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High-quality genome assemblies are crucial to many biological studies, and
utilizing long sequencing reads can help achieve higher assembly contiguity.
While long reads can resolve complex and repetitive regions of a genome, their
relatively high associated error rates are still a major limitation. Long reads
generally produce draft genome assemblies with lower base quality, which
must be corrected with a genome polishing step. Hybrid genome polishing
solutions can greatly improve the quality of long-read genome assemblies
by utilizing more accurate short reads to validate bases and correct errors.
Currently available hybrid polishing methods rely on read alignments, and
are therefore memory-intensive and do not scale well to large genomes. Here
we describe ntEdit+Sealer, an alignment-free, k-mer-based genome finishing
protocol that employs memory-efficient Bloom filters. The protocol includes
ntEdit for correcting base errors and small indels, and for marking potentially
problematic regions, then Sealer for filling both assembly gaps and prob-
lematic regions flagged by ntEdit. ntEdit+Sealer produces highly accurate,
error-corrected genome assemblies, and is available as a Makefile pipeline
from https://github.com/bcgsc/ntedit_sealer_protocol. © 2022 The Authors.
Current Protocols published by Wiley Periodicals LLC.
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INTRODUCTION

High-quality genomes have enabled many recent advances in the broader life sci-
ences. Genome assemblies provide a wealth of information for clinical applications,
comparative genomics, population studies, and other research areas. Long-read or
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third-generation sequencing technologies from Oxford Nanopore Technologies Ltd.
(ONT, Oxford, UK) and Pacific Biosciences of California, Inc. (PacBio) have drastically
improved in cost and throughput over the past several years, and these improvements
have allowed these technologies to be adopted in a broad range of applications (van
Dijk, Jaszczyszyn, Naquin, & Thermes, 2018) and genomics studies (Logsdon, Vollger,
& Eichler, 2020). The major advantage of long reads over short Illumina reads, the cur-
rent gold standard, is their length. Long sequencing reads can span several thousands to
millions of nucleotides, while Illumina reads are usually 150-250 base pairs (bp) long.
Long reads provide valuable long-range genomic information that greatly benefits de
novo genome assembly projects, resolving repetitive regions to achieve high contiguity
(Amarasinghe et al., 2020). However, the appreciable error rate of long reads relative to
short reads remains a major limitation to this day, with a mean accuracy of 87%-99%
depending on sequencing platform, chemistry, and base-calling method (Logsdon et al.,
2020).

High base accuracy in genome assemblies is crucial for annotating functional elements
and calling variants, for example. Therefore, long-read genome assemblies often un-
dergo a genome polishing step to improve their base quality. Several genome polishing
methods employ a hybrid approach, using more accurate short reads to correct long-read
genome assemblies. Some notable examples of hybrid genome polishing tools include
Pilon (Walker et al., 2014) and Racon (Vaser, Sović, Nagarajan, & Šikić, 2017). Both
tools rely on read alignments for identifying and correcting erroneous regions. While
read alignments are information-rich, they are also highly memory intensive and there-
fore not practical for organisms with large genomes. There is a need for scalable and
automated tools to polish and finish long-read genome assemblies.

Here we describe a scalable and alignment-free protocol for correcting base errors and
resolving problematic regions in long-read genome assemblies using short reads. This
protocol relies on Bloom filters, a probabilistic data structure that stores and tests for
elements in a set in constant time (Bloom, 1970). The protocol includes the assembly
correction tools ntEdit (Warren et al., 2019) and Sealer (Paulino et al., 2015), and is
called ntEdit+Sealer. Additionally, ntHits (Mohamadi, Chu, Coombe, Warren, & Birol,
2020) and ABySS-Bloom (Jackman et al., 2017) are required for creating Bloom filters
from short read k-mers for the respective tools. A general overview of the ntEdit+Sealer
genome finishing protocol is presented in Figure 1. We will illustrate this protocol with an
Escherichia coli strain NDM5 dataset obtained from the NCBI Sequencing Read Archive
(SRA; Accession: SAMN21398207). We provide instructions for installing the required
software, both from package managers and manually, in the Strategic Planning section.
Additionally, we provide a Support Protocol with guidelines for selecting optimal pa-
rameter values for the protocol.

The output of ntEdit+Sealer is a polished long-read genome assembly with sequence
gaps closed. The ntEdit+Sealer protocol provides an accessible solution for correcting
errors and producing high quality genome assemblies from long- and short-read sequenc-
ing data. This will allow users to take full advantage of the benefits of both technologies.
We expect this genome assembly finishing protocol to be invaluable for hybrid sequenc-
ing efforts in pursuit of producing contiguous and accurate genome assemblies.

STRATEGIC PLANNING

Necessary Hardware

ntEdit+Sealer is a command-line-based protocol that requires a 64-bit Linux or Mac op-
erating system and a sufficient amount of RAM and disk space for generating and storing
Bloom filters. Requirements will depend on the genome size of the specific organismLi et al.
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Figure 1 ntEdit+Sealer genome finishing pipeline. ntHits extracts k-mers from short reads and
creates a Bloom filter. ntEdit queries assembly k-mers in the short-read Bloom filter, making base
corrections where possible and flagging problematic stretches of sequences. ABySS-Bloom ex-
tracts k-mers and creates another Bloom filter, which is used by Sealer as an implicit de Bruijn
graph to fill assembly gaps and problematic regions flagged by ntEdit.

under study. The peak memory usage is approximately equal to the size of the Bloom
filter generated by ABySS-Bloom. Guidelines for determining this Bloom filter size are
described in the Support Protocol.

Software Installation

The ntEdit+Sealer genome finishing protocol requires three software packages and their
dependencies:

• ntHits v0.0.1+ (https://github.com/bcgsc/nthits)
• ntEdit v1.3.5+ (https://github.com/bcgsc/ntEdit)
• ABySS v2.3.2+; contains Sealer and ABySS-Bloom (https://github.com/bcgsc/

abyss)

All tools can be installed using the Conda or Homebrew package managers, as well as
by manually cloning and compiling the source code from Github. The protocol is imple-
mented as a Makefile (GNU Make) pipeline available on Github at https://github.com/
bcgsc/ntedit_sealer_protocol.

Li et al.
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Option A: Installation using the Conda package manager

Installation via the Conda package manager (Miniconda) is recommended. Conda allows
easy installation of tools and their dependencies into standalone environments. Mini-
conda is a minimal, lightweight installation for Conda and can be obtained freely from
https://docs.conda.io/en/ latest/miniconda.html. Once Miniconda is installed, create a
new environment for the protocol with the following commands:

conda create -n ntedit_sealer python=3.7
conda activate ntedit_sealer

ntHits, ntEdit and ABySS can then be installed from the bioconda channel:

conda install -c bioconda "nthits>=0.0.1" "ntedit>=1.3.5" "abyss>=2.3.2"

This command will install all three tools into the ntedit_sealer environment. This
environment must be activated prior to running the protocol with the command conda
activate ntedit_sealer.

Option B: Installation using the Homebrew package manager

The three packages are also available on Homebrew. The Homebrew package manager
can be obtained freely from https://brew.sh. Once Homebrew is installed and configured,
the required tools can be installed with the following commands:

brew tap brewsci/bio

brew install nthits ntedit abyss

Option C: Manual installation from Github

Since all tools are written in C++, several dependencies are required for compilation:

• Autoconf (https://www.gnu.org/software/autoconf )
• Automake (https://www.gnu.org/software/automake)
• A C++ compiler that supports OpenMP, such as GCC 4.2 or greater

(https://gcc.gnu.org)

ABySS requires the following additional libraries:

• Boost (https://www.boost.org)
• OpenMPI (https://www.open-mpi.org)
• Sparsehash (https://github.com/sparsehash/sparsehash)

ntHits

git clone https://github.com/bcgsc/ntHits.git

cd ntHits

./autogen.sh

./configure --prefix=/path/to/ntHits
make

make install

ntEdit

git clone https://github.com/bcgsc/ntEdit.git

cd ntEdit

make ntedit

ABySS

git clone https://github.com/bcgsc/abyss.git

cd abyss
Li et al.
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./autogen.sh

mkdir build

cd build

../configure --prefix=/path/to/abyss
make

make install

For ntHits and ABySS, the --prefix parameter of the configure script defines the path
at which the tool will be installed. With sudo privileges, when this parameter is excluded
the tool will install into /usr/local.

Final steps after all dependencies are installed (i.e., after Option A, B or C):

The ntEdit+Sealer repository must also be downloaded after ensuring that the dependen-
cies have been installed according to options A, B, or C, listed in the section above. The
ntEdit+Sealer protocol is implemented as a Makefile pipeline, which is a wrapper for the
ntHits, ntEdit, ABySS-Bloom, and Sealer commands. The repository includes additional
scripts required for integrating the tools and processing input files. The scripts can be
cloned from Github and do not require any compilation:

git clone https://github.com/bcgsc/ntedit_sealer_protocol.git

To run the tools outside of their directories, their executables must be added to your PATH
environment variable:

PATH=/path/to/ntedit_sealer_protocol:/path/to/ntHits/bin:path/to/ntEdit:/path/to/
abyss/bin:$PATH

More detailed instructions for installing the packages can be found in their respective
Github repositories.

BASIC
PROTOCOL

AUTOMATED LONG-READ GENOME FINISHING WITH SHORT READS

This Basic Protocol describes how to run ntEdit+Sealer with the protocol Makefile to
polish and correct errors in a long-read genome assembly using short reads. The protocol
involves populating several Bloom filters with short-read k-mers for ntEdit and Sealer
using several k-mer sizes. After the Bloom filters are created, ntEdit is run iteratively
with long to short k values to correct base errors and flag unfixable and problematic
regions in the assembly by soft-masking them. Unmasked sequences that are shorter than
the lowest k value and flanked by soft-masked regions are further soft-masked after the
ntEdit runs. Finally, Sealer is run with the same decreasing k values to fill in the erroneous
soft-masked regions and existing assembly gaps by traversing an implicit Bloom filter de
Bruijn graph.

The pipeline is invoked with a single Makefile command. We illustrate the steps with
an E. coli strain NDM5 dataset consisting of a long-read Shasta (Shafin et al., 2020)
assembly generated from ONT MinION reads and paired-end Illumina MiSeq reads for
assembly finishing. Additionally, we demonstrate how to analyze the draft and finished
assemblies with QUAST (Gurevich, Saveliev, Vyahhi, & Tesler, 2013).

Necessary Resources

Hardware

A server or machine running a 64-bit Linux or Mac operating system with a
sufficient amount of disk space and RAM (see Support Protocol for more
details).

Li et al.
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Software

The following packages and their dependencies must be installed and be referenced
to in your PATH environment variable:

• sra-tools v2.9.1+ (https://github.com/ncbi/ sra-tools)
• ntHits v0.0.1+ (https://github.com/bcgsc/nthits)
• ntEdit v1.3.5+ (https://github.com/bcgsc/ntEdit)
• ABySS v2.3.2+ (https://github.com/bcgsc/abyss)
• ntEdit+Sealer protocol v1.0.0+ (https://github.com/bcgsc/ntedit_sealer_

protocol)
• QUAST v5.0.0+ (https://github.com/ablab/quast)

Files

Short sequencing reads (paired- or single-end) can be provided in compressed or
uncompressed FASTQ format. Paired-end reads do not need to be interleaved.
The long-read draft genome assembly can be provided as either a multi- or
single-line FASTA file.

Sample data

The example E. coli strain NDM5 draft genome assembly is included in the
ntEdit+Sealer Protocol Github Repository under the “demo” subdirectory (https://
github.com/bcgsc/ntedit_sealer_protocol/blob/main/demo/ecoli_shasta.fa). The corre-
sponding Illumina short reads will be used as demonstration for polishing and can be
obtained from the NCBI Sequencing Read Archive (Accession: SRX12150405). Addi-
tionally, we will use the E. coli strain K-12 substr. MG1655 reference genome assembly
(Accession: GCF_000005845.2) to assess the assemblies with QUAST.

Protocol steps
1. Install ntHits, ntEdit, ABySS, and the ntEdit+Sealer repository as outlined in the

Strategic Planning section and add all binaries to your PATH environment variable.

2. Install protocol-specific dependencies fasterq-dump (part of sra-tools) and QUAST
via Conda or manually. Ensure sra-tools v2.9.1 or newer is installed in order to obtain
fasterq-dump, a more performant, multi-threaded version of fastq-dump. If the correct
version cannot be installed, fastq-dump can be used as a replacement (see step 3 below
for details). If installing the tools manually, the executables must be added to your
PATH environment variable.

Option A: Installation using the Conda package manager

If Option A of the Strategic Planning section was used to install ntHits, ntEdit, and
ABySS, dependencies may be installed into the same environment. Otherwise, a
new Conda environment should be created. The Conda environment must be
activated (using conda activate <env name>) prior to installing the tools.

conda install -c bioconda "sra-tools>=2.9.1" "quast>=5.0.0"

Option B: Manual installation

sra-tools

Identify the correct version of the SRA Toolkit for your operating system from
https://github.com/ncbi/ sra-tools/wiki/01.-Downloading-SRA-Toolkit, and replace
the URL if necessary.

wget https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/3.0.0/sratoolkit.3.0.0-

centos_linux64.tar.gz

tar -xzf sratoolkit.3.0.0-centos_linux64.tar.gz

export PATH=/path/to/sratoolkit.3.0.0-centos_linux64/bin:$PATHLi et al.
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QUAST

wget

https://github.com/ablab/quast/releases/download/quast_5.0.2/quast-5.0.2.tar.gz

tar -xzf quast-5.0.2.tar.gz

export PATH=/path/to/quast:$PATH

3. Create a new directory for running the ntEdit+Sealer protocol. Enter the new di-
rectory, soft-link the draft genome assembly from the ntEdit+Sealer repository and
download the reference genome assembly and short reads.

mkdir ecoli_demo

cd ecoli_demo

ln -s /path/to/ntedit_sealer_protocol/demo/ecoli_shasta.fa

wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM5

84v2/GCF_000005845.2_ASM584v2_genomic.fna.gz

fasterq-dump SRR15859208

The fasterq-dump command will download the short reads into two separate
FASTQ files. These files are named according the SRA run accession number (i.e.,
SRR15859208_1.fastq and SRR15859208_2.fastq for the forward and re-
verse reads, respectively). If, for some reason, the correct version of sra-tools and fasterq-
dump cannot be installed, fastq-dump may be used instead with the following command:
fastq-dump SRR15859208 --split-3 --skip-technical.

4. Run the ntEdit+Sealer Makefile with the “finish” command to polish and fill the draft
assembly ecoli_shasta.fawith the two reads files SRR15859208_1.fastq
and SRR15859208_2.fastq. Specify k-mer lengths of 80, 65 and 50 with the k
parameter, and a Bloom filter size of 200 MB with the b parameter. The protocol
should take approximately 5 min to complete and requires under 550 MB of RAM,
so can easily be run on a modern laptop or desktop computer.

ntedit-sealer finish seqs=ecoli_shasta.fa \

reads="SRR15859208_1.fastq SRR15859208_2.fastq" \

k="80 65 50" b=200M
Ensure that quotation marks are used to enclose lists of parameter values (i.e., read files
and k-mer lengths), and that individual items in lists are space-separated. k-mer lengths
must be passed in decreasing order. The command will run (1) ntHits and ABySS-bloom
to populate Bloom filters from the short reads, (2) a Bash script to call ntEdit iteratively
with decreasing k, (3) a Python script to consolidate (soft-mask) sequences shorter than
the lowest k that are flanked by soft-masked regions, and finally (4) Sealer.

5. Ensure that the ntEdit+Sealer run completes successfully. Successful comple-
tion will result in the Makefile reporting “ntEdit and Sealer polish-
ing steps complete! Polished assembly can be found in:
ecoli_shasta.ntedit_edited.prepd.sealer_scaffold.fa”.

6. Run QUAST to analyze the draft and ntEdit+Sealer-finished genome assemblies.

Table 1 Number of Mismatches and Indels per 100 kbp for E. coli Assembly Before and After
Finishing with ntEdit+Sealer

a

Draft assembly After ntEdit+Sealer

# mismatches per 100 kbp 371.33 345.86

# indels per 100 kbp 122.38 7.22

a
Running ntEdit+Sealer assembly finishing protocol decreases the proportion of mismatched bases and the proportion

of indels in the E. coli genome assembly.
Li et al.
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quast --fast -r GCF_000005845.2_ASM584v2_genomic.fna.gz \

-o ecoli_quast ecoli_shasta.fa \

ecoli_shasta.ntedit_edited.prepd.sealer_scaffold.fa

All QUAST output files will be printed to the ecoli_quast directory, specified by the
-o parameter. A summary report will be printed in tab-separated format to a file named
report.tsv, where each column describes one of the input assemblies. The “# mis-
matches per 100 kbp” metric in this summary describes the base accuracy of the draft
and finished assemblies compared to the reference. The “# indels per 100 kbp” metric
describes the average proportion of insertions or deletions of either assembly compared
to the reference. The expected values for these metrics are shown in Table 1. If QUAST
was installed manually, the executable will be quast.py.

SUPPORT
PROTOCOL

SELECTING OPTIMAL VALUES FOR k-mer LENGTHS (k) AND BLOOM
FILTER SIZE (b)

Both ntEdit and Sealer employ a k-sweep approach, iterating from long to short k-mer
lengths. This approach is beneficial because different k-mer lengths can provide reso-
lution at different scales. Larger k-mers can disambiguate repeats as they span longer
regions, while shorter k-mers are useful when the local read coverage is low and for as-
semblies with lower base quality. The same sequence of k values is used for both tools.
k=40 is the practical lower limit for Sealer, as shorter k values cause its runtime to in-
crease sharply. We find that k=80 generally performs well for a variety of datasets and
suggest decreasing in intervals of 10-15. Generally speaking, there is no strict upper limit
for k (apart from the read length), so a wide range of k-mer lengths can be used to achieve
the best polishing results. Time and memory restrictions will be the limiting factors in
these cases.

ntHits will automatically select the optimal Bloom filter size for ntEdit by calculating
the k-mer distribution for the input reads, but ABySS-bloom requires the desired Bloom
filter size to be specified. This parameter is controlled by the b parameter when invoking
the protocol Makefile.

The optimal size of a Bloom filter depends on several factors, namely the desired false
positive rate (FPR), number of hash functions used for insertion, and number of elements
that will be inserted. For large Bloom filters, the FPR can be approximated (Equation 1):

f =
(

1 − e
−hn

m

)h

Equation 1

where f is the FPR, m is the size of the filter in bits, h is the number of hash functions, and
n is the number of elements (Broder & Mitzenmacher, 2004). By default, ABySS-Bloom
uses one hash function for insertion. Using this relationship and asserting h=1, we can
approximate the optimal m for a given dataset and desired FPR (Equation 2):

m = Ceil

( −n

ln (1 − f )

)

Equation 2

The following Bloom filter sizes (RAM) generally perform well for common model
organisms:

• Homo sapiens (3 Gbp genome): 100 GB
• Caenorhabditis elegans (100 Mbp genome): 2.5 GB
• Escherichia coli (5 Mbp genome): 200 MBLi et al.
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The optimal b value for other genome sizes can be interpolated from these guidelines, or
can be estimated using ntCard (Mohamadi, Khan, & Birol, 2017). ntCard is a streaming
algorithm for estimating k-mer frequencies in genomic datasets and can be used to deter-
mine the number of unique k-mers in a set of short reads. ABySS-Bloom creates a 2-level
cascading Bloom filter (Salikhov, Sacomoto, & Kucherov, 2014) from short-read k-mers;
this means that only k-mers appearing two or more times are accounted for. Therefore,
only k-mers with multiplicity of 2 or more should be considered when estimating optimal
Bloom filter size.

The following steps in this Support Protocol describe how ntCard should be used to cal-
culate the optimal Bloom filter size for a dataset, ensuring a false positive rate (FPR) of
∼0.005. The same E. coli short reads from the Basic Protocol will be used to demonstrate
this protocol.

Necessary Resources

Hardware

A server or machine running a 64-bit Linux or Mac operating system capable of
running ntCard.

Software

ntCard v1.2.2+ (https://github.com/bcgsc/ntCard)

ntCard is available on the Conda and Homebrew package managers and can also
be cloned and compiled from Github.

Files

The short sequencing reads that will be used as input to ntEdit+Sealer will be
analyzed here. The reads can be provided in compressed or uncompressed
FASTQ format and paired-end reads do not need to be interleaved.

1. Install ntCard.

Option A: Installation using the Conda package manager

conda create -n ntcard

conda activate ntcard

conda install -c bioconda "ntcard>=1.2.2"

Option B: Installation using the Homebrew package manager

brew install brewsci/bio/ntcard

Option C: Manual installation from Github

git clone https://github.com/bcgsc/ntCard.git

./autogen.sh

./configure --prefix=/path/to/ntCard
make

make install

The --prefix parameter for the configure script installs ntCard to the provided path.
This parameter can be excluded if you have sudo privileges and wish to install the tool
into /usr/local. If using Conda, activate the environment that ntCard was installed to
with the command conda activate environment_name. If manually installing
ntCard to a specific directory, ensure that the path supplied to the --prefix parameter
is on your PATH.

2. Run ntCard on the read files, providing all k values you are planning on using for
ntEdit+Sealer. We will use k=80, k=65, and k=50.

Li et al.
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Table 2 F1, F0 and Number of Multiplicity 1 k-mers for E. coli Illumina Reads
a

k F1 F0 1

50 322,869,315 47,853,592 41,155,307

65 300,812,763 50,900,032 44,179,082

80 278,838,102 52,274,328 45,577,189

a
Table values correspond to the first three rows of ntCard output histograms for 50-mer, 65-mer, and 80-mer cardinality

estimation of E. coli strain NDM5 Illumina reads.

Table 3 Number of k-mers Appearing at Least Twice in E. coli Illumina Reads
a

k n

50 6,697,139

65 6,720,950

80 6,698,285

a
Number of k-mers with multiplicity of 2 or more calculated from ntCard output. For each k, n is equal to the number of

unique k-mers in the dataset (F0) minus the number of k-mers with multiplicity of one.

ntcard -k80,65,50 -p freq \

SRR15859208_1.fastq SRR15859208_2.fastq

This command will generate a k-mer distribution histogram for each k provided. Each
histogram will be printed to a two-column, tab-separated file with the prefix freq, for
example, freq_k80.hist, where the first column represents an Fk metric or multi-
plicity and the second column contains the number of corresponding k-mers.

3. Inspect the k-mer frequency histograms. Only the first three lines are necessary for
our purposes.

head -n 3 freq_k*.hist

The first two lines of each histogram contain Fk metrics, which describe statistics for the
input dataset. F0 is the number of distinct k-mers in the reads, and F1 denotes the total
number of k-mers in the dataset. The third line contains the number of k-mers appearing
once in the reads. See Table 2 for the expected values of these metrics.

4. Estimate the number of k-mers that appear two or more times in the reads. Subtract
the number of k-mers that appear only once from F0 with the following one-liner:

for k in 80 65 50; do distinct=$(grep “F0” freq_k$k.hist | awk ’{print $2}’);

once=$(grep “˄1\b” freq_k$k.hist | awk ’{print $2}’); echo k=$k:
n=$((${distinct} - ${once})); done

This command will calculate and print the number of k-mers appearing two or more
times for each k. See Table 3 for the expected values for each k.

5. Calculate the optimal Bloom filter size from the k-mer distributions using the largest
n calculated in step 4 (k=65). This will maximize the number of unique k-mers con-
sidered, and therefore produce the lowest FPR for the range of k, a method analogous
to that employed by Kmergenie (Chikhi & Medvedev, 2013). Using the relationship
between FPR and Bloom filter density, the optimal value of m given an FPR (f) of
0.005 is (Equation 3):

m = Ceil

( −n

ln (1 − f )

)
= Ceil

(−6720950

ln (0.995)

)
= 1340826718 bits

Equation 3

This equates to approximately 168 MB. We rounded this estimate up to 200 MB for the
example in the Basic Protocol.Li et al.
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GUIDELINES FOR UNDERSTANDING RESULTS

The final output of ntEdit+Sealer is a base-corrected assembly with assem-
bly gaps closed. The file will have the suffix .ntedit_edited.prepd.
sealer_scaffold.fa. The Makefile will exit with a non-zero code if an error occurs
during any of the intermediate steps. Otherwise, the pipeline will log a success message
to inform the user of its completion.

ntEdit keeps track of the base corrections made to the draft assembly, and these changes
are printed for each iterative run to a tab-separated file with the suffix _changes.tsv.
Each iterative run will also produce an intermediate edited FASTA file. Sealer will print
information about how many gaps are closed during each iterative k to a single file with
the suffix .sealer_log.txt.

Genome assembly assessment tools such as BUSCO (Simão, Waterhouse, Ioannidis,
Kriventseva, & Zdobnov, 2015) and QUAST (Gurevich et al., 2013) can be used to assess
assembly correctness before and after polishing. BUSCO is a tool that quantifies the com-
pleteness of genome assemblies, transcriptomes, or gene sets with sets of evolutionarily
conserved, single-copy genes. These gene sets are referred to as Benchmarking Universal
Single-Copy Orthologs (BUSCOs) and are available for many clades across the tree of
life. The presence, absence, or duplication of BUSCO members within a genome assem-
bly provides a metric for how complete the assembly is in genic space. Polishing with
ntEdit+Sealer improves the base quality and therefore should increase the percentage of
complete BUSCO genes in your draft assembly. Since BUSCO only searches for con-
served genes within a genome assembly, it is a favorable solution when performing de
novo assembly for an organism without a reference genome. QUAST is a genome assem-
bly quality-assessment tool that produces a wide range of metrics and visualizations and
is particularly beneficial when a reference genome is available. Of note, the number of
mismatches per 100 kbp and number of indels per 100 kbp describe the accuracy of your
genome assembly in relation to the reference. These metrics should decrease after using
ntEdit+Sealer to polish and finish your draft genome, assuming the assembled genome
is highly similar to the reference genome.

COMMENTARY

Background Information
ntEdit was developed as an assembly pol-

ishing tool (Warren et al., 2019), and Sealer
was developed as a tool for filling gaps in
genome assemblies (Paulino et al., 2015). New
features (discussed in the Critical Parame-
ters section) have been implemented in both
tools that allow them to work harmoniously
to resolve assembly errors. The multi-step ap-
proach allows error correction at different lev-
els of resolution. ntEdit resolves assembly
errors on a small scale, correcting base er-
rors and insertions and deletions up to 5 nu-
cleotides in length by querying the short-read
Bloom filter for all possible edits. If none of
the possible edits have sufficient support, the
erroneous region is soft-masked for further
base correction by Sealer. Sealer fills the larger
erroneous assembly regions, as well as exist-
ing hard-masked assembly gaps, by travers-
ing an implicit Bloom filter de Bruijn graph
to find a path that connects the gap-flanking
sequences.

Both tools employ Bloom filters, mak-
ing them more memory efficient and quicker
than alignment-based approaches. Bloom fil-
ters only consist of an array of bits, thereby re-
quiring less memory during runtime and stor-
age. Additionally, inserting and querying for
elements in Bloom filters are both constant
time operations, depending only on the num-
ber of hash functions used for insertion. These
characteristics make Bloom filter–based tools
beneficial for storing and querying large se-
quencing datasets and allow the ntEdit+Sealer
protocol to be accessible to groups without ac-
cess to large amounts of RAM and processing
power.

Critical Parameters
When working with Bloom filters, the

Bloom filter size and k-mer length are of crit-
ical importance. The Support Protocol pro-
vides guidelines for selecting the optimal val-
ues for these parameters. ntEdit and Sealer
must be configured to be compatible with
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Table 4 Sources of and Solutions to Potential Errors
a

Problem Possible cause Solution

ntEdit does not make any
edits and/or Sealer does
not fix any regions

The supplied k values may be
too low or high

Sweep a larger range of k values. For ntEdit,
check the _changes.tsv output files to
determine which k values produce the most
edits. For Sealer, check .sealer_log.txt
file to determine which k values close the most
gaps. Adjust the parameter values accordingly.

Sealer step takes too long The provided k value is too low The realistic lower-bound for k is 40. Run the
protocol again with higher k values.

Assembly accuracy
metrics from BUSCO or
QUAST deteriorate

False positive rate of
ABySS-Bloom Bloom filter may
be too high.

Increase the Bloom filter size (b parameter) or
try larger k values

The ntEdit+Sealer
Makefile gives the error
“No rule to make target…”

Parameter values or files were
passed or named incorrectly

Ensure input files are named correctly and that
parameters are passed as expected. Run
ntedit-sealer help or check the
ntEdit+Sealer Github page for more details.

a
Potential problems that a user may encounter when running ntEdit+Sealer protocol and corresponding potential causes and solutions.

their respective soft-masking parameters. The
soft-masking behavior of ntEdit is controlled
by setting -a 1. Sealer does not recognize
lower-case (soft-masked) characters as assem-
bly gaps by default; the --lower flag dictates
this behavior. The ntEdit+Sealer Makefile has
these behaviors configured automatically.

Troubleshooting
The Makefile should not finish running

(i.e., will exit with a non-zero status) if an er-
ror occurs during any of the intermediate steps.
Carefully inspect the logs, output files, and er-
ror codes if an error occurs. See Table 4 for
possible problems, causes and solutions.

If other problems arise related to the
ntEdit+Sealer protocol Makefile and scripts,
create a Github Issue on the ntEdit+Sealer
Github page at https://github.com/bcgsc/
ntedit_sealer_protocol/ issues. Please address
any problems related to specific tools on their
respective Github Issues pages.
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