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Abstract In the present study, we evaluated post-mortem lat-
eral cerebral ventricle (LCV) changes using computed tomog-
raphy (CT). Subsequent periodical CT scans termed
Bsequential scans^ were obtained for three cadavers. The first
scan was performed immediately after the body was trans-
ferred from the emergency room to the institute of legal med-
icine. Sequential scans were obtained and evaluated for 24 h at
maximum. The time of death had been determined in the
emergency room. The sequential scans enabled us to observe
periodical post-mortem changes in CT images. The series of
continuous LCV images obtained up to 24 h (two cases)/16 h
(1 case) after death was evaluated. The average Hounsfield
units (HU) within the LCVs progressively increased, and
LCV volume progressively decreased over time. The HU in
the cerebrospinal fluid (CSF) increased at an individual rate
proportional to the post-mortem interval (PMI). Thus, an early
longitudinal radiodensity change in the CSF could be potential
indicator of post-mortem interval (PMI). Sequential imaging

scans reveal post-mortem changes in the CSF space which
may reflect post-mortem brain alterations. Further studies are
needed to evaluate the proposed CSF change markers in cor-
relation with other validated PMI indicators.

Keywords Post-mortem computed tomography . Sequential
scan . Post-mortem change . Lateral cerebral ventricle . Post
mortem interval

Introduction

In forensic practice, post-mortem computed tomography
(PMCT) provides important information prior to an autopsy
[1–8]. PMCT can detect gasses within the body [9, 10] in
addition to certain abnormalities (e.g., bone fractures [11,
12]). In some cases, it is difficult to differentiate post-
mortem change from organic abnormalities [13–17]. For ex-
ample, pneumonia and post-mortem liquid sedimentation pro-
duce similar CT images [18, 19]. Furthermore, disease-
oriented pathological brain edema and post-mortem cerebral
change also appear similar on CT scans [20]. For practical
applications of PMCT, it is important to differentiate
disease-oriented pathological change from post-mortem
change. However, systematic studies evaluating post-mortem
change in PMCT are rarely focusing on longitudinal post-
mortem observations[21–25], particularly for post-mortem
brain alterations [20, 26]. To address this issue, the current
study included an assessment of post-mortem change in
PMCT, which will be referred to as a Bsequential scan
project.^ This sequential scan paradigm includes successive,
periodical CT scans of the same post-mortem subject. This
method enables to compare the same image slices at different
post-mortem time points. During the early post-mortem phase,
muscle rigidity and skin lividity increase and body
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temperature decreases; these changes are readily observable
using conventional, external forensic inspection. However, all
organs inside the body also undergo some amount of post-
mortem change [16, 27]. During an autopsy, it is possible to
determine organ condition at a certain time post-mortem.
However, an autopsy is a relatively destructive inspection,
and it is difficult to observe the temporal course of post-
mortem change inside the body using a conventional autopsy.
Using a sequential scan procedure, it is possible to observe the
unfolding of post-mortem change inside the whole body, with-
out a destructive inspection. Post-mortem brain alterations
including CSF volume changes have been described [3, 20,
26, 28], but there is still a need for clarification of the extent of
these phenomena in comparison to antemortem brain edema
as some authors denied brain swelling in the very early PMI
[20]. The LCV volumes have recently been described as weak
indicators of ante mortem cerebral edema [28] but their post
mortem alteration had not been exactly deliminated in that
retrospective study. Being inconclusive as marker of antemor-
tem brain edema (probably benefitting from minor impact of
the cause of death on their volume change as compared to the
narrowing of temporal horns and symmetrical herniation of
the cerebellar tonsils), the LCV volume attracts interest re-
garding its sensitivity for time-dependent cadaveric
modifications.

Another important issue is the Hounsfield units (HU) at-
tenuation change which has been described for gray and white
matter of the brain [16, 26] but not for the CSF in the lateral
ventricles and particularly for its implications regarding PMI
estimations. For the current study, the lateral cerebral ventri-
cles (LCVs) were evaluated using this sequential scanmethod,
because they offer the most convenient measurement of HU
radiodensity in comparison to other CSF spaces as unwanted
inclusion of boundaries with the risk of partial volume arti-
facts can be minimized.

Materials and methods

Three deceased individuals from the emergency room at the
UniversityMedical Center who were diagnosed with ischemic
heart disease served as subjects for the present study. Certified
clinical physicians determined time of death. After each sub-
ject was transferred to the department of legal medicine, the
first PMCT was performed between 1 and 2 h post-mortem.
Scan times are shown in Table 1. Each subject was placed in a
supine position on a horizontal CT table. A full-body, multi-
slice, PMCT procedure included the following parameters:
130 kV, 350 mA, 1.3-mm scan thickness, 1.5 pitch with a 6-
channel multi-detector CT (MX8000, Philips, Amsterdam, the
Netherlands). Images were reconstructed and analyzed using
OsiriX open-source imaging software (Version 3.9 64 bits,
OsiriX Foundation, Geneva, Switzerland) on a Mac OS X

(Version 10.5.4, Apple Inc., CA, USA). The temperature of
the CT room was kept at 5 °C using an air conditioner and
natural, cold air. After the first PMCT, to obtain complete
reproducible cross sectional images, the subject was not
moved until the last scan session (16–24 h post-mortem).
For the cerebral scans, all cross-sectional images were recon-
structed to the plane parallel to the OM (orbitomeatal) line.
After the sequential scans, forensic practitioners examined the
subjects; this examination included a conventional autopsy,
and a cause of death was determined. To eliminate the possi-
bility of cerebral organic diseases and other abnormalities,
subjects’ brains were evaluated. No specific organic cerebral
disease or damage was present in the three subjects. Subject
details can be found in Table 1.

Cerebral CT images were evaluated on the horizontal plane
in three dimensions. The average HU in both LCVs was mon-
itored using a graph cut-based segmentation algorithm
[29–33]. The measurement was performed automatically after
extraction of the region of the lateral cerebral ventricle from a
three-dimensional (3D) CT image using the semi-automated
segmentation algorithm. This algorithm is based on graph-
cuts, which is one of the most popular segmentation algo-
rithms in the field of medical image processing [30, 31], and
the entire procedure is shown in Fig. 2. Seed regions in step 1
were generated using the region of the lateral cerebral ventri-
cle roughly delineated using a computer mouse, followed by
shape smoothing by morphological operations, or dilation and
erosion [33]. To generate seed regions for the remaining 3D
CT images with different acquisition times for the same ca-
daver, a free-form deformation was employed [32]. LCV vol-
ume and HU were also measured automatically by counting
the number of voxels within the LSV and computing the av-
erage HU within the LSV.

The present study was performed with informed consent
provided by the participants, according to established laws
and ethical guidelines within the University Medical Center
Hamburg-Eppendorf in Germany. The authors have no con-
flicts of interest directly relevant to the content of this article.

Results

In total, three CT image series (one series per subject) were
obtained. The CT axial plane images obtained from Case #1
are shown in Fig. 1. As shown in the figure, the size of the
frontal horns within the LCVs decreased over time. A 3D
image of Case #1’s LCVs from 2–24 hours post-mortem is
shown in Fig. 2. From this figure, the diminished size of the
posterior horns within the LCVs can be seen. For all three
subjects, the relationship between post-mortem time and
LCV volume is shown in Fig. 3. With regard to Case #1, it
was not possible to measure precise LCV volume after 21 h
post-mortem because of excessive LCV narrowing. There was
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a robust, linear decrease in LCV volume as a function of post-
mortem time. The relationship between post-mortem time and
HU is shown in Fig. 4. The HU attenuation gradually in-
creased over time. The linear equation formulae for these three
cases are shown in Table 2.

Discussion

PMCT has become popular among forensic practitioners in
recent years and is a useful method for estimating and inves-
tigating cause of death before conducting a conventional au-
topsy [34, 35]. In a traumatic case, PMCT is more sensitive
than forensic autopsy in detecting skeletal injuries [5, 11, 36].
Furthermore, major cerebral bleeding is easy to recognize

using PMCT [37]; in some cases, cerebral infarction can also
be detected [38]. Thus, PMCT is a useful method for
supporting conventional autopsy when detecting pathological
brain lesions, particularly antemortem brain edema [28]. Post-
mortem MRI results may be even better for the diagnosis of
thin subarachnoid hemorrhages [3, 39], micro-bleedings, and
infarctions [40], but MRI is less available for post-mortem
routine procedures as well as cadaveric sequential studies.
Thus, there is a need to estimate post-mortem changes in
PMCT which is in routine use in a rising number of forensic
departments. During post-mortem imaging, the brain and oth-
er organs are in a non-homeostatic condition which is to some
extent comparable to changes in stroke lesions.

For more than 100 years, clinical radiologists have com-
pared abnormal lesions with normal images. PMCT has only
been available for approximately 10 years; however, system-
atic research observing post-mortem changes via CT is rare.
This prompted the present Bsequential scan project^ to obtain
normal images during post-mortem scans. The present study
revealed post-mortem changes in CT images that varied ac-
cording to the range of post-mortem time. Factors influencing
early post-mortem change in PMCT include resuscitation [41,
42], massive hemorrhaging [24, 43], hypothermia, [44] and
infections [22], but they have not been described as confound-
ing factors for brain alterations. It is important to consider
these factors when assessing post-mortem changes. For the
present study, we focused on a common cause of death, i.e.,
ischemic heart disease, and assessed brains with the absence
of pathological lesions, e.g., cerebral bleeding which would
have influenced post-mortem brain changes in ways different
from ischemic heart disease.

For the current project, each subject was continually
scanned, over a 24-h period. The present results showed that
LCV volume decreased as a function of post-mortem time
(Fig. 3). Continuous ventricular narrowing can be interpreted
as a consequence of post-mortem brain swelling [26] and/or
CSF leakage; Brain swelling in PMCT may be caused by
vasogenic edema and hyperemia (sometimes delayed after
resuscitation) in the agonal stage [45] and eventually in later
stages by autolysis and brain softening [16]. In cases of non-
sudden deaths, there is an agonal stage of certain length during
which hypoxic reperfusion of the brain occurs which fuels
vasogenic edema. The—in vivo—well-known cytotoxic ede-
ma [46] resulting in an inflow of extracellular water into the
intracellular space was considered by other study groups [20]

Table 1
Age Sex Scan time, hours post-mortem Cause of death

Case #1 59 y/o male 2–20 (every 1 h) Ischemic heart disease

Case #2 73 y/o male 1–16 (every 1 h) Ischemic heart disease

Case #3 71 y/o male 1, 2, 3, 5, 6, 9, 12, 18, 24 Ischemic heart disease

Fig. 1 Case #1. The number under each image denotes post-mortem
time. The right-bottom image denotes the sagittal plane from which these
slices were obtained. The yellow line indicates the OM line, 3 cm above
the highest point of the posterior clinoid process
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as being irrelevant for postmortem cerebral swelling because
the pure water shift within the brain should not affect the
resulting total brain volume; however, this may only be true
in a volume model that does not differentiate between brain
tissue and inner cerebrospinal fluid spaces; so we conclude
that also cytotoxic edema could actually explain the CSF vol-
ume decrease in our study. Osmotic swelling may be another
explanation [28].

Fig. 2 Case #1. Three-dimensional image of the lateral cerebral ventricle
(LCV). Left : 2 h post-mortem. The volume was 26.8 ml. Middle: 20 h
post-mortem. The volume was 21.8 ml. The LCV was slightly thinner at
20 h than at 2 h. Right: Flowchart of semi-automated segmentation algo-
rithm of the LCV. Input: 3D CT images of a cadaver. Step 1: Input of seed
regions of the LCV and background by an observer for a 3D CT image.
The seed regions are deformed to generate seed regions for the remaining

3D CT images with different acquisition times in the same cadaver. Step
2: Statistical parameter estimation of a probability distribution for each
3D CT image by using an expectation maximization algorithm followed
by likelihood computation. Step 3: Graph-cut segmentation for each 3D
CT image that optimizes a given energy function. Output: 3D-labeled
images of the LCV in the 3D CT images, in which the gray values inside
the LCVare one and the outside is zero

Case #1, ■Case #2, ▲Case #3

Fig. 3 LCV volume decreases as a function of post-mortem time

Case #1, Case #2, Case #3

Fig. 4 HU unit increases within the LCVs as a function of post-mortem
time
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Further studies should consider the volume of inner and
outer CSF space at the onset of a sequential series—if possible
within a 2-h period after death or—if available—a volume
rendering in the antemortem CT. Dilated LCVs due to age-
related brain atrophy or pathological hydrocephalus may be
more difficult to assess for post-mortem change as their
narrowing relative to their initial volume expected to be less
pronounced.

The average HU within the LCVs increased as function
of post-mortem time (Fig. 4). One plausible reason for
this result relates to decomposition of CSF proteins and/
or the ependymal layer. Another possibility concerns CSF
condensation while a swelling brain exerts pressure on the
ventricles leading to shrinkage (only the liquid component
can penetrate the membrane between the LCVs and the
brain). Finally, inflow of protein-like substances from the
periventricular brain tissues to the CSF could account for
the observed HU values. The present study is restricted to
a rough description of the phenomenon but did not clarify
the issue of causal relationships between PMI and de-
crease of ventricle volume in detail. . For example, radio-
isotopes could be studied for their usefulness for tracing
CSF movement during post-mortem evaluation. If it be-
comes possible to obtain a CSF sample every hour, CSF
components could then be analyzed.

As shown in Fig. 4, it may be possible to estimate the PMI
based on average HU values within the LCVs. In healthy,
living volunteers, the normal range of the HU in the LCVs
is around 5 [47]. During the first hour post-mortem, the HU
quickly elevates from approximately 6 to 12. For the present
study, single linear formulae were adopted from 1 h until 24 h
post-mortem; however, these plots could be drawn on an S-
curve. Further investigations with larger samples are needed to
address this issue. Eventually, a combined predictor of PMI
could be evaluated by using CSF attenuation and LCV vol-
ume as predictors but the minor slope of the volume curves in
our three cases indicates a weakness for time interval predic-
tion accuracy as compared with the more pronounced changes
of HU attenuation.

A minor elevation of the HU in the LCVs is not reflective
of minor brain bleeding into the LCVs; rather, this result re-
flects a post-mortem change revealed by forensic radiology.

In the post-mortem imaging field, the sequential scanmeth-
od can be used to visualize early continuous changes in or-
gans. In case those ethical standards are not compatible with

longitudinal studies on human deceased, more focus should be
put on cadaveric animal models [48].
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