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Abstract

Advanced Glycated End Products (AGEs) are formed by non-enzymatic protein glycation and are implicated in several
physiological aspects including cell aging and diseases. Recent data indicate that bacteria – although short lived – produce,
metabolize and accumulate AGEs. Here we show that Escherichia coli cells secret AGEs by the energy-dependent efflux
pump systems. Moreover, we show that in the presence of these AGEs there is an upshift of pro-inflammatory cytokins by
mammalian cells. Thus, we propose that secretion of AGEs by bacteria is a novel avenue of bacterial-induced inflammation
which is potentially important in the pathophysiology of bacterial infections. Moreover, the sensing of AGEs by the host
cells may constitute a warning system for the presence of bacteria.
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Introduction

Protein glycation is a process in which reducing sugars interact

with primary amines on the side chains of lysine and arginine,

resulting in a chemical sequence of reactions known as ‘‘Amadori

rearrangement’’ which leads to the formation of Amadori-

modified proteins (AMPs). AMPs are reversible intermediates of

glycation processes, and several mechanisms involved in their

catabolism have been described [1,2,3,4,5]. However, AMPs can

further developed, in an oxidation-dependent manner, to form

irreversible, highly stable compounds known as Advanced

Glycation End-products (AGEs).

AGEs were shown to participate in the pathophysiology of

several age-related diseases [6,7,8,9]. They interact with specific

receptors which mediate intracellular signaling that leads to

enhanced oxidative stress and elaboration of key pro-inflammatory

cytokines [3,10,11,12]. Several AGEs receptors have been

identified, including macrophage scavenger receptors Types I

and II, and are expressed on a wide range of cells [13]. Of special

interest is RAGE (Receptor for AGEs) which is involved in

inflammation and sepsis. Thus, reduction of RAGE activity by

genetic manipulations or anti-RAGE antibodies, was shown to

reduce inflammation and protects from sepsis in a murine model

[14,15].

AGEs also exist in bacteria [16] and in E. coli they are

metabolized and accumulate as low molecular weight compounds

[17]. Here we show that E. coli cells secrete AGEs by an active,

energy-dependent system which is carried out by the efflux

pumps system. Moreover, we show that the secreted AGEs

participate in the inflammation response of mammalian cell

cultures, indicating that they play a role in the phatophisiology of

bacterial infections.

Results

AGEs are secreted
The intracellular concentrations of AGEs are relatively steady,

but with time there is a dramatic accumulation of AGEs in the

medium, (Figure 1A). This finding is based on monitoring the

fluorescent fraction of secreted AGEs, which has the typical peak

at 440 nm and a broad spectrum, reflecting the heterogeneity of

the fraction (see insert of Figure 1A). Based on size-exclusion

filtration we determined that the extracellular AGEs are smaller

than 3 kD. This finding is compatible with the assumption that

they originate from catabolism of protein glycation products [17].

The concentration of AGEs in the supernatant are considerably

higher than these of the intracellular AGEs, suggesting that the

intracellular concentration is maintained constant by secreting the

excess. This assumption is further supported by the finding that

the secretion of AGEs is enhanced under oxidative conditions,

which stimulates the oxidation-dependent formation of AGEs.

Thus, the addition of the oxidative agent N,N9-dimethyl-4,49-

bipyridinium dichloride (Paraquat, Sigma) resulted in a significant

increase in secreted AGEs (Figure 1B).

AGEs are secreted in their mature form
The presence of AGEs in the medium can result from a

secretion process of AGEs which are formed inside the bacteria,

alternatively, it is possible that the intermediates of AGEs are

secreted and the formation of AGEs is taking place outside the

cells. To distinguish between these two possibilities we deter-

mined the potential of AGEs formation in the intracellular and

extracellular fractions, taking advantage of the fact that

fluorescent AGEs are formed by cross-linking of corresponding

Amadori-products intermediates. Bacterial lysates and secreted
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extracellular fractions were incubated at 37uC for 2.5 hours in

PBS buffer and AGEs-specific fluorescence was measured every

30 minutes.

In the intracellular fraction (bacterial lysates), the AGEs-specific

fluorescence increased with time reaching over 6 fold of the basal

level. In contrast, in the extracellular fraction, fluorescence

Figure 1. Kinetic studies of AGEs formation and secretion. Bacterial growth and sample collection were described in materials and methods.
AGEs-specific fluorescence (Ex. 370, Em. 440) was determined and normalized to cells density. A) AGEs-specific fluorescence during growth in the
intracellular and extracellular fractions. The insert shows the distribution of AGEs with excitation at 370 nm. B) Effect of 5 mM paraquat on
Extracellular accumulation of AGEs. C–D) Kinetics of AGEs formation in vitro. Bacteria were separated from extracellular fractions and sonicated
(intracellular fraction). C) The intracellular and D) extracellular fractions were incubated at 37uC and AGEs-specific fluorescence was determined every
30 minutes (Ex. 370, Em. 440–500). Effect of E) 2 mM DTT or F) 50 mM aminoguanidine on AGES in the intracellular fractions. All data represent three
independent experiments, in Figures C–F a representative result is shown.
doi:10.1371/journal.pone.0017974.g001

Secreted Bacterial AGEs Involved in Inflammation

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e17974



increased was minimal (Figure 1C+D). As a control, DTT was

added to the intracellular fraction to prevent development of

AGEs, since AGEs formation is oxidation depended. Indeed,

addition of 2 mM DTT resulted in a considerable decrease in the

rate of AGEs formation (Figure 1E) Moreover, addition of 50 mM

aminoguanidine, an agent known to prevent the essential cross-

linking in AGEs formation [18] completely abolished AGEs

accumulation (Figure 1F). These results demonstrate that

intermediates of AGEs formation are restricted to the intracellular

fraction and that the secreted molecules are ‘‘mature’’ AGEs.

Accumulation of AGEs requires protein synthesis and
energy

AGEs are the end product of protein glycation processes. In

order to determine whether the secretion of AGEs is dependent on

protein synthesis we examined the effect of a translational arrest

on the kinetics of AGEs secretion. The results presented in

Figure 2A demonstrate that following translational arrest by

chloramphenicol the intracellular concentration of AGEs is

depleted. Concurrently, the concentration of AGEs in the

extracellular fraction increases, suggesting that production of

AGEs, but not their secretion, is blocked in the absence of protein

synthesis. In the presence of chloramphenicol the accumulation of

extracellular AGEs reaches a plateau, which is at a lower value

than without translational arrest, indicating that new AGEs are

not formed in the absence of translation (Figure 2B).

An even more drastic decrease in the level of AGEs in the

medium was obtained when arsenate was added to deplete

internal ATP levels (Figure 2B). Part of this effect is due to the

requirement of ATP for protein synthesis. However, the finding

that ATP depletion has a stronger effect than a translational arrest

indicates the involvement of additional energy dependent

processes.

AGEs are secreted by the efflux pumps system
The finding that AGEs secretion is ATP dependent (Figure 2B),

suggests the involvement of an active pumps system in their

secretion. Active efflux systems – efflux pumps – are present in all

living cells and are responsible for extrusion of toxic substances and

antibiotics outside the cell in an energy-dependent manner [3]. The

efflux pumps decreases the antibacterial activity of many unrelated

drug families and can be considered as a ‘general’ resistance

mechanism and thus contribute to bacterial multidrug resistance

(MDR) [19,20]. To examine this possibility we used 1-(1-

Naphthylmethyl)-piperazine - an efflux pumps inhibitor that has

been shown to reverse multidrug resistance (MDR) in E. coli [21,22].

Indeed, there was a clear concentration-dependent inhibitory effect

of the efflux pump inhibitor on secretion of AGEs (Figure 3A).

In order to further examine the rule of the efflux pump systems

in the secretion of AGEs, we constructed a tolC deletion strain

(DtolC) and studied its effect. TolC is an outer membrane protein

known to participate in the activity of wide variety of efflux pumps.

TolC is involved in the export of chemically diverse molecules

ranging from large protein toxins to small toxic compounds, such

as antibiotics [22,23]. TolC mutants were shown to be highly

sensitive to a wide variety of organic compounds demonstrating its

secretion deficiency [24,25]. The DtolC mutant showed a

dramatically reduced secretion of AGEs (Figure 3B) indicating

the involvement of TolC in this process.

AGEs secreted from bacteria cause inflammation in
human cells

Endogenous AGEs cause inflammation through interaction with

specific receptors (RAGE) [13]. As an example, THP-1 monocytic

cells respond to AGEs by production of cytokines [26]. Our

findings that bacteria secrete AGEs suggested the possibility that

these AGEs can be involved in the inflammation processes.

Indeed, exposure of THP-1 cells to AGEs-containing fractions

resulted in an increase of TNF-alpha secretion. The magnitude of

the inflammatory response was proportional to the levels of AGEs

in the fraction (Figure 4A).

The levels of the pro-inflammatory cytokine TNF-alpha were

considerably reduced under conditions resulting in reduced

secretion of bacterial AGEs, i.e., upon inhibition of the bacterial

efflux pumps by peprazine or by deleting the efflux pumps

component TolC (Figure 4B). These results demonstrate the

strong correlation between the levels of AGEs in the extracellular

fraction and THP-1 inflammatory response and emphasize the

ability of AGEs secreted by bacteria to induce inflammation in

mammalian cells.

Figure 2. Effect of protein synthesis arrest on AGEs secretion. Bacteria were grown in MOPS minimal medium and samples were collected for
AGEs determination as described in materials and methods. AGEs-specific fluorescence (Ex. 370, Em. 440) was determined and normalized to cells
density. A) Intracellular and extracellular AGEs levels following exposure to chloramphenicol. B) Effect of chloramphenicol (open circles) and Arsenate
(triangles) on AGEs secretion kinetics. The data represent three independent experiments.
doi:10.1371/journal.pone.0017974.g002
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Discussion

The bacterial-host interactions involve a recognition process in

which each of the partners senses the presence of the other. This

sensing results in a cascade of molecular and biochemical reactions

aimed at adapting to the new situation. Here we provide evidence

that bacteria secrete protein glycation products (AGEs) which are

sensed by mammalian cells and trigger the inflammation cascade.

AGEs are ubiquitous irreversible end products of protein

glycation which are formed from Amadouri protein products. We

previously demonstrated that AGEs are formed and metabolized in

E. coli and that their accumulation is deleterious. Here we show that

AGEs are secreted by E. coli, suggesting a mechanism for disposal of

these irreversible protein glycation products from the cells. A

cellular mechanism responsible for secretion of AGEs in higher

organisms has not been described yet, however there are evidence

indicating that in diabetic patients, AGEs are excreted in the urine

[27,28], demonstrating a systemic removal of glycation products

and probably reflecting a universal need for their removal.

Inhibition of protein synthesis by chloramphenicol dramatically

reduced AGEs accumulation in the medium indicating that AGEs

formation is dependent on protein synthesis. We hypothesize that

under normal growth conditions new proteins are constantly

synthesized and glycated, while when the synthesis of new proteins

ceased, glycation is limited by existing pool of proteins. When ATP

production was disrupted by arsenate, AGEs accumulation in the

medium was further reduced, indicating that another ATP

dependent mechanism is involves in AGEs formation or secretion.

Our finding that the efflux pumps system play a role in this process

presents an additional mechanism in which ATP is involved.

However it is possible that other processes in the pathway of AGEs

synthesis and secretion requires energy.

Inflammation is a cellular response designated to protect the

host against invading pathogens. The innate immune system is

able to detect pathogens via a limited number of pattern-

recognition receptors [29,30]. In addition, inflammation can also

occur in response to intracellular signals. In mammalians, AGEs

were shown to mediate intracellular signaling that leads to

Figure 3. Effect of an efflux pumps inhibitor and tolC deletion mutant on AGEs secretion. Effect of A) 50 ng/ml and 100 ng/ml of
piperazine or B) tolC deletion on the kinetics of AGEs secretion. The data represent three independent experiments.
doi:10.1371/journal.pone.0017974.g003

Figure 4. Effect of extracellular AGEs on secretion of TNF-alpha by THP-1 cells. The levels of TNF-alpha secreted by THP-1 cells were
measured using sandwich-ELISA (see methods). A) TNF-alpha levels following exposure to elevated concentration of AGEs-containing fraction. B)
Relative TNF-alpha levels secreted from THP-1 cells following exposure to the extracellular fractions (1/80 stock dilutions in distilled water) secreted
from wild type cells, peprazine-treated cells and Dtolc mutant cells. The data represent three independent experiments.
doi:10.1371/journal.pone.0017974.g004
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enhanced oxidative stress and elaboration of key pro-inflammatory

cytokines [10,11,12,3].

Exposure of human THP-1 cells to E. coli supernatant resulted in

induction of cellular inflammation. The level of the inflammatory

response was highly correlated with the concentration of AGEs in

the medium. This result suggests that AGEs secreted by bacteria

may be sensed by mammalian cells, and present a possible model for

the involvement of the Receptor for AGEs (RAGE) in bacterial

infection and sepsis. Here we suggest a new role for RAGE as a

detector of bacterial metabolites and, thus, bacterial presence.

To conclude, we show that AGEs are formed in bacteria as the

end product of protein glycation processes and are actively

secreted into the medium. We propose that RAGE-expressing cells

can detect these AGEs and activate the immune system leading to

enhanced inflammatory response. Thus, RAGE may functions as

sensor for bacterial invasion.

Materials and Methods

Bacterial strains and growth conditions
The E. coli K12 wild type strain MG1655 was used throughout.

Its tolC deletion (DtolC) was constructed by the one step

inactivation system as described previously [31]. Cultures were

grown with aeration at 37uC to the exponential growth phase in

MOPS minimal medium [32] supplemented with 0.2% glucose.

Sample preparation
Extracellular fractions were separated from the bacteria using

centrifugation and 0.2 mm filtration (Sartorius Stedim biotech) and

AGEs were determined in the cells (sonicated) and in the

supernatant. When required cultures were treated with 100 mg/

ml chloramphenicol (Sigma) or 50 mg/ml arsenate (Sigma). In

experiments involving determination of AGEs in non-growing cells

(Figure 1B, and Figure 3) cultures were washed and brought to the

same turbidity in glucose-free media and incubated for two hours.

For determination of inflammation, bacteria (26108/ml) were

washed and incubated for 2 h in glucose free MOPS. AGEs-

containing supernatant samples were concentrated 20 fold using

Speed-Vac and used as stock solution.

Determination of AGEs
AGEs were quantified using the natural AGE-specific fluores-

cence (Ex. 370 nm, Em. 440 nm) by scanning emission ranging

from 400 nm to 500 nm upon excitation at 370 nm at 37uC, in a

HORIBA scientific FluoroLog-3 Spectrofluorometer. Data repre-

sent either the full range spectrum, or the 440 nm emission peak,

as indicated in the legends.

Cell culture medium and growth conditions
The human THP-1 monocytic cells (THP-1) [26] were grown in

cell culture medium - RPMI 1640 supplemented with 20% FCS,

glutamine (2 mM), streptomycin/penicillin (100 mg/mL/100 U/

mL), sodium pyruvate (2 mM) and Non-Essential Amino Acids

Solution at 37uC, in a humidified atmosphere of 95% air and 5%

CO2.

Inflammation assay
THP-1 cells (26106 cells/ml) were incubated in 96-well tissue

culture plates in serum-free culture medium. Cells were treated

with bacteria extracellular stock solution (see sample preparation)

in a 1/80 dilution in distilled water or as indicated, for 12 hours.

The medium was then harvested and assayed for TNF-alpha levels

by sandwich ELISA using 4 mg/ml Anti-Human TNF-alpha

(peprotech), 0.5 mg/ml Biotinylated Anti-Human TNF-alpha

(peprotech), 0.1 mg/ml Streptavidin- HRP (Enco) and TMB

(RandD). Untreated THP-1 cells were used as blank and

concentrated MOPS was used as a control.
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