc-related proteins, molecular players involved in
α-Toc regulation, from the 1990s, followed by a study in ruminants from the 2010s. Based
on the recent literature, six physiological factors may be involved in α-Toc deficiency and
hypovitaminosis E during the transition period of high-yielding dairy cows. However,
the mechanisms and pathways are less well understood, and further studies are needed
to understand the physiological role of α-Toc-related molecules in cattle. In the future,
understanding the molecular mechanisms underlying hypovitaminosis E will contribute to
the prevention of peripartum disease and high performance in dairy cows.
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