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Abstract

Head and neck cancer (HNC) remains one of the most malignant tumors with a

significantly high mortality. DNA methylation exerts a vital role in the prognosis of

HNC. In this study, we try to screen abnormal differential methylation genes

(DMGs) and pathways in Head–Neck Squamous Cell Carcinoma via integral

bioinformatics analysis. Data of gene expression microarrays and gene methylation

microarrays were obtained from the Cancer Genome Atlas database. Aber-

rant DMGs were identified by the R Limma package. We conducted the Cox

regression analysis to select the prognostic aberrant DMGs and site‐specific
methylation. Five aberrant DMGs were recognized that significantly correlated with

overall survival. The prognostic model was constructed based on five DMGs (PAX9,

STK33, GPR150, INSM1, and EPHX3). The five DMG models acted as prognostic

biomarkers for HNC. The area under the curve based on the five DMGs predicting

5‐year survival is 0.665. Moreover, the correlation between the DMGs/site‐specific
methylation and gene expression was also explored. The findings demonstrated that

the five DMGs can be used as independent prognostic biomarkers for predicting the

prognosis of patients with HNC. Our study might lay the groundwork for further

mechanism exploration in HNC and may help identify diagnostic biomarkers for

early stage HNC.
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1 | INTRODUCTION

Head and neck cancer (HNC) remains the 10th largest primary

cancer in the world and the seventh leading cause of cancer death.

There are approximately 400,000 oral and pharyngeal diseases,

160,000 laryngeal cancers and 300,000 deaths worldwide each year

(Mehanna, Paleri, West, & Nutting, 2010; Siegel, Miller, & Jemal,

2018; Wozniak, Szyfter, Szyfter, & Florek, 2012). HNC is a

heterogeneous tumor, which is characterized by lesions in the oral,

pharynx, and larynx (Arantes, de Carvalho, Melendez, Carvalho, &

Goloni‐Bertollo, 2014) regions. It is documented that one out of 99

people born in the United States today experienced HNC in their

lifetime. It is considered an important part of the global burden of

cancer (Jemal et al., 2008; Marur & Forastiere, 2008); HNC accounts

for 12% of all malignancies in the world. Despite progress in

treatment, HNC's 5‐year survival rate is still not favorable (Carvalho

et al., 2008; Siegel et al., 2018). Early detection and risk classification

of HNC is essential to improve prognosis and reduce the mortality

and morbidity associated with HNC; useful diagnostic molecular

biomarkers for HNC are vital for effective treatment selection.

Epigenetic changes in the development and progression of

various cancers have been documented owing to rapid technolo-

gical breakthroughs in whole‐genome sequencing (Kordowski

et al., 2018; Molnar et al., 2018; Sweeney et al., 2009). DNA

methylation usually occurs at the cytosine–phosphate–guanine

(CpG) site, regulating protein function, gene expression, and RNA

processing (Baylin & Jones, 2011; Portela & Esteller, 2010; Stein,

2011). Although several studies have determined that the given

genes have abnormal DNA hypermethylation or hypomethylation

in HNC, a combined profile and pathway of regulatory networks is

still rare (Misawa et al., 2016; Misawa, Mochizuki, Endo, et al.,

2017; Misawa, Mochizuki, Imai, et al., 2017; Misawa et al., 2018).

In the study, the combination of gene expression and DNA

methylation data was analyzed. By applying differential analysis

and Cox regression analysis, five differentially methylated genes

(DMGs) were identified as potential prognostic methylation genes

for HNC patients. Moreover, these findings may provide new

prospects for potential mechanisms based on exploring site‐
specific methylation and DMGs in HNC.

2 | MATERIALS AND METHODS

2.1 | Data source and data processing

In the present study, RNA‐Seq data, DNA methylation data, and

clinical information related to HNC patients were obtained from

The Cancer Genome Atlas (TCGA) data portal (https://tcga‐data.nci.
nih.gov/tcga/, August 28, 2018). The 44 adjacent nontumor samples

and 502 HNC samples were included in the gene expression profiles,

in which messenger RNA (mRNA) microarrays used IlluminaHiSeq

RNA‐Seq arrays, while 50 adjacent nontumor samples and 530 HNC

samples were included in the DNA methylation data set, in which

the methylation platform used a Illumina HumanMethylation450

BeadChip.

The differentially expressed genes (DEGs) and DMGs were screened

in HNC tissues compared to control tissues using the Limma/edgeR

package, respectively (Ritchie et al., 2015; Robinson, McCarthy, FsSmyth,

2010). The cut‐off criteria for screening DEGs/DMGs was the false

discovery rate (FDR) < 0.05 and ︱log2 fold change)︱>1.

2.2 | Univariate cox analysis

To evaluate the impact of these genes on the HNC patient's

prognosis, a univariate Cox regression analysis was used to screen

the survival specific DMGs/DEGs. The prognostic genes were

screened with the R package “Survival.” With the threshold of

P values < 0.05, the DMGs/DEGs were considered as prognostic

genes in the univariate Cox regression analysis. Then, common genes

in DMGs/DEGs were considered as prognostic methylation genes.

2.3 | Correlation analysis of DEGs and DMGs in
HNC

The identified prognostic DMGs were selected to explore the

relationship between mRNA and DNA methylation. It is widely

accepted that a negative relationship between DNA methylation and

mRNAs was detected. Therefore, we selected those DMGs with a

negative association between DNA methylation and mRNAs, which

had an R value in Pearson's correlation analysis < −0.3, and a

P value < 0.05.

2.4 | Multivariate Cox analysis

The multivariate Cox regression analysis was used to further validate

these DMGs as prognosis factors. Integration of gene expression levels

weighted by the regression coefficient (β) was used to construct a risk

score model. The formula for estimating the prognosis index (PI) for

each patient is as follows: (β × expression level of EPHX3) + (β × expres-

sion level of STK33) + (β × expression level of GPR150) + (β × expression

level of PAX9) + (β × expression level of INSM1) (Bao et al., 2014; Zhang

et al., 2015).
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According to the threshold of the median PI, HNC patients were

stratified into high‐risk and low‐risk groups. The Kaplan–Meier survival

curves were plotted. To further verify that the five DMGs were also the

independent indicators of other clinical factors, univariate and multi-

variate Cox regression analysis were performed. We used time‐
dependent receiver operating characteristic (ROC) curves within 5

years to assess the prognostic performance based on the risk score

model. A P value < 0.05 was considered statistically significant.

2.5 | Functional enrichment analysis

We conducted differentially expressed analyses between low and

high‐risk groups based on risk score models. The top 200 DEGs (100

upregulated genes and 100 downregulated genes) were screened. To

better understand the biological process of the five DMGs, functional

enrichment analysis was analyzed by the “ClusterProfiler” package in

R software (Yu, Wang, Han, & He, 2012). The gene set enrichment

analysis (GSEA) was further performed (Subramanian et al., 2005).

2.6 | Screening of prognostic DNA methylation
sites

The DNA methylation sites were downloaded through the identified

prognostic five DMGs in the TCGA database. We further screened the

prognostic DNA methylation sites in five DMGs through univariate Cox

regression analysis and Kaplan–Meier survival analysis with the R

“survival” package. A P value <0.05 was defined as statistically significant.

2.7 | Correlation analysis of gene expression and
DNA methylation sites in HNC

The selected prognostic DNA methylation sites in five DMGs were

selected to explore the relationship between mRNAs and DNA

methylation sites. Meanwhile, we selected these prognostic DNA

methylation sites as our object with a cut‐off threshold of the R value

in the Pearson's correlation analysis <− 0.3 and the P value < 0.05.

Pearson's correlation analysis was conducted with the R “Cor” function.

2.8 | Survival analysis among prognostic DMGs

We selected the genes with hypermethylation/lower expression or

genes with hypomethylation/higher expression in HNC. The

Kaplan–Meier plot was used to explore the association between

mRNA and the hypermethylation/hypomethylation genes. The log‐
rank test was used to compare the survival difference between the

HNC group and nontumor group in the overall survival (OS)

analysis. The R “Survival” package was used to screen prognostic

genes. A P value < 0.05 was regarded as statistically significant.

2.9 | Construction of the nomogram model

A nomogram model was constructed in view of the results of the

multivariate Cox model. To reduce overfitting bias, the nomogram

was bootstrapped by 1000 resampling and quantized by the

concordance index (C‐index) for verification in the TCGA HNC

cohort. The C index value ranged from 0.5 to 1.0, 0.5 denoted no

discrimination, and 1.0 denoted complete discrimination (Rao, 2003).

The R “rms” packages were performed for the establishment of the

model of the nomogram.

2.10 | Validation of the DMGs with Gene
Expression Omnibus (GEO) data

To validate the robustness of the hub DMGs from the TCGA data set,

the DNA methylation profiles of HNC from the GEO database was

searched. To determine eligible studies, we used the following search

terms: “head and neck cancer” or “HNSC”. We used GEO2R online

software to examine the raw data of DNA methylation and screen

DMGs. GEO2R is an interactive web tool that permits users to

analyze different sample sets in the GEO datasets and select

differentially expressed genes under specific conditions. The ad-

j.P.Val < 0.05 and |t| > 2 were used as the cut‐off threshold for

screening DMG.

3 | RESULTS

3.1 | Data

The HNC data set from the TCGA data portal was downloaded. Data

on RNA‐Seq, DNA methylation, and clinical profiles were collected.

Demographic features are exhibited in Table 1. Two data sets were

created for each clinical data set, where the rows were indexed by

TABLE 1 Demographic characteristics

Clinical variables

Clinical values

(N = 528)

Sex (male/female) 386/142

Age (mean/std) 61.12/10.65

Race (Asian/Black/White/American

India/NA)

11/48/452/3/14

Pathological stage (I/II/ III/ IV/ NA) 27/73/83/270/75

Grade (G1/G2/G3/G4/Gx/NA) 63/310/125/8/22

History of neoadjuvant treatment

(Yes/No)

10/517

History of alcohol consumption

(Yes/No/NA)

352/165/11

History of tobacco smoking

(Lifelong nonsmoker/smokers/NA)

122/393/13

HPV status by P 16 testing

(positive/negative/NA)

41/74/413

New tumor events event after initial

treatment (yes/no/NA)

49/150/63

Person's neoplasm cancer status

(with tumor/tumor free/NA)

140/340/48

Radiation (yes/no/NA) 126/64/338

Abbreviation: HPV, human papillomavirus.
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the TCGA patient ID and column using the following matrix:

normalized count (RNA‐Seq) and beta value (DNA methylation).

3.2 | Identification of aberrant DMGs in HNC

Data from the DNA methylation levels and RNA sequence were

analyzed by R software to screen DMGs/DEGs, respectively. Among

the DMGs in the DNA methylation profiles, 298 hypermethylation

genes and 26 hypomethylation genes were identified. Of these

hypermethylation genes, two DMGs yielded a > 3‐fold increased

expression, which included MMP24‐AS1 and ULK4P3, and 11 DMGs

exhibited over > 2‐fold increased expression. Among the hypomethy-

lation genes, 7 DMGs exhibited over > 1.2‐fold decreased expression.

For DEGs, 4,872 downregulated genes and 2,427 upregulated genes

were identified. Of the overexpressed DEGs, 338 DEGs yielded

a > 3‐fold increased expression, 605 DEGs exhibited over > 3‐fold
decreased expression. The representative heat map of DMGs/DEGs

in HNC is shown in Figure 1.

F IGURE 1 The typical heat map of DEG/DMG expression in HNC. Red, upregulation; blue, downregulation; DEGs, differentially expressed
genes; DMGs, differential methylation genes [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Univariate Cox regression of candidate DMGs

A univariate Cox regression between DMGs/DEGs and the OS in HNC

patients was performed, respectively. The results show that a total of

130 DMGs/674 DEGs were significantly associated with OS with the

threshold of P values < 0.05 (see Tables S1 and S2). The common 21

genes were screened by overlapping 129 DMGs and 674 DEGs.

3.4 | Correlation analysis between DMG levels and
DEG expression

The independent prognostic DMGs were used to examine the

correlation between gene expression and DNA methylation. Among

these 21 common DMGs, six DMGs (KRTAP3‐3, TCN1, NEUROD2,

SIRPG, MMP23B, and SLITRK1) were excluded because a positive

correlation was observed, 15 DMG expressions (PAX9, GDF7,

STK33, TLX2, SCGB3A1, CSTA, SLC22A16, SP9, GPR150, SLC2A10,

KCNC2, INSM1, SIRPG, EPHX3, SIM2, and GRP) were negatively

associated with mRNA expression. Five DMGs (PAX9, STK33,

GPR150, INSM1, and EPHX3) were chosen when the r‐value in the

Pearson's correlation analysis was < − 0.3 (Figure 2).

3.5 | Construction of five DMG prognostic models

We performed the multivariate Cox regression analysis to validate the

above results, and the five DMGs (PAX9, STK33, GPR150, INSM1, and

EPHX3) were proven to be prognostic factors for HNC (Table 2).

With the five prognostic DMG models, the risk score value was

F IGURE 2 Correlation analysis between messenger RNAs and DNA methylation levels. The abscissa is the beta value of the DNA
methylation gene, the ordinate is the gene expression level [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Univariate and multivariate Cox analysis for five DMGs

DMGs

Univariate Cox analysis Multivariate Cox analysis

HR

95% CI

Pr( > |z|) HR

95% CI

Pr( > |z|)lower Upper Lower Upper

EPHX3 4.359291 1.328137 13.00132 0.0162 1.471 0.3250 6.657 0.616

STK33 7.314855 1.839239 18.74789 0.002738 3.501 0.7821 15.673 0.101

GP-

R150

3.383151 1.192838 8.170795 0.028524 0.750 0.1804 3.120 0.693

PAX9 7.302176 1.678339 21.22599 0.005578 4.008 0.8622 18.634 0.077

INSM1 7.27867 1.06864 27.27356 0.03997 1.407 0.1873 10.569 0.740

Abbreviations: CI, confidence interval; DMGs, differential methylation genes; HR, hazard ratio.
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estimated by the following formula: (0.386 × expression level of

EPHX3) + (1.388 × expression level of PAX9) + (1.253 × expression

level of STK33) + (−0.287 × expression level ofGPR150) + (0.342 × ex-

pression level of INSM1). According to the median cut‐off point of PI,
we divided patients into two groups (high vs. low‐risk group) (Figure 3).
Kaplan–Meier curves are presented in Figure 4. The finding suggested

that patients with a high‐risk index exhibited worse OS than patients

with a low‐risk index (median OS 1.45 months vs. 1.65 years). The

results derived from the univariate Cox hazard regression analysis

indicated that the HR of the risk score model was 2.53 (95% CI,

1.56–4.09). Furthermore, the multivariate Cox regression analysis also

showed consistent findings adjusted for other clinical factors (HR,

2.38; 95% CI, 1.34–4.22).

The OS of the high‐risk group was shorter than that of the

low‐risk group. At 3‐ and 5‐year points, the survival rate was 0.53

(0.46–0.61) and 0.40 (0.31–0.52) in the high‐risk group, while in

the low‐risk group, the survival rates at 3‐ and 5‐year points was

0.66 (0.59–0.74) and 0.55 (0.46–0.65). Time‐dependent ROC curves

F IGURE 3 DMG risk score analysis of HNC patients in TCGA. (a) DMG risk score distribution; (b) The survival status and duration of HNC

patients; (c) Heatmap of the five DMGs in HNC patients. DEGs, differentially expressed genes; HNC, head and neck cancer; TCGA, The Cancer
Genome Atlas [Color figure can be viewed at wileyonlinelibrary.com]
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were used to assess the prognostic strength based on five‐DMG

biomarkers. In the 5‐year OS, the area under the curve of the

5‐DMG model was 0.665 (Figure 5).

Next, the univariate and multivariate Cox regression analysis

between clinical information and HNC prognosis was used to

verify the prognostic significance. The results indicated that the

clinical features of age, gender, pathologic N stage, pathologic T

stage, pathologic TNM stage, human papillomavirus (HPV) status

by P 16 testing and the five DMG risk score model obviously

correlated with OS in the univariate Cox regression analysis.

However, clinical covariates of the five DMG risk score model,

Age and Radiation were correlated with OS in the multivariate

Cox regression analysis (Table 3).

3.6 | Functional enriched analysis based on the five
DMG model

We performed differential expressed analysis (FDR <0.05) between low

and high‐risk groups based on the five DMG models in the TCGA HNC

cohort, and the top 200 genes (100 upregulated genes and 100

downregulated genes) were selected. The enrichment analysis was used

to explore the biological functions of the DEGs. The results demon-

strated that 509 Gene Ontology (GO) terms were observed in the

biological process, such as collagen fibril organization (GO:0030199),

positive regulation of the canonical Wnt signaling pathway

(GO:0090263), extracellular matrix (GO:0031012), and cell adhesion

molecule binding (GO:0050839). Six KEGG pathways were detected,

including the Pentose phosphate pathway (hsa00030], steroid biosynth-

esis [hsa00100], fatty acid degradation (hsa00071), and oxidative

phosphorylation (hsa00190). The GO and KEGG functional analysis

is shown in Figure 6.

GSEA demonstrated that 86 of 177 gene sets were upregu-

lated in the highly expressed phenotype group, and 91/177 gene

sets were upregulated in the low phenotype expression group.

The high‐risk groups have increased expression of NOD‐like
receptor signaling pathways and RIG I like receptor signaling

pathways (Figure 7).

3.7 | Prognostic OS assessment of DNA
methylation sites in five DMG models

Data relating to DNAmethylation sites in five DMGs were obtained from

the TCGA HNC cohort. Then, the univariate Cox regression analysis was

performed to select the prognosis DNA methylation site, and the results

demonstrated that 51 DNA methylation sites in five DMGs obviously

correlated with OS in patients with HNC (Table 2). Kaplan–Meier survival

analysis was further used to examine the results. The findings indicated

that 46 prognostic DNA methylation sites were observed (Figure 8). The

overlapping 41 hub DNA methylation sites were identified.

3.8 | Correlation analysis between abnormal
mRNAs and DNA methylation sites in HNC

The key DNA methylation sites were used to explore the

correlation between mRNAs and DNA methylation sites. The

negative correlations between DNA methylation sites and mRNAs

were a matter of concern. The 41 DNA methylation sites were

identified to negatively correlate with mRNAs, and the r‐value in

F IGURE 4 Kaplan–Meier survival analysis between the low and
high‐risk groups [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Time‐dependent ROC curve analysis of 5‐year survival
prediction by the five key DMGs. AUC, area under the curve;
DEGs, differentially expressed genes; ROC, receiver operating

characteristic [Color figure can be viewed at wileyonlinelibrary.com]
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the Pearson's correlation analysis in 34 DNA methylation sites

was < − 0.3 (Figure 9).

3.9 | Prognostic analysis between
hypermethylation/hypomethylation and mRNA
expression in HNC

The five DMGs with hypermethylation or hypomethylation was

conducted along with Kaplan–Meier survival analysis, and the

results indicated that PAX9, STK33, GPR150, INSM1, and EPHX3

with hypermethylation or hypomethylation were positively asso-

ciated with OS (Figure 10). Patients with hypomethylation of

PAX9, STK33, GPR150, INSM1, and EPHX3 showed a shorter

survival time and a higher tumor‐related mortality. PAX9,

GPR150, INSM1, and EPHX3 with hypermethylation and low

expression and hypomethylation and high expression were also

significantly associated with OS, with the exception of EPHX3

(Figure 11).

3.10 | Establishment and validation of a prognostic
nomogram model

Obvious variables screened by the Cox regression analysis were used

to establish a nomogram model to forecast the probability of OS in

the TCGA Head–Neck Squamous Cell Carcinoma (HNSC) cohort

(Figure 12). The gender, age, HPV status by P 16 testing, a risk score

model of five genes, pathological TNM Stage, and radiation were

considered in the nomogram. The nomogram suggested that

pathological TNM Stage and age and HPV status by P 16 testing

were the biggest contributors to prognosis, while gender was a lower

contributor.

We used the bootstrap method to validate the results of the

nomogram model. The results showed the nomogram could correctly

predict for OS with a C‐index of 0.767 (95% CI, 0.730–0.803). The

calibration chart showed good consistency between the nomogram

prediction and the actual observation of the 3‐ and 5‐year OS rates

(Figure 13).

3.11 | Validation of hub genes with GEO data set

One study (GSE38532) was included in the GEO data set.

Analysis of mRNA expression profiles identified a total of

11481 DMGs. Among these genes, 5,686 genes were defined as

hypermethylation genes, and 5,795 genes were regarded as

hypomethylation genes. Four hub genes (EPHX3, STK33,

GPR150, and PAX9) were detected in the GSE38532 data set.

The four DMG methylation level in the GSE38532 is observed in

Figure 14.

4 | DISCUSSION

HNC is noted for its rapid clinical progress and poor prognosis. In

the past 40 years, its survival rate has hardly improved. The

primary common pathological subtype is squamous cell carcinoma

(SCC), which makes up about 90% of all HNC cancers

TABLE 3 Univariate and multivariate Cox analysis for clinical variables

Variables

Univariate Cox analysis Multivariate Cox analysis

HR

95% CI

Pr( > |z|) HR

95% CI

Pr( > |z|)Lower Upper Lower Upper

Age 1.020483 1.007544 1.033587 0.001843 1.0172 1.0034 1.0311 0.01412

Gender 1.440396 1.073269 1.933104 0.015057 1.1838 0.8627 1.6243 0.29597

Grade 0.9675 0.825366 1.134111 0.683598 1.0677 0.8786 1.2976 0.50995

History of alcohol consumption 0.873621 0.681775 1.119453 0.285523 1.0468 0.8036 1.3635 0.73469

History of neoadjuvant treatment 1.626489 0.825141 3.206076 0.160062 0.7971 0.3375 1.8828 0.6051

History of tobacco smoking 1.282177 0.930753 1.766289 0.128291 1.2483 0.9048 1.7222 0.17674

HPV status by P 16 testing 1.232958 1.039454 1.462484 0.016207 1.0895 0.9136 1.2992 0.34012

Pathological TNM stage 1.212737 1.057586 1.39065 0.005752 1.2012 0.9897 1.458 0.06353

M stage 1.133245 0.970127 1.323789 0.114684

N stage 1.175107 1.073757 1.286024 0.000454 2

T stage 1.153662 1.026341 1.296778 0.016587

New tumor events event after initial treatment 1.177114 0.987978 1.402456 0.068057 1.2872 0.9144 1.8119 0.14788

Person neoplasm cancer status 2.629388 2.218622 3.116205 6.79E‐29 2.5028 2.0703 3.0256 2.00E‐16

Race 1.091668 0.960811 1.240346 0.178203 1.0657 0.9298 1.2214 0.36065

Radiation 0.999551 0.808251 1.236128 0.996693 0.6584 0.4634 0.9353 0.01961

Risk score of five genes 2.525086 1.556294 4.096949 0.000176 2.3822 1.345 4.2193 0.00292

Abbreviations: CI, confidence interval; HR, hazard ratio.
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F IGURE 6 Functional enrichment analysis based on the five differential methylation gene models [Color figure can be viewed at

wileyonlinelibrary.com]
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(Boonkitticharoen et al., 2008). Multiple factors might contribute

to HNC including smoking and drinking, obesity, insufficient

physical exercise, viral infection, especially infection of the

Epstein–Barr virus and HPV (Hennessey, Westra, & Califano,

2009; Lo et al., 2006). Early HNC patients have blurred symptoms

and minimal body changes; early symptoms of cancer are often

difficult to find. Despite efforts to screen molecular biomarkers

for early detection and efforts to develop new treatment

methods, HNC prognosis remains not ideal. Local recurrence

and metastasis are primary risk factors in our efforts to achieve

a satisfactory treatment effect of HNC (Le, Squarize, & Castilho,

2014; Molinolo et al., 2009; Papillon‐Cavanagh et al., 2017).

Therefore, as a solution, identifying molecular biomarkers of HNC

remains urgent.

DNA methylation is a heritable and stable epigenetic mod-

ification that usually occurs at the CpG site, and it plays an

important role in regulating protein function, gene expression,

and RNA processing. Abnormal promoter methylation is thought

to be the primary mechanism for tumor‐associated gene inactiva-

tion (Baylin, 2005; Portela & Esteller, 2010). DNA methylation has

also been investigated in cancer and likely results in genome

rearrangement and chromosomal instability. Several studies

indicate that abnormal accumulation of genetic and epigenetic

modification plays a crucial role in tumor occurrence (Allen,

Pezone, Porcellini, Muller, & Masternak, 2017; Duruisseaux et al.,

2018; Nagata et al., 2012). A previous study by Zhou et al. (2018)

demonstrated that DNA methylation may serve as a tool to screen

and identify a valuable biomarker for the prediction of prognosis

F IGURE 7 The top four enriched pathways in the high‐risk group analyzed by gene set enrichment analysis [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 8 Kaplan–Meier survival curves for overall survival according to the risk cutoff point for prognostic DNA methylation sites [Color

figure can be viewed at wileyonlinelibrary.com]
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F IGURE 9 Correlation analysis between gene expression and DNA methylation sites. The abscissa is the beta value of DNA methylation
sites, and the ordinate is the gene expression level [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Kaplan–Meier survival analysis between hypermethylation and hypomethylation in five differentially expressed genes [Color

figure can be viewed at wileyonlinelibrary.com]
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F IGURE 11 Survival comparison between gene hypermethylation and low expression as well as gene hypomethylation and high expression
in five differentially expressed genes [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 12 Nomograms for estimating 3‐ and 5‐year overall survival survival
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in patients with HNC. Hypermethylation of the SEMA3B promoter

region was observed in oral SCC (OSCC) tissues, and an obvious

difference in the methylation frequency of the gene was detected

between OSCC and noncancerous samples (Wang, Ling, Wu, &

Zhang, 2013). A study by Hwang et al. (2013) reported that the

promoter methylation status of GLT8D1 and C6orf136 induced by

aberrant upregulation of FOXM1 may be exploitable for clinical

use as early biomarkers of cancer predisposition. Another study

showed that HPV infection significantly influences DNA methyla-

tion at different anatomical regions in the TCGA HNSC cohort

(Degli Esposti et al., 2017). Therefore, the promoter DNA methylation

played a vital role in the development of carcinogenesis. However, it is

rarely reported why there is a correlation between the methylation of

genes and the development of HNC. Therefore, we aimed to explore their

potential roles as molecular biomarkers in the evaluation of HNC

development as part of our work. Data regarding gene expression and

gene methylation profiles were obtained from the TCGA data set. By

analyzing the DNA methylation profiles of patients combined with the

analysis result of gene expression data, we found that 324 DMGs and

7,299 DEGs were found during differential analysis. A total of 130

DMGs/675 DEGs significantly correlated with OS when univariate COX

regression analysis was performed. The common 21 genes were screened

by overlapping 129 DMGs and 674 DEGs. Five negative association pairs

between methylation genes and mRNA (PAX9: ENSG00000198807,

STK33: ENSG00000130413, GPR150: ENSG00000178015, INSM1:

ENSG00000173404, and EPHX3: ENSG00000105131) were identified.

By Cox regression analysis, five DMGs and several methylation sites

were identified as potential prognostic molecular biomarkers. Regarding

the five DMGs, a risk score model was established. Patients were

stratified into low‐risk and high‐risk groups based on the five DMG

prognostic model. Patients in the low‐risk group had a higher OS than

those in the high‐risk group. The functional enrichment analysis showed

that the mRNA profiles based on the five DMG models were mostly

enriched in pathways pertaining to the extracellular matrix, cell adhesion,

and immune responses. The GSEA analysis also revealed that

pathways including the RIG I like receptor signaling pathway and the

NOD‐like receptor signaling pathway were involved in the development

of HNC. Several DNA methylation sites in five DMGs models were also

found and associated with the prognosis of HNC, such as PAX9

cg04994761, STK33 cg18933494, EPHX3 cg19744936, GPR150

cg25583491, and GPR150 cg22730464. By performing Kaplan–Meier

survival analysis, we found that the five DMGs with hypermethylation or

hypomethylation were associated with poorer OS in HNC.

Epigenetic modifications, such as DNA methylation in

gene promoters, often inhibit gene transcription and protein

translation, and it exerts an important risk factor in human

carcinogenesis. Several studies have demonstrated that DNA

methylation is regarded as an early event of tumor development,

and new work focuses on screening biomarkers for early tumor

detection, selection of treatment options, and accurate prognosis,

especially in HNC (Sasidharan Nair, Toor, Taha, Shaath, & Elkord,

2018; Yim et al., 2018; Zhou et al., 2018). The underlying

mechanisms that elucidate the development and progression of

HNC will certainly greatly benefit diagnostic, therapeutic, and

prognostic assessments. Rani et al analyzed the integration of

DNA methylation and mRNA data and indicated that the

alteration in DNA methylation is associated with the mRNA

expression of the PAX9 gene, which allows for risk stratification

of early stage chronic lymphocytic leukemia patients (Rani et al.,

2017). Yin, Ma, Liu, and Chen (2018) indicated that STK33

hypermethylation is considered to be a promising new biomarker

for the diagnosis, prognosis, and treatment of CRC. Cai et al

conducted genome‐wide screening and found that abnormal

methylation of GPR150, ITGA8, and HOXD11 could be used as

a tumor marker (Cai et al., 2007). The aberrant expression of

INSM1 could be found in various cancers, such as head and neck

tumors (Rooper, Bishop, & Westra, 2018), neuroendocrine

carcinoma (Kuji et al., 2017), Merkel cell carcinoma (Lilo, Chen,

& LeBlanc, 2018), and small cell lung cancer (McColl et al., 2017).

A study by Morandi et al. (2017) showed that hypermethylation

F IGURE 13 3‐ (a) and (b) 5‐year overall survival calibration curves
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of EPHX3 might contribute to the development of OSCC. A study

by Bell (2011) used microarray analysis in patients with salivary

gland adenoid cystic carcinoma for aberrant DNA methylation,

and the results suggested that aberrant DNA methylation of

EPHX3 is associated with adenoid cystic carcinoma development

and progression.

5 | CONCLUSION

In our study, five DMGs (PAX9, STK33, GPR150, INSM1, and EPHX3)

and several methylation sites were our primary concern for HNC.

These findings help us to speculate on the prognosis of patients with

HNC. In addition, these results provide new perspectives in exploring

the molecular mechanisms of DMG and site‐specific methylation of

HNC development.
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