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Abstract
In this study, we evaluate the impact of whole genome and transcriptome analysis (WGTA) on predictive molecular
profiling and histologic diagnosis in a cohort of advanced malignancies. WGTA was used to generate reports includ-
ing molecular alterations and site/tissue of origin prediction. Two reviewers analyzed genomic reports, clinical his-
tory, and tumor pathology. We used National Comprehensive Cancer Network (NCCN) consensus guidelines, Food
and Drug Administration (FDA) approvals, and provincially reimbursed treatments to define genomic biomarkers
associated with approved targeted therapeutic options (TTOs). Tumor tissue/site of origin was reassessed for most
cases using genomic analysis, including a machine learning algorithm (Supervised Cancer Origin Prediction Using
Expression [SCOPE]) trained on The Cancer Genome Atlas data. WGTA was performed on 652 cases, including a
range of primary tumor types/tumor sites and 15 malignant tumors of uncertain histogenesis (MTUH). At the time
WGTA was performed, alterations associated with an approved TTO were identified in 39 (6%) cases; 3 of these
were not identified through routine pathology workup. In seven (1%) cases, the pathology workup either failed,
was not performed, or gave a different result from the WGTA. Approved TTOs identified by WGTA increased to
103 (16%) when applying 2021 guidelines. The histopathologic diagnosis was reviewed in 389 cases and agreed
with the diagnostic consensus after WGTA in 94% of non-MTUH cases (n = 374). The remainder included situa-
tions where the morphologic diagnosis was changed based on WGTA and clinical data (0.5%), or where the WGTA
was non-contributory (5%). The 15 MTUH were all diagnosed as specific tumor types by WGTA. Tumor board
reviews including WGTA agreed with almost all initial predictive molecular profile and histopathologic diagnoses.
WGTA was a powerful tool to assign site/tissue of origin in MTUH. Current efforts focus on improving therapeutic
predictive power and decreasing cost to enhance use of WGTA data as a routine clinical test.
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Introduction

The development of next-generation sequencing
(NGS) followed by its integration into clinical oncol-
ogy form the foundation of precision oncology. The
profound role that NGS has had in expanding our
knowledge of the genetics underpinning and driving
oncogenesis is not disputed. Likewise, comprehensive
whole genome and transcriptome analysis (WGTA)
approaches remain the dominant mechanism by which
new clinically relevant biomarkers and drug sensitivi-
ties can be identified in patient subgroups. Here, we
investigate how this technology is used in current
pathology practice, such as in the sequencing of
targeted gene panels as well as whole exome, genome,
and transcriptome sequencing. As the price of
sequencing decreases, healthcare institutions offer a
varied selection of genetic testing to help manage
oncology patients, but the precise role of more com-
prehensive tumor somatic genetic testing remains
uncertain. Panel sequencing including a collection of
actionable genes is often preferred, in selected patients
or all patients depending on institutions, as it is rela-
tively rapid and inexpensive and yields data specifi-
cally focused on actionable and informative targets
linked to approved therapies. Whole exome or genome
sequencing is now sometimes considered, especially in
malignancies with no known driver, as a relatively
unbiased approach to genetic characterization. Whole
transcriptome sequencing is increasingly relevant as a
gold standard to assess genetic rearrangements such as
translocations, while also providing information on
gene expression levels. Genome and transcriptome-
wide testing presents a much broader scope of infor-
mation compared to panel sequencing, and is now
even being offered commercially. However, clinicians’
understanding of how to use the detailed data from
either approach is still evolving. These molecular
advancements have the potential to have a huge impact
on the practice of anatomical pathologists, whose
expertise is centered on making accurate and clinically
relevant diagnosis, as well as selecting and interpreting
the most appropriate battery of prognostic and predic-
tive biomarkers.
While advanced molecular techniques are being

adopted for clinical trials focused on precision oncol-
ogy, the interpretation of these assays is an ongoing
challenge. Recently published clinical trials that

utilized sequencing data show that, while these
approaches can provide a hitherto unmatched level of
insight into the mechanisms driving metastatic cancers,
the lack of availability of novel targeted therapies and
of relevant clinical trials evaluating effectiveness
means that the clinical benefit of NGS is often limited
[1–3]. However, some evidence also indicates the ben-
efits of treating using off-label drugs based on molecu-
lar profiling in hard-to-treat cancers [4]. Most common
targetable molecular alterations that are supported by
high levels of evidence, such as systematic reviews
and randomized controlled trials, can be assessed
using immunohistochemistry (IHC) or small gene
panels in routine practice [5,6]. The remaining targets
identified in broader sequencing approaches, based on
the available targeted therapies in 2021, usually
involve off-label or repurposed drug use, for which
evidence of level 1 therapeutic efficacy is lacking or
under investigation [7,8]. No studies to date have com-
pared the detection rate of biomarkers associated with
institutionally approved or reimbursed therapies,
comparing WGTA and conventional histopathology
workup.
We reviewed a series of cases in which whole

genome and transcriptome sequencing was performed
as part of BC Cancer’s Personalized Oncogenomic
(POG) study in Canada between 2012 and 2019, along
with routine molecular profiling and tumor histopa-
thology. Our goal was to evaluate the impact of inte-
grating WGTA with pathological analysis and how
these data informed the pathologic diagnosis and
could identify cases eligible for treatment with institu-
tionally approved and/or reimbursed targeted therapeu-
tic options (TTOs).

Materials and methods

Consent and institutional review board process
This research project was approved by the BC Cancer
Research Ethics Board (protocols H14-00681 and
H12-00137). Cancer patients with advanced disease,
the majority of whom had failed conventional treat-
ment and/or did not have known cancer drivers by
conventional testing, and fulfilled the inclusion
criteria, were consented, by providing a written
informed consent, for tumor profiling using RNA-Seq
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(tumor) as well as whole genome sequencing (tumor
and blood) (Clinicaltrials.gov ID: NCT02155621).

Tissue biopsy and processing
A fresh tissue biopsy was mandatory for all patients
who participated in the study. Samples were taken
from metastatic or recurrent tumors primarily under
imaging guidance. The samples were snap-frozen and
anchored in a small amount of optimal-cutting-
temperature (OCT) compound for cryosectioning.
Those samples were used for DNA and RNA extrac-
tion as well as frozen sections for histologic correla-
tion. Matching normal DNA was extracted from
peripheral blood leukocytes. The snap-frozen tissue
specimens, either from needle core biopsies or surgical
resections, were cryosectioned at 50 μm for nucleic
acid and protein extraction and 5 μm for hematoxylin–
eosin staining every 200 μm. Cases were excluded if
tumor content was less than 40% by pathology review.
The intervening sections were placed into RNAse-free
Eppendorf tubes. Only a small amount of OCT com-
pound was used to bind the tissue to the chuck of the
cryostat as OCT is known to inhibit downstream
extraction and PCR steps [9,10].

Library construction and NGS
Paired-end DNA and RNA sequencing libraries were
generated at Canada’s Michael Smith Genome Sci-
ences Centre, and sequenced on Illumina platforms
(San Diego, CA, USA): HiSeq 2500 using V3 or V4
chemistry and paired-end 125 base reads, or HiSeqX
using v2.5 chemistry and paired-end 150 base reads of
125 bp or 150 bp paired-end reads. Average coverage
for WGS was 80–100� on frozen tumor tissue DNA
and 30–40� on germline DNA from blood. A mini-
mum of 200� coverage was required for targeted
amplicon reads.
cDNA libraries were prepared from biopsy samples

using strand-specific RNA-Seq Sample Preparation kit
(stranded, polyA+) from Illumina. RNA sequencing
was performed on the Illumina HiSeq 2500 platform
or the NextSeq500 using v2 chemistry, targeting a
minimum of 200 million paired-end reads per sample.

RNA expression analysis
RNA-Seq data were analyzed using JAGuar v2.0.3
[11] and subsequently processed using previously pub-
lished Genome Sciences Centre pipelines to yield
exon- and transcript-level read counts and RPKM
(Reads Per Kilobase of transcript per Million mapped
reads) values based on Ensembl 69 gene models [11].

Gene-level RPKM values were calculated using a col-
lapsed gene model.
Fold change for each gene was calculated by divid-

ing each gene’s RPKM value against an average of the
RPKM values for the gene in a compendium of adja-
cent normal tissue samples from the Illumina Human
BodyMap 2.0 project. A percentile ranking of the
RPKM of each gene against reference datasets from
tumors of The Cancer Genome Atlas (TCGA, https://
tcga-data.nci.nih.gov/tcga/) [12] was used to identify
genes with aberrant expression and to prioritize genes
of interest.
The expression correlation analysis was two-

pronged – preliminary expression correlation analysis
for tumor typing was undertaken relative to the entire
set of normal and tumor transcriptomes in TCGA.
Two-way analysis of variance was used to identify
genes that distinguished each pair of TCGA tumor
types. This resulted in a set of 3,000 genes that were
the most informative in explaining patterns of variance
amongst all TCGA tumor types. A spearman correla-
tion was calculated for this set of genes from the
tumor sample against each TCGA sample. These
pairwise correlations were clustered by the disease sta-
tus (tumor or normal) and cancer type of the TCGA
samples. The cancer set with the highest median corre-
lation was determined to be representative of the clos-
est cancer type for the sample. In addition, the
Supervised Cancer Origin Prediction Using Expression
(SCOPE, version 1.0 at https://github.com/jasgrewal/
cancerscope [13]) algorithm was used to obtain pan-
cancer classification scores to determine cancer type of
origin.

Genome analysis
WGS normal and tumor data for each patient were
aligned to the GRCh37 reference human genome using
BWA v0.5.7 (v0.5.7 for up to 125 bp reads and v0.7.6a
for 150 bp reads). [14] Duplicate reads were marked
using Picard (v1.38, https://github.com/broadinstitute/
picard). The tumor and normal WGS samples were
compared to identify somatic events. Somatic single-
nucleotide variants (SNVs) were called using SAMtools
(v0.1.17), Strelka v1.0.6, and MutationSeq v1.0.2
[15–17]. Strelka v0.4.62 was also used to call small
insertions and deletions. The somatic variant annotation
was completed with snpEff 3.2 based on Ensembl gene
models (v69), COSMIC v64, and dbSNP v137. Loss of
heterozygosity (LOH) events were determined with
APOLLOH v0.1.1 [18,19]. Somatic copy number
variants were identified using CNAseq v0.0.6 (https://
www.bcgsc.ca/platform/bioinfo/software/cnaseq).
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Tumor content (purity) and estimated average ploidy
were determined by manual review of copy number and
LOH data. Amplifications were defined as regions with
copy number of more than twice the average tumor
ploidy. Structural variants and gene fusions were identi-
fied with ABySS and Trans-ABySS [20–22].
Microbial and viral integration detection analysis

was done using an in-house pipeline and Bio-
BloomTools [23]. Microsatellite instability (MSI)
detection was based on MSIsensor (v0.2) [24]. Muta-
tion signatures were classified using a non-negative
least squares deconvolution based on COSMIC v2
mutation signatures (https://cancer.sanger.ac.uk/cosmic/
signatures_v2), computed from SNVs called by Strelka
using a previously described approach [25].

Determination of tumor type
Each case was first reviewed by the patient’s primary
oncologist who provided specific questions and rele-
vant clinical information to the bioinformatic team.
The genomic and transcriptomic findings, combined
with specific clinical observations and questions,
guided a literature search to identify prognostic and/or
predictive evidence surrounding the patient’s WGTA
profile. Soon after, during weekly tumor board ses-
sions involving a multidisciplinary group including
pathologists, medical oncologists, bioinformaticians,
and computational biologists as part of the WGTA
project, data for each case were compiled from (1) gene
expression, (2) whole genome analysis, (3) histo-
morphologic assessment, and (4) clinical background.
The consensus emerging from all four evidence
sources was defined as the final diagnosis, which was
retrospectively compared to the initial diagnosis ren-
dered by the pathologist reliant on histomorphology
and clinical assessment. The individual processes for
data assessment are described in detail below:

1. Expression correlation analysis for tumor typing
was undertaken relative to the entire set of normal
and tumor transcriptomes in TCGA as well as the
Illumina Body Map 2.0.

2. The whole genome analysis identified somatic and
germline variants of interest. These variants could
either be indicative of treatment response or resis-
tance or, in some cases, provide additional informa-
tion regarding the cancer diagnosis. These mutation-
based evidence points for treatment management
and/or diagnosis would arise from the literature
review performed by computational biologists as
part of the analytic pipeline for each case.

3. The histomorphology assessment was gathered
from previous pathology reports including diagnos-
tic biopsies and/or resection specimens. All cases
were reviewed centrally by an expert specialty
practice pathologist prior to being presented to the
multidisciplinary group.

4. Finally, relevant clinical history and imaging was
presented by the treating medical oncologist for
each case. Of note, this information was provided
to the genome analysts/bioinformaticians and
pathologists at least 4 weeks prior to the discussion
of the case in order to facilitate any relevant clinical
interpretation.

Overall, a combination of whole genome analysis,
mutational burden, machine learning driver gene
expression analysis, gene expression-based pathway
analysis, morphologic report, IHC, imaging, and other
clinical metrics was used to suggest a tumor type/site
of origin to the oncology clinical team. This final diag-
nosis was used in our study for comparison against the
initial pathology diagnosis as well as the machine
learning-based algorithm result. The cases were
labeled as malignant tumor of uncertain histogenesis
(MTUH) when a specific diagnosis, including site and
tissue type, could not be rendered after the pathology
workup of tumor tissue (from biopsy or re-
section specimen). We recognize that the clinical
oncology literature refers to tumors of unknown origin
as primary of unknown origin or carcinoma of
unknown primary (CUP), but we use the MTUH ter-
minology to help clarify that the types of tissues
within a given organ site are varied and crucial in
understanding the pathogenesis of a malignancy.
SCOPE, a previously validated whole transcriptome-
based pan-cancer method powered by a neural network
algorithm, was also used to predict cancer type of ori-
gin in retrospective analysis based on gene expres-
sion [13].

Review of the biomarkers detected by WGTA and
the molecular pathology workup
The WGTA and molecular pathology reports were
reviewed for all cases (n = 652) looking for bio-
markers associated with TTO either approved by the
National Comprehensive Cancer Network (NCCN)
(categories 1, 2A, and 2B), Food and Drug Adminis-
tration (FDA), or Health Canada. Since the study is
retrospective, we compared the first date of approval/
recommendation to the date when the case was
reviewed at the tumor board meeting to determine if
the biomarker and associated TTO were approved at
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the time of WGTA. We also reviewed mutations
associated with treatment resistance, based on NCCN
consensus, because although not associated with
TTO they were likely to have an impact on
management.

Review of the histopathologic report and
comparison to SCOPE prediction of site and/or
tissue of origin
We then reviewed the pathology report diagnosis of
cases (n = 389) based on availability and the presence
of a TCGA comparator for the same tumor type. The
latter was important because we required the TCGA
gene expression data as a comparator for a given
tumor type to formulate WGTA-based diagnostic pre-
diction using SCOPE. When an alternate site and/or
tissue of origin was suggested at the tumor board,
orthogonal testing using IHC or Sanger sequencing
was used to validate the WGTA findings. We then
compared the final diagnosis given at the time of the
analysis of each case, during tumor boards, to the
pathology diagnosis just prior to the meeting (see
section ‘Determination of tumor type’).

Results

Cohort demographics, clinical metrics, and
sequencing data
WGTA was performed on a cohort of 652 unique
cases with advanced cancer sequenced between 2012
and 2019. Patients were 36% males and 64% females,
and the 5-year survival was 45% with a median sur-
vival of 3 years. The cohort selection process and
tumor types breakdown are summarized in Figure 1.

Conventional molecular pathology workup and
WGTA showed comparable detection rates for
biomarkers associated with approved TTO
Among non-MTUH (n = 637), WGTA identified bio-
markers associated with approved TTO in 39 (6%)
cases (2 cases had two TTO) at the time of the analy-
sis (2012–2019, Figure 2 and supplementary material,
Table S1). These included 13 ERBB2 amplifications
(11 breast carcinomas and 2 colorectal carcinomas),
9 EGFR oncogenic mutations and 8 ALK
rearrangements in lung adenocarcinomas, 5 KIT
oncogenic mutations in gastrointestinal stromal tumor
(GIST), 3 cases with MSI (lung and pancreatic carci-
nomas), 2 BRAF p.V600E (c.1799T>A) mutations in

melanomas, and 1 BRCA2 mutation in a breast carci-
noma (c.667C>G, p.H223D). Of these alterations,
three (0.4%) were not included in the routine molecu-
lar pathology workup at the time of the initial analy-
sis (ERBB2 in two colorectal adenocarcinomas, and
MSI in a squamous cell carcinoma of the lung)
(Figure 3). In four (0.6%) cases, the predictive bio-
marker testing from the initial pathology workup was
different to the WGTA results (ERBB2 amplifica-
tions), and in three (0.4%) cases the initial testing
failed (ALK fusion and EGFR p.L858R [c.2573T>G]
mutations).
When reviewing those same cases according to the

current NCCN biomarker guidelines, the number of
cases with alterations associated with a TTO increased
to 103 as new actionable targets are approved
(PIK3CA and BRCA1/2 oncogenic mutations; ROS1,
RET, NTRK1/2, and FGFR2 rearrangement; and
CDK4 amplification), or previous targets are approved
for use in different tumor sites (ERBB2 in colorectal
and lung adenocarcinoma; BRAF in colorectal adeno-
carcinoma; and MSI in pancreatic, colorectal, and lung
carcinomas). Of those 103 cases, 48 (47%) would not
have been included in the current molecular pathology
workup (1 case had two TTOs), including 29 cases of
HER2-negative and ER/PR-positive breast carcinomas
with PIK3CA oncogenic mutation (60%), 6 ERBB2
amplification lung and colorectal carcinomas (13%),
5 RET fusions in medullary thyroid carcinomas and
lung adenocarcinomas (10%), 3 CDK4 amplifications
in dedifferentiated liposarcomas (6%), 3 NTRK1/2
fusions (papillary thyroid carcinomas, mammary carci-
noma, and glioblastoma multiforme) (6%), MSI in
2 lung carcinomas (4%), and 1 cholangiocarcinoma
with a FGFR fusion (2%) (supplementary material,
Table S1).
Genomic alterations associated with a resistant

phenotype were identified in 41 cases; 39 oncogenic
KRAS mutations and 1 oncogenic NRAS mutation in
colorectal adenocarcinomas, and an exon 20 insertion
in a lung carcinoma. Of these KRAS mutations,
34 (83%) were tested as part of the conventional
pathology workup, with one of these testing attempts
having failed. The remainder were not tested even
though they would have been expected to be part of
routine workup at the time of WGTA (5 KRAS muta-
tions). In addition, two abnormalities were not iden-
tified as they were not part of testing panel (one
NRAS mutation and EGFR exon 20 insertion) at
the time.
Within the group of 15 MTUH, a case where the

histopathologic diagnosis was revised to
cholangiocarcinoma was shown to have a FGFR2
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fusion, and another case, revised to colorectal adeno-
carcinoma, had a KRAS oncogenic mutation.

Most pathologic diagnoses were supported by the
WGTA and clinical analysis
Of the 389 cases where the initial pathology diagnosis
was compared to the diagnostic consensus after the
WGTA directed tumor board, the integrated review of
whole genome analysis, gene expression correlation to
TCGA tumor types, and clinicopathologic reports
agreed with the original pathologic diagnosis in 94%
of cases (n = 374), excluding 15 MTUH (Figure 4).

In two cases (0.5% of total), the original pathology
report diagnosis was found to be incorrect after molec-
ular analysis and review. One case was initially diag-
nosed as a vulvar adenocarcinoma not otherwise
specified (NOS), but gene expression analysis matched
closely with the profile of breast ductal adenocarci-
nomas. This triggered a pathologic review and the
diagnosis was changed to an HER2-amplified
mammary-like adenocarcinoma of the vulva [12]. As a
result, the patient was treated with an ERBB2 inhibitor.
The second case was initially diagnosed as adenocarci-
noma of likely ovarian origin, but comprehensive gene
expression and mutational profiles analysis including
high expression of HNF1β, NAPSA (Napsin A), and

Figure 1. Cohort selection flowchart and tumor types breakdown. BRC, breast carcinoma; GIC, gastrointestinal carcinoma; THR, thoracic
carcinoma; SAR, bone and soft tissue sarcomas; GYN, gynecologic carcinoma; PAN, pancreatic carcinoma; NEU, central neural system
neoplasm; SKN, cutaneous malignancy; H&N, head and neck carcinoma; GUC, genitourinary carcinoma; HEM, hematologic malignancy;
HPB, hepatobiliary carcinoma.

400 B Tessier-Cloutier, JK Grewal et al

© 2022 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland & John Wiley & Sons, Ltd.

J Pathol Clin Res 2022; 8: 395–407



GPC3 (Glypican-3); an inactivating mutation in
ARID1A; and copy gains in HNF1β and ERBB2 genes
supported the diagnosis of ovarian clear cell
carcinoma.
Finally, in 18 cases (5%), WGTA was non-contribu-

tory, and neither supported nor refuted the initial path-
ological diagnosis. These tumors were often
pancreatobiliary malignancies (6/18, 33%) and uterine
carcinosarcomas (3/18, 17%). Tumor content (ranging
from 25 to 90%), biopsy site, and patient characteris-
tics were not significantly different from the rest of the
cohort.

Comprehensive WGTA identified a cell lineage in
all MTUH
In 15 cases, the initial clinicopathologic workup could
not confidently assign a tumor site or type. Nine were
initially diagnosed as adenocarcinoma of unknown ori-
gin, two as squamous cell carcinoma, three as

carcinoma, and one as an unclassifiable malignancy.
We identified a likely cell lineage for all 15 MTUH
using the WGTA and clinical history. The post-
WGTA diagnoses included cholangiocarcinoma
(n = 3), esophageal squamous cell carcinoma (n = 2),
colorectal adenocarcinoma (n = 2), papillary renal cell
carcinoma (n = 1), pancreatic adenocarcinoma
(n = 1), lung adenocarcinoma (n = 1), Ewing sarcoma
(n = 1), bladder adenocarcinoma (n = 1), high-grade
serous carcinoma of the ovary (n = 1), salivary gland
adenocarcinoma NOS (n = 1), and anal squamous cell
carcinoma (n = 1). RNA-Seq alone was sufficient to
establish a diagnosis in 4/15 cases. In the remaining
11/15 cases, the diagnosis was jointly determined
using RNA-Seq and whole genome analysis. Pathol-
ogy reports including IHC results and clinical context
were also reviewed for each case. In all 15 cases, the
new diagnosis was incorporated in management by the
treating team to plan additional testing, treatment, and
counsel the patients on their disease.

Figure 2. Longitudinal progression of the number of TTO as per guidelines from two different time periods and using two different test-
ing approaches: conventional pathology workup and WGTA (N = 637).
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Figure 3. Detection of clinically significant molecular alterations by WGTA. (A–C) Detection of an incidental HER2 amplification in a
CRC. (D–F) ALK fusion in NSCLC, missed on FISH analysis. (G, H) Detection of an IDH1 mutation in a MUTH supported a diagnosis of
cholangiocarcinoma.

Figure 4. Analysis comparing the initial pathology diagnosis to the diagnostic consensus delivered after WGTA review.
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Figure 5. Legend on next page.
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Automated machine learning-based RNA-Seq
analysis can confirm diagnoses except in low
tumor cellularity liver biopsies
In addition to the combined review of RNA-Seq,
genome mutation, and clinicopathologic data, we also
explored the use of an automated machine learning
approach for predicting diagnosis from RNA-Seq data.
The SCOPE algorithm was used to assess the potential
of automated tools in aligning diagnoses from RNA-Seq
data in precision oncology workflows [13]. SCOPE mat-
ched the predicted final diagnosis in 273 of the 374 cases
(73%). When looking at tumor types with 10 or more
cases, the SCOPE algorithm had the highest rate of suc-
cess with breast carcinoma (91% accuracy, n = 98/108),
ovarian carcinoma (81% accuracy, n = 17/21), and lung
adenocarcinoma (76% accuracy, n = 28/37) as opposed
to pancreatic adenocarcinoma (25% accuracy, n = 5/20),
which were missed most often by the method (see sup-
plementary material, Table S2 for classifier statistics by
cancer type). Among the low-success tumor types (tumor
type accuracy <40%), we found that the mispredictions
mostly resulted from the identification of a histologically
similar cancer (36% of mispredictions, n = 14/39); 20 of
the 39 mispredictions originated from liver biopsies,
leading us to investigate the impact of biopsy site and
tumor content accurate diagnosis prediction from RNA-
Seq (supplementary material, Figure S1). We observed a
significant association between biopsy site and SCOPE
outcome (p = 0.008, chi-square test, N = 282/374 only
biopsy sites with a minimum of 10 samples considered).
In biopsy sites with at least 10 samples, tumor content
was found to be significantly associated with SCOPE
prediction in liver biopsies only (N = 124/282,
padjusted = 0.017, unpaired t-test), where predictions were
biased toward hepatobiliary and gastrointestinal malig-
nancies (Figure 5 and supplementary material,
Figure S2). When considered independent of the biopsy
site, SCOPE’s predictions were not found to be
influenced by tumor content, suggesting that it is the dis-
tinct expression profiles contributed by normal cells from
the metastatic site, rather than the proportion of normal
cells, which is the greatest confounding factor. Examin-
ing MTUH cases, SCOPE’s predictions were accurate in
matching the final revised diagnosis in 8/15 cases, and in

3/15 matched the revised diagnosis confidently when
accounting for biopsy site bias.

Discussion

We present data from a cohort study where WGTA
was performed to characterize a heterogeneous popula-
tion of advanced malignancies in a Canadian academic
center. In our selected cohort, WGTA identified pre-
dictive biomarkers that were associated with TTOs
approved by major health institutions. Over the span
of the study, the number of TTO-associated bio-
markers significantly increased secondary to rapidly
evolving recommendation guidelines. The pathologic
diagnosis was supported by WGTA in most cases with
a previously assigned tumor type, and the analysis
proved effective to assign cell lineage in MTUH cases
(cases without a pathology-assigned tissue of origin).

The number of predictive biomarkers identified
from WGTA is progressing over time but is still
limited by the availability of approved TTOs
Over the span of the study, the number of biomarkers
associated with approved TTOs almost tripled. Many of
these emerging biomarkers were not accounted for in
our local panel at the time of writing this manuscript.
Our results show that, so far, targeted panels could
adjust quickly to the rapid progression of predictive bio-
markers; however, there might come a point where
WGTA becomes more efficient than the current
approach. For example, predictive assays such as
homologous recombinant deficiency score, mutational
signatures, and precise mutational burden analysis are
mostly unique to WGTA and have shown potential to
help clinical management. Those were not taken into
account in our study as they are not yet part of the clini-
cal standard. In the coming years, as these metrics are
tested for clinical use in clinical trials, they may emerge
as clearly superior to current clinical tests. In that sce-
nario, WGTA would enter routine clinical practice.
WGTA had the potential to improve therapeutic

options over the conventional pathology workup,

Figure 5. Impact of biopsy site and tumor content on the ability of an automated RNA-Seq based classifier (SCOPE) to provide the cor-
rect putative diagnosis in the POG cohort. (A) The outcome from SCOPE is shown separated by the site of biopsy of the tumor. M and P
indicate the number of metastatic and primary/relapse samples, respectively. (B) The distribution of cases across all biopsy sites is shown
as a function of tumor content. (C) The majority of samples arose from three biopsy sites, lymph node, lung, and liver, indicated in each
of the panels. Liver biopsies with low tumor content led to the highest number of conflicting (incorrect) assessments from SCOPE. A sta-
tistically significant association was found between SCOPE misprediction in liver biopsies and tumor content (p < 0.001, Wilcox test, not
shown in figure).
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which included histomorphology and low-plex molec-
ular testing, in 0.9% of cases. In some situations, the
biomarkers were absent from the routine molecular
pathology workup at the time of WGTA, while in
others it was missed because of technical failures in
the conventional assays. By identifying potentially
actionable targets, WGTA results may have facilitated
enrollment into clinical trials in additional cases but,
as guidance of management is currently approved for
only a few predictive biomarkers, it had little influence
on reimbursed or institutionally recommended thera-
pies. Results from the SHIVA trial in 2015 showed
that off-label management guided by large gene panel
results did not improve patient outcome over standard
treatment [26]. A more recent precision oncology trial
based on WGTA concluded that it was only beneficial
in a minor subgroup of patients for whom therapeutic
options were depleted [27]. Outcome analysis and
assessment of off-label treatment options were outside
the scope this analysis. At this time, the lack of treat-
ment options endorsed by major health institutions,
even within a broad clinical trial context, is a key
obstacle to better understand how WGTA might be
useful to guide therapeutic management and under-
stand resistance in routine oncology care.

WGTA helps in the investigation of MTUH
Gene expression profiling as a means to classify MTUH
was demonstrated to be feasible by several studies in
the early 2000s [28–32]. Although some studies
suggested outcome benefits and prognostic use of using
gene expression panels to guide management, the only
available randomized clinical trial did not show benefit,
and the ESMO clinical guideline for CUP diagnosis
and treatment does not recommend gene expression
profiling [33–36]. The earlier studies agree that gene
expression profiles were useful prognostic markers [37].
The microarrays used in these studies did not, however,
have the same coverage as RNA-Seq and lacked muta-
tional analysis. A recent analysis of 200 CUPs using a
sequencing panel including 236 cancer genes showed
high rate of clinically relevant genomic alterations,
some of which had treatment implications [38]. In our
series, WGTA identified a tissue of origin in all our
MTUH cases and identified TTO or drug-resistant phe-
notype in some. Our data show that the combined
expression and mutational analysis added value for
most MTUH cases. It now remains to be demonstrated
whether this information can lead to improved patient
outcome in this treatment-resistant group of patients. It
is important to note that, due to the often poorly differ-
entiated and advanced nature of these cases, there were

no gold standard diagnoses and, although post-WGTA
testing could be done, some uncertainty about the tissue
of origin could still remain after WGTA.
Machine learning approaches hold promise for

assisting in the interpretation of complex genomic data.
Applying machine learning to cancer diagnosis based
on RNA-Seq data showed some success in correctly
identifying tumor types in our cohort but was hindered
by the combined presence of normal tissue from the
metastatic biopsy site. Further innovations such as
single-cell sequencing may resolve this issue by being
able to separately profile each cell, and then combine
data from those cells predicted to be cancerous. Cur-
rently, in practice, the effect of possible tissue contami-
nation could be accounted for during case discussion at
molecular tumor board meetings in which molecular
data are reviewed along with the clinical and pathology
context. In some tumor types, such as the pan-
creatobiliary malignancies and the uterine carcinosar-
comas, the SCOPE algorithm often failed to identify a
pathologic diagnosis. In the former group, the abundant
liver tissue contamination may have biased the analysis,
similar to low cellularity liver metastasis while, in the
case of carcinosarcomas, the biphasic nature of the
malignant tissue and the varying ratio of each compo-
nent within each sample have likely limited the analy-
sis. More research is needed to investigate the
predictive potential of algorithms derived from machine
learning, and genome and transcriptome-wide data will
be crucial in training as this field evolves.
Several limitations affect the interpretation of our

results, such as the heterogeneity of our cohort. Our
cohort study was highly selected based on patient eli-
gibility and enrollment (strong preference was given to
cases with no known driver alterations), and included
mostly breast, gastrointestinal, thoracic, and gyneco-
logic malignancies, while underrepresenting lymphoid,
head and neck, central nervous system, endocrine, and
genitourinary tumors. This study focuses on the
molecular and diagnostic pathology workup, including
diagnosis and molecular profiling, and as such was not
designed to investigate an outcome effect. Finally, we
had no control group to assess the effectiveness of
changes in histologic diagnosis or molecular subtype.

Conclusion

Our experience with WGTA as part of this project
highlighted its utility for identifying the site of origin
in MTUH, along with the complexity of the interpreta-
tion of its data, especially in metastatic cancers where
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expression profiles are influenced by the site of sam-
pling. However, the technology is limited within the
scope of institutionally supported TTO-associated bio-
markers by the few validated actionable genomic and
transcriptomic targets. There has been a marked
increase in the number of predictive biomarkers over
the course of this study, some of which need to be
integrated as part of the routine molecular pathology
workup in our center. The future of precision oncology
testing is still unclear and may see a transition to more
comprehensive sequencing approaches as the variety
of predictive biomarkers progresses, but the current
standard is robust and adaptable. We acknowledge that
cancer remains an often fatal disease and our under-
standing of the precise mechanisms of oncogenesis
and the response to therapeutics is far from complete.
For forward-looking, research-centric organizations,
WGTA represents a powerful modality to discover
new clinically relevant biomarkers, drug sensitivities,
and novel therapeutic axes.
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