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Objective: Myocardial infarction (MI) is linked to an imbalance in the supply and demand of blood oxygen
in the heart muscles. Beta-blockers and calcium antagonists are just two of the common medications
used to treat MI. However, these have reportedly been shown to be either ineffective or to have undesir-
able side effects. Extract of Ginkgo biloba leaves (GBE), a Chinese herbal product offers special compati-
bility benefits in therapeutic settings relating to inflammatory diseases and oxidative stress. In order
to better understand how GBE affects MI in rats insulted by isoprenaline (ISO), the current study was
designed.
Methods: The heart weight index, serum lipid profile, cardiac marker enzymes, endogenous antioxidants
[catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), nitrites and malondialdehyde (MDA)],
inflammatory mediators [tumour necrosis factor alpha (TNF-a) and interleukin-6 (IL-6)], immunohisto-
chemical expressions of B-cell lymphoma factor-2 (Bcl-2), extracellular signal-regulated kinase
(ERK1/2), and mammalian target of rapamycin (mTOR) and histopathological analysis were used to
assess the cardioprotective properties of GBE.
Results: The findings showed that GBE effectively attenuated myocardial infarction by boosting the
body’s natural antioxidant defense system and reducing the release of inflammatory cytokines as well
as heart injury marker enzymes. The expression of Bcl-2, ERK1/2 and mTOR was increased while the his-
tomorphological alterations were reversed.
Conclusion: The cardioprotective effects of GBE may be due to a mechanism involving increased Bcl-2/
mTOR/ERK1/2/Na+, K+-ATPase activity.
� 2024 Tianjin Press of Chinese Herbal Medicines. Published by ELSEVIER B.V. This is anopen access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cardiovascular disease (CVD) has been reported to be the lead-
ing course of death worldwide constituting about seven million
deaths which comprises of 12.8% of all mortality cases in the year
2020 (Qin et al., 2022; Teo & Rafiq, 2021; Virani et al., 2020).
Myocardial injury (MI), also known as myocardial ischemia injury,
was one of the pathophysiology of CVD and it was brought on by
the restriction of blood and oxygen supply to the heart (Redline,
Azarbarzin, & Peker, 2023). An imbalance between the demands
of coronary blood and myocardial oxygen caused MI injury, which
was irreversible progression of cardiac muscle tissue destruction
(Liu et al., 2021). The onset of symptoms, its associated impairment
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and its recurrence endangered the patients’ quality of life and
increased their mortality rate, particularly sudden death, which
was the most common pattern of harm brought on by MI (Lin
et al., 2021). Studies on the pathophysiology of MI have recently
shown that oxidative stress and inflammation played significant
roles in the pathogenesis of MI (Deng et al., 2021). The cardiac cell
experienced a number of aberrant metabolic and biochemical vari-
ations as a result of an increased inflammatory response (Wang
et al., 2020). The interaction between the ERK1/2 signalling path-
way had received little attention despite decades of in-depth study
(Zhu et al., 2022). By lowering the expression of inflammatory
cytokines, activation of ERK1/2 reduced the severity of acute
myocardial infarction in rats (Khalifa et al., 2022). According to
research by Shen et al. (2023), the MAPK/ERK1/2 signalling path-
way both exacerbated and defended against cardiac damage. Addi-
tionally, early research offered strong support for a potential
function for the mammalian target of rapamycin (mTOR) signalling
pathway in the regulation of lifespan in invertebrates and this data
had recently been extended to mammals (Mota-Martorell et al.,
2022). According to Lotfollahzadeh et al. (2023), unregulated
mTOR signalling has been linked to metabolic diseases like obesity.
On the other hand, little was known about the function of mTOR in
cardiovascular disorders. The lack of oxygen prevented oxidative
phosphorylation, which caused the mitochondrial membrane to
become depolarized, ATP decreased and cardiac contractile perfor-
mance was limited (Zhou et al., 2021). Aerobic glycolysis was
replaced by anaerobic glycolysis when there was a sustained lack
of oxygen which consequently resulted to lactic acid builds up
and a decrease intracellular pH (Souto-Carneiro et al., 2020). How-
ever, free radicals and reactive oxygen species (ROS) were acti-
vated by the acidic conditions present during ischemia (Sadiq,
2023). The inflammatory response was then triggered by an accu-
mulation of ROS, which increased contractile failure, hypertrophy
and fibrosis as well as cell death (Xie et al., 2021). These anomalies
may have function to significantly trigger the development of car-
diac injury as a whole (Chen et al., 2021). Numerous investigations
have shown that anti-inflammatory treatments may stop the
occurrence of these harmful incidence to lessen MI and its associ-
ated dysfunctions (Asiwe et al., 2024). Indeed, intriguing results
have came from a number of treatment studies employing animal
models. But none of the pre-clinical phases were practical or useful
in extensive human clinical practice (Milic et al., 2022). It was
decided to use Ginkgo biloba L. in this case because of its unique
properties of antioxidative and anti-inflammatory properties.

G. biloba, also referred to as the ‘‘living fossil”, was said to be
indigenous to China, Japan and Korea, and had experienced very
few evolutionary changes over the course of 200 million years
(Wang et al., 2023). According to Wang et al. (2020), it was thought
to have originated in the isolated mountain valleys of Zhejiang Pro-
vince in eastern China. Both its leaves and its nuts were now
widely farmed (Shahrajabian et al., 2022). For more than
5 000 years, traditional Chinese medicine had employed medicinal
preparations of the dried leaves for a variety of uses. Only lately the
full pharmacological potential of the Ginkgo leaf had been recog-
nized (Feodorova et al., 2020; Ge et al., 2021). Studies on the bio-
logical activity of various Ginkgo leaf components first began
with the development of contemporary scientific methodologies
about 20 years ago. Ginkgo leaves’ amazing vitality had led to its
use as food, vitamins and medicine whether fresh or dried form
(Bommakanti et al., 2023). The predominant pharmacologically
active constituents were identified to be flavonols (kaempferol,
quercetin, myricetin, apigenin, isorhamnetin, luteolin and tamarix-
etin) and terpene trilactones (ginkgolide A, ginkgolide B, ginkgolide
C, ginkgolide J, ginkgolide M, ginkgolide K, ginkgolide L and bilob-
alide) (Liu et al., 2021; Obrenovich et al., 2022). The leaves of G.
biloba were recently used to isolate two novel ginkgolides (ginkgo-
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lide P and Q) (Hébert et al., 2022). Numerous studies have shown
that G. biloba extract (GBE) helped to treat a variety of illnesses,
including type 2 diabetes, atherosclerosis (Asiwe et al., 2024; Liu,
Gao, Li, Jiang, & Chen, 2022), hypertension (Asiwe et al., 2023a,
2023b, 2023c) and dementia (Shareena & Kumar, 2022; Adebayo
et al., 2023). GBE was frequently utilized to treat oxidative
stress-related disorders since it was high in antioxidants
(Adebayo et al., 2022; Asiwe et al., 2023a; Barbalho et al., 2022;
Ben-Azu et al., 2022). With this background, we investigated the
mechanism by which G. biloba extract attenuated the cardiomy-
ocyte damage caused by isoprenaline exposure in a Wistar rat
model.
2. Materials and methods

2.1. Materials

The Chinese company Nanjing Jiancheng Bioengineering Insti-
tute provided the chemicals Na+, K+-ATPase, lactate dehydrogenase
(LDH) and gamma-glutamyl transferase (GGT). Cardiac troponin-I
(cT-I) and creatine kinase-MB (CK-MB) were purchased from Roche
Diagnostics Elecsys 2010 (Berlin, Germany). The kits for measuring
total cholesterol (TC), triglycerides (TG), low density lipoprotein-
cholesterol (LDL-C) and high density lipoprotein-cholesterol
(HDL-C) were supplied by Randox Laboratories Ltd (Crumlin, Ire-
land). Isoprenaline was purchased from Sigma-Aldrich (Saint Louis,
USA) while Mason Vitamins (Miami Lakes, Florida, USA) provided
the standardised G. biloba extract. The analytical grade was used
for all other substances used in this study.
2.2. Animals

Male Wistar rats, aged 10–14 weeks and weighing an average of
150 g, were housed within the established laboratory norms of
temperature (25 �C) and humidity (45%–55%), and were allowed
free access to fresh water and food. To reduce animal suffering,
all research was conducted after receiving ethical approval from
the Faculty of Basic Medical Science Research Ethics Committee
(ethical approval number: RBC/FBMC/DELSU/23/182). However,
prior to the start of the experiments, all animals underwent a
seven-day acclimatization period.
2.3. Research design and treatment regimen

Animals were randomly selected into four groups after 7 d of
acclimating to the laboratory setting. The dose of isoprenaline
and GBE was adapted from the study of Asiwe et al. (2023a) and
treated as follows: Group 1 received normal saline for 28 d
(10 mL/kg b.wt); Group 2 received isoprenaline (150 mg/kg b.wt)
for day 1 and 2 consecutively; Group 3 received GBE (50 mg/kg
b.wt) after 2 d exposure to isoprenaline; Group 4 received GBE
(50 mg/kg b.wt) for 28 d.

Following the 28-day experiment, the animals were weighed
and sedated using ketamine (70 mg/kg) after overnight (12 h) fast-
ing from food. Blood samples were then taken through the retro-
orbital sinus into plane bottles for a serum biochemical analysis
(Fig. 1). The remaining heart tissues were fixed in 10% phosphate
buffered formalin for histological and immunohistological exami-
nations, while a portion of the heart tissues were excised,
degreased of blood and fat, weighed and homogenized for addi-
tional biochemical tests. In phosphate-buffered saline as Asiwe
et al. (2021) have already explained, heart tissues were homoge-
nized. The homogenates were then centrifuged for 15 min at
3 000 r/min in a 4 �C-cooled centrifuge. After the supernatants



Fig. 1. Flow chart of research design.
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were decanted, CK-MB, cT-I, Na+, K+-ATPase and antioxidant activ-
ity were all assayed.

2.4. Estimation of cardiac injury markers

Using their respective ELISA kits from Nanjing Jiancheng Bio-
engineering Institute (Nanjing, China), the levels of cT-I and CK-
MB in the heart supernatant were measured. The operation was
carried out in accordance with the manufacturer’s instruction.

2.5. Assay of lipid profile, lactate dehydrogenase (LDH) and gamma
glutaryl transferase (GGT)

According to the techniques described by Reitman and Frankel
(1957), Randox Laboratories Ltd. in Crumlin, UK, provided the com-
mercial kits. These kits were employed to calculate the levels of
total cholesterol (TC), triglyceride (TG) and high density
lipoprotein-cholesterol (HDL-C). This formula was used to deter-
mine low density lipoprotein-cholesterol (LDL-C): TC � TG/5 �
HDL-C = LDL-C. Also, following the manufacturer’s instructions,
the levels of LDH and GGT activities in the serum were measured
using their respective commercial ELISA kits.

2.6. Measurement of Na+, K+-ATPase activity

The Na+, K+-ATPase activities were evaluated in accordance with
Dai et al.’s (2021) instructions. The cardiac tissue supernatant was
incubated at 37 �C with 0.2 mL of buffer, 0.2 mL of CaCl2, 0.2 mL of
ATP and 0.2 mL of water. This mixture was then incubated with
2.0 mL of 20% trichloroacetic acid (TCA) for 10 min at 37 �C, and
the absorbance was measured at 650 nm.

2.7. Assay of cardiac antioxidant activities

Commercial diagnostic kits and established techniques were
used to determine the cardiac superoxide dismutase (SOD), cata-
lase (CAT), glutathione (GSH), nitrites, and malondialdehyde
(MDA) status. In summary, the McCord and Fridovich (1969)
approach was used to identify SOD activity. The amount of enzyme
that stopped pyrogallol oxidation by half was assumed to equal
one unit of SOD. SOD activity was represented as U/mg protein.
The CAT assay was carried out in accordance with Beers and
Sizer’s (1957) guidelines. The enzyme quantity designated as one
unit of CAT was determined to be required to break down 1 mol
of hydrogen peroxide (H2O2)/min. As mg/protein, the CAT enzyme
activity was expressed. According to Góth (1991), the reduced GSH
concentration was found by combining the solutions, which
included 2 mL of syringe, 8 mL of Milli-Q water and 100 lL of
1.0 mol/L NaCl with pH adjusted to 4.7 using 0.1 mol/L of HCl.
At 400 nm, the absorbance spectrum measurements were made.
A method developed by Ohkawa et al. (1979) was used to deter-
mine the amount of MDA in the myocardium of the heart. A total
of 1 mL of 10% TCA, 0.5 mL of saline, and 0.5 mL of tissue homoge-
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nate were combined after being centrifuged at 3 000 r/min for
20 min. The protein-free supernatant was combined with
0.25 mL of TBA reagent to make 1 mL, which was then heated
for an hour at 95 �C. After bringing the tubes to room temperature
and immersing them in running water, the absorbance at 532 nm
was measured. The Griess method was used to assess nitrite, a
product of nitric oxide (NO) generation according to Asiwe et al.
(2022a). The Griess reagent was freshly made with 0.1% N-(1-
napththyl) ethylene diamine dihydrochloride and 1% sulphanil-
amide in 5% phosphoric acid. The cardiac supernatant was trans-
ferred to a microtiter plate together with 50 lL of distilled water
for diluting it and 100 lL of Griess reagent for a 10-min incubation
period at room temperature and in the dark. The standard curve’s
reference point was sodium nitrite. The absorbance was measured
at 540 nm with a microplate reader (MICRO READ 1000, Namur,
Belgium).

2.8. Histology and immunohistochemistry

Standard methods were used to embed 10% phosphate-buffered
formalin-fixed heart tissue in paraffin blocks, it was segmented
into 4–5 lm sections, deparaffinized and then rehydrated. After
that, the slices were H&E-stained for cytoarchitectural alterations.
More specifically, immunohistochemistry was carried out on
paraffin-embedded, 5-lm-thick cardiac fixed-tissue slices. We
examined the immunoreactivity of Bcl-2, mTOR and ERK1/2 using
rabbit polyclonal antibodies from Elabscience Biotechnology
(Philadelphia, USA), and the Avidin-Biotin Complex (ABC) tech-
nique described by Kolawole et al. (2022) and Asiwe et al.
(2023c) was adopted.

2.9. Statistical evaluation

The mean and standard error of mean (SEM) for all results were
presented. One-way ANOVA was used to analyse the results and
Bonferroni multiple comparison test was used in the post-hoc
analysis using GraphPad Prism software version 8.3.5. Statistical
significance was defined as a difference with P < 0.05.
3. Results

3.1. G. biloba reversed cardiac hypertrophic phenotype

Isoprenaline induced an increase in heart weight [F (3,
16) = 43.29, P < 0.000 1, R2 = 0.890 3] when compared to the control
group. However, treatment with GBE significantly reduced cardiac
weight index compared to the ISO group as shown in Fig. 2.

3.2. G. biloba attenuated hyperlipidaemia

There was a significant increase in TC [F (3, 16) = 36.25,
P < 0.000 1, R2 = 0.871 7], TG [F (3, 16) = 28.83, P < 0.000 1,



Fig. 2. G. biloba reversed cardiac hypertrophic phenotype (Mean ± SEM, n = 5)
*P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo
biloba extract.

Fig. 3. G. biloba attenuated hyperlipidaemia (Mean ± SEM, n = 5). (A) Total cholest
density lipoprotein-cholesterol (LDL-C). *P < 0.05 vs control group, #P < 0.05 vs ISO
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.

R2 = 0.843 9] and LDL-C [F (3, 16) = 37.83, P < 0.000 1, R2 = 0.876 4]
in isoprenaline exposed animals when compared to the control
group. HDL-C [F (3, 16) = 50.80, P < 0.000 1, R2 = 0.905 0] was sig-
nificantly reduced in ISO-group when compared to control group.
However, treatment with GBE significantly abated ISO-induced
dyslipidaemia by increasing HDL-C and reducing TC, TG as well
as LDL-C (Fig. 3).

3.3. G. biloba modulated cardiometabolic activities

Isoprenaline induced cardiometabolic disturbances that
resulted in significantly increase in LDH [F (3, 16) = 117.5,
P < 0.000 1, R2 = 0.956 6], GGT [F (3, 16) = 32.41, P < 0.000 1,
R2 = 0.858 7], CK-MB [F (3, 16) = 7.959, P = 0.001 8, R2 = 0.598 8]
and troponin-1 [F (3, 16) = 24.00, P < 0.000 1, R2 = 0.818 2]. How-
ever, GBE significantly abated cardiometabolic disturbances by sig-
nificantly reducing LDH, GGT, CK-MB as well as troponin-I as
shown in Fig. 4.

3.4. G. biloba abated oxidative disturbances

Acute adrenergic stimulation caused by isoprenaline induced in
the heart oxidative disturbances by significantly reducing GSH [F
erol (
grou
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(3, 16) = 30.74, P < 0.000 1, R2 = 0.852 1], SOD [F (3, 16) = 15.79,
P < 0.000 1, R2 = 0.747 5] and catalase [F (3, 16) = 16.43,
P < 0.000 1, R2 = 0.754 9] which consequently significantly
increased cardiac nitrite [F (3, 16) = 15.42, P < 0.000 1, R2 = 0.743
0] and MDA [F (3, 16) = 8.653, P = 0.001 2, R2 = 0.618 7] levels when
compared with control group. However, treatment with GBE ame-
liorated ISO-induced oxidative disturbances by significantly
increasing GSH, SOD and catalase while significantly reducing the
cardiac nitrite and MDA level as shown in Fig. 5.
3.5. G. biloba inhibited inflammatory responses

There was a significant release of pro-inflammatory cytokines
(TNF-a and IL-6) in isoprenaline exposed animals when compared
to control group. Following treatment with GBE significantly inhib-
ited the release of TNF-a [F (3, 16) = 10.40, P = 0.000 5, R2 = 0.661 0]
and IL-6 [F (3, 16) = 20.04, P < 0.000 1, R2 = 0.789 8] when com-
pared with ISO-treated group as presented in Fig. 6.
3.6. G. biloba inhibited apoptosis

Acute exposure to isoprenaline induced cardiac apoptosis by
significantly suppressing the cardiac Bcl-2 [F (3, 16) = 33.97,
P < 0.000 1, R2 = 0.864 3] expression relative to the control group.
However, treatment with GBE significantly inhibited apoptosis by
stimulating the expression of Bcl-2 when compared to ISO-
exposed animals as shown in Fig. 7.
3.7. G. biloba protected cardiac structural integrity by enhancing
ERK1/2 and mTOR expression

As presented in Figs. 8 and 9, isoprenaline significantly inhibited
the expression of cardiac ERK1/2 [F (3, 16) = 22.90, P < 0.000 1,
R2 = 0.811 1] and mTOR [F (3, 16) = 45.87, P < 0.000 1,
R2 = 0.875 8] when compared with control group. However, treat-
ment with GBE significantly enhanced the cardiac expression of
ERK1/2 and mTOR relative to ISO-treated group.
3.8. G. biloba modulated cardiac Na+, K+-ATPase activities

Sodium-potassium ATPase enzyme [F (3, 16) = 23.23, P < 0.000 1,
R2 = 0.813 3] was significantly reduced in isoprenaline exposed
animals when compared with control group. However, treatment
with GBE significantly enhanced the activities of Na+, K+-ATPase
enzyme relative to ISO-treated group as shown in Fig. 10.
TC), (B) Triglyceride (TG), (C) High density lipoprotein-cholesterol (HDL-C), (D) Low
p. ISO, isoprenaline; GBE, Ginkgo biloba extract.



Fig. 4. G. biloba modulated cardiometabolic activities (Mean ± SEM, n = 5). (A) lactate dehydrogenase (LDH), (B) gamma glutaryl transferase (GGT), (C) creatine kinase-MB
(CK-MB), (D) troponin-I. *P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo biloba extract.

Fig. 5. G. biloba abated oxidative disturbances (Mean ± SEM, n = 5). (A) reduced glutathione (GSH), (B) catalase (CAT), (C) superoxide dismutase (SOD), (D) nitrite, (E)
malondialdehyde (MDA). *P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo biloba extract.

Fig. 6. G. biloba inhibited inflammatory responses (Mean ± SEM, n = 5). (A) tumor necrosis factor (TNF-a), (B) interleukin-6 (IL-6). *P < 0.05 vs control group while #P < 0.05 vs
ISO group. ISO, isoprenaline; GBE, Ginkgo biloba extract.
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Fig. 7. G. biloba inhibited apoptosis (Mean ± SEM, n = 5). (A) control (�400), (B) isoprenaline (ISO) (�400), (C) G. biloba supplement (GBS) (�400), (D) G. biloba extract after
isoprenaline (�400). *P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo biloba extract.

Fig. 8. G. biloba protected cardiac structural integrity by enhancing ERK1/2 expression (Mean ± SEM, n = 5). (A) control (�400), (B) isoprenaline (ISO) (�400), (C) G. biloba
supplement (GBS) (�400), (D) G. biloba extract after isoprenaline (�400). *P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo biloba extract.
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3.9. G. biloba reversed ISO-induced histoarchitectural alteration

Acute adrenergic stimulation by isoprenaline induces histoar-
chitectural alterations in the heart when compared to control
group. However, following treatment with G. biloba, there were
complete recovery and the slides showed normal histoarchitecture
as shown in in Fig. 11.

4. Discussion

For the treatment of neurological disorders, GBE had been
known and utilized in China for about 5000 years (Das et al.,
2022). Recent research suggested that GBE activities were medi-
ated via anti-oxidant and anti-inflammatory capabilities (Asiwe
et al., 2022b, 2023a, 2024). However, there were questions about
the precise mechanism that might be in charge of its cardioprotec-
tive effects. Therefore, the cardioprotective effect of GBE against
isoprenaline-induced myocardial damage was investigated. Our
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results showed that GBE attenuated isoprenaline-induced myocar-
dial damage via regulation of B-cell lymphoma factor 2 (Bcl-2),
mammalian target of rapamycin (mTOR), extracellular signal-
regulated kinase (ERK1/2) and sodium–potassium ATPase activi-
ties in addition to the previously reported modulation of antioxi-
dant and anti-inflammatory mediators.

Low levels of HDL-C, high levels of LDL-C and high triglyceride
levels were characteristics of dyslipidaemia, which was usually
linked to modifications in lipid metabolism (Deprince et al.,
2020). In line with the hallmarks of hyperlipidaemia or dyslipi-
daemia, our study found that rats exposed to ISO had significantly
higher total cholesterol, triglycerides, LDL-C, as well as a signifi-
cantly lower level of HDL-C. These findings were in line with earlier
research that demonstrated abnormal cholesterol deposition in the
myocardium during isoprenaline-induced myocardial infarction
due to increased mobilization of LDL-C from the blood into the
myocardial membranes (Sivasangari et al., 2021; Lin et al., 2022).
The quantity of free fatty acids released from adipose tissue that



Fig. 10. G. biloba modulates cardiac Na+, K+-ATPase activities (Mean ± SEM, n = 5).
*P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo
biloba extract.

Fig. 9. G. biloba protected cardiac structural integrity by enhancing mTOR expression (Mean ± SEM, n = 5). (A) control (�400), (B) isoprenaline (ISO) (�400), (C) G. biloba
supplement (GBS) (�400), (D) G. biloba extract after isoprenaline (�400). *P < 0.05 vs control group, #P < 0.05 vs ISO group. ISO, isoprenaline; GBE, Ginkgo biloba extract.
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entered the myocardium fluctuated depending on the quantity of
free fatty acids that were present in the coronary sinus
(Iacobellis, 2022). The excess free fatty acids can be used by the
body to make triglycerides, leading to hypertriglyceridemia, even
though the heart can use them as source of energy (Heeren &
Scheja, 2021). In the current investigation, GBE therapy greatly
reduced the rise in total cholesterol, triglycerides, and LDL-C that
isoprenaline-induced elevation caused. In the past, Banin et al.
(2021) demonstrated that GBE ingestion can reduce plasma total
cholesterol, triglycerides and LDL-C, while also increase HDL-C
levels in experimental animals. According to Ganjikunta et al.
(2022), the cardioprotective action of GBE was likely connected
to its capacity to prevent the increased accumulation of lipids in
the myocardium by virtue of its antilipidemic function which
was attributed to its saponin contents.

According to general clinical observations, ISO induction in ani-
mal models might result in varying degrees of heart damage
(Angelovski et al., 2023). Increased heart weight index, which indi-
cated an enlarged heart, had been linked to increased protein and
water content, edematous intramuscular space and inflammatory
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cells infiltrating injured areas (Ottone et al., 2022). According to
a previous study, an increase of 1% in myocardial water content
may result in a 10% decline in ventricular function (Connelly
et al., 2020). This was demonstrated by a related study that found
that in rats exposed to ISO, ischemic cardiac tissue injury caused
the heart weight index to increase. This ISO-induced cardiac
weight index, however, was significantly restored by the GBE ther-
apy, indicating the protective actions of GBE on the cell membrane.
The release of cytosolic enzymes into the blood stream happened
when myocardial lesions occured because isoprenaline made car-
diac muscle cells more permeable (Rong et al., 2023). ATP was a
phosphate energy storage form that can be produced via LDH,
GGT and CK-MB (Khalil, 2022). Compared to the control group,
the ISO-induced animals in this study had significantly higher
levels of LDH, GGT, and CK-MB, indicating that ISO had triggered
a number of cardiac lesions. These signs, however, markedly low-
ered by GBE, suggesting that GBE might be able to lessen the car-
diotoxicity brought on by isoprenaline-induced acute adrenergic
stimulation. This result was consistent with the information pre-
sented by Marchetti et al. (2020). A crucial diagnostic of myocar-
dial injury, particularly in myocardial infarction, was cT-I, a
protein with contractile characteristics unique to cardiac muscle
(Chaulin, 2022). In our study, GBE considerably reduced the
amount of cT-I, showing that it had the potential to reduce cardiac
damage.

The induction of inflammatory responses was one of the cru-
cial elements in MI (Dutka et al., 2020). According to studies,
transcription of nuclear factor kappa-B (NF-jB) translocation
from the cytosol to the nucleus had a critical role in producing
the inflammatory responses that resulted in TNF-a and IL-6 and
triggered oxidative stress, which in turn impaired cardiac func-
tion (Qi et al., 2020). Anti-inflammatory drugs were therefore
essential for reducing inflammatory reactions (Gao et al., 2020).
Here, the findings demonstrated that ISO stimulation increased
cardiac TNF-a and IL-6 production and release. Following treat-
ment with GBE in ISO-provoked animals, the status of these
markers were noticeably decreased, suggesting that GBE had car-
dioprotective effects against MI animals. This finding was in line
with earlier studies that had shown GBE to be a potent natural
herbal anti-inflammatory product (Gupta et al., 2021; Asiwe
et al., 2023a, 2023b, 2023c, 2024).



Fig. 11. G. biloba reverses ISO-induced histoarchitectural alteration. (A) control, (B) isoprenaline (ISO), (C) G. biloba supplement (GBS), (D) G. biloba extract after isoprenaline.
The tissues were stained with H&E and �400 magnification was used to capture the slides with light microscope. Arrows indicated significant lesion.
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Myocardial injury was associated with an excessive production
of reactive oxygen species (ROS), which may damage cell mem-
brane proteins and lipids and affect the structure and functionality
of heart muscle (Zhao et al., 2022). As a result of the depletion of
antioxidants caused by the production of free radicals, lipid perox-
idation occurs (Asiwe et al., 2023b). The permeabilization of the
mitochondrial and cytoplasmic membranes caused by severe lipid
peroxidation may release MDA, a marker of lipid peroxidation into
the bloodstream (Ishimov et al., 2021; Mohideen et al., 2021). Sig-
nificantly, ISO-exposed animals had higher level of cardiac MDA
whereas receiving GBE treatment resulted in a notable reduction
in lipid peroxidation, thus enhancing the cardio protective func-
tion. The findings of our study also demonstrated a significant
increase in cardiac nitrite levels in ISO-treated rats, indicating a
dysregulation of nitric oxide signalling that may further con-
tributed to the animals’ poor cardiovascular performance
(Srivastava et al., 2022). Accordingly, NO was thought to mediate
glutamatergic excitotoxicity via synergistic and cooperative
release of glutamate and inflammatory cytokines like TNF-a by
cardiac cells, thereby creating a favourable environment that exac-
erbated cardiac damage and heart failure (Ben-Azu et al., 2022;
Asiwe et al., 2022b, 2024). On the other hand, GBE treatment sig-
nificantly lowered cardiac nitrite, thereby reinstating the normal
nitric oxide signalling and inhibition of peroxynitrite damage. An
endogenous antioxidant enzyme served vital roles in preserving
the tissues’ homeostasis by preventing tissue or cellular damage
brought on by free radicals (Anik et al., 2022). All live cells produce
glutathione (GSH), superoxide dismutase (SOD), catalase (CAT),
and other vital antioxidants. Oxidative stress is brought on by
the shortage of oxygen in the heart blood flow as a result of the
ischemic damage brought on by acute adrenergic activation. Fortu-
nately, the myocardium is protected from damage by the endoge-
nous antioxidants present in the cell (Tan et al., 2023). As
anticipated, ISO-induced animals had considerably lower levels
of SOD, CAT and GSH, which may have indicated oxidative stress
in the heart. In ISO-induced rats, this antioxidant content in the
heart was raised by GBE therapy. This supported GBE’s scavenging
actions and its ability to prevent myocardial damage. Consistent
with several research, glycyrrhizic acid’s antioxidant activities
diminished oxidative stress and lipid peroxidation brought on by
ISO-induced heart damage in rats (Chu et al., 2021; Yildiz et al.,
2022).

Adenosine triphosphatase (ATPase), a protein that uses energy
from sodium, potassium, calcium and magnesium translocation,
aids in the contraction and relaxation of the heart muscle. The nor-
mal intracellular sodium and calcium status in heart muscles is
maintained by ATPase activities (Zhang et al., 2021). A change in
the ATPases’ enzyme activity indicated a pathological adaptation
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of the membrane (Ojo et al., 2023). In the biopsies of patients with
heart failure, for instance, the Na+, K+-ATPase activity was much
lower. The aldosterone antagonist was still another factor in the
regulation of Na+, K+-ATPase after a heart attack since it lowered
hyperaldosteronism and decreased Na+, K+-ATPase activity
(Obradovic et al., 2023). In this study, it was found that ISO-
exposed animals had decreased cardiac Na+, K+-ATPase activity,
which may be related to increased lipid peroxidation and mem-
brane damage. In rats with GBE treatment there was an observed
increased in the activity of Na+, K+-ATPase. However, similar evi-
dence was also reported by Ojo et al. (2023) in MI-animals that
were ISO-challenged. Asiwe et al. (2023c) earlier stated that the
membrane stabilizing effect of GBE may also be partly responsible
for this behaviour.

The interaction between antioxidant, anti-inflammatory and
anti-apoptotic molecules had been reported to play important role
in the activation of survival signals in order to maintain homeosta-
sis (Chauhan et al., 2022; Asiwe et al., 2023a). Nevertheless, an
insult to this signalling cascade had been demonstrated to distort
normal physiology and consequently myocardial injury
(Muraleedharan & Dasgupta, 2022; Asiwe et al., 2023a). An abnor-
mality in the ERK1/2 signalling pathway, one of the traditional
MAPK signalling pathways, can result in cardiovascular diseases
like coronary atherosclerosis and myocardial damage as well as
myocardial hypertrophy. It also played a critical role in the prolif-
eration and differentiation of myocardial cells (Ghodrat et al.,
2021; Mallick et al., 2021). The ERK1/2 signalling pathway can be
activated in response to stress which significantly increased the
level of phosphorylation of the ERK1/2 protein, thereby, affecting
the expression of the downstream target protein NF-jB and regu-
lation of cell proliferation and apoptosis (Jayachandran et al., 2020;
Wen et al., 2020). In this study, it was discovered that the level of
ERK1/2 expression clearly decreased in the myocardial cells of rats
exposed to isoprenaline. Moreso, in animal cardiomyocytes
exposed to ISO, it was noticed that the expression of B-cell lym-
phoma factor 2 (Bcl-2), a powerful regulator of the apoptotic pro-
cess, significantly decreased which suggested cardiomyocyte
apoptosis. However, the expression of ERK1/2 and Bcl-2 in myocar-
dial cells increased dramatically after GBE treatment, demonstrat-
ing that GBE had shortened the interplay between inflammation
and apoptosis in causing myocardial damage to mediate cardiopro-
tection. Consistent with previous report, stimulation of the ERK1/2
signalling pathway can control endothelial cell proliferation and
migration while encouraging cardiac angiogenesis (Zhai et al.,
2021). Autophagy is a well-conserved self-degradative process
with several linkages to human disorders due to its important role
in cellular stress response, equilibrium, survival and overall organ-
ism development (Zhou et al., 2022). Recent research found that
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chronic heart ischemia hindered cardiomyocyte autophagy, which
worsened the effects of acute myocardial injury on cardiac remod-
elling (Wei et al., 2021; Mao et al., 2022). However, inhibiting
apoptosis solely, according to some studies, may not always result
in meaningful recovery of cardiomyocyte survival or function
(Ikeda et al., 2022; Mao et al., 2022; Asiwe et al., 2023a). In this
study, in addition to confirming the cardioprotective mechanism
of GBE, we paid close attention to how it affected autophagy. Mam-
malian target of rapamycin (mTOR) is a key player in the regulation
of a number of vital cellular functions, including protein synthesis,
cell growth, proliferation, autophagy, lysosomal function as well as
metabolism (Ikeda et al., 2022; Querfurth & Lee, 2021). According
to Simpson et al. (2020), the mTOR pathway controlled both
healthy and pathological processes in the cardiovascular system.
This study found that isoprenaline induction greatly reduced the
expression of cardiomyocyte mTOR which greatly suggested that
autophagy and apoptosis in cardiac cells had been stimulated. Con-
sistent with earlier studies, G. biloba may boost cell survival by
directly activating mTOR signalling. However, therapy with GBE
greatly increased the expression of mTOR suggesting that GBE
could play a role in autophagy. Notably, we examined if the cardio-
protection of GBE involved this cascade of protein signalling given
that the mTOR/ERK1/2/Na+, K+-ATPase pathway was known to
have an anti-inflammatory, anti-apoptosis and autophagy regula-
tory function in cardiac diseases (Barangi et al., 2023). As was pre-
dicted, the GBE increased the expression of these protein enzymes,
suggesting that it controled the mTOR/ERK1/2/Na+, K+-ATPase
activities to lessen the effects of isoprenaline on the myocardium.
Additionally, the study’s histology findings supported our hypoth-
esis that GBE reduced myocardial damage because complete recov-
ery from isoprenaline-induced histological changes was observed
in rats treated with GBE, which was in line with earlier report by
Singh et al. (2020), Alawode et al. (2021) and Asiwe et al. (2023a).
5. Conclusion

The results of the present investigation, taken together, indi-
cated that therapy with GBE shielded rats’ myocardium from
isoprenaline-induced myocardial injury. Along with the previously
reported antioxidant and anti-inflammatory benefits, GBE’s capac-
ity to regulate mTOR/ERK1/2/Na+, K+-ATPase activities may be the
reason for its attenuating characteristics. However, the lack of evi-
dence for apoptotic gene profiling and inflammatory molecules
such as NF-jB that could be required to further adjudge the
impacts of GBE on MI-related condition, was highlighted as some
of the possible limitations of the study. Notwithstanding, this did
not in any way invalidate our findings as biochemical and
immunohistochemical evidences from this study had provided
enough support to our claim.
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