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A general skull stripping 
of multiparametric brain MRIs 
using 3D convolutional neural 
network
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Accurate skull stripping facilitates following neuro-image analysis. For computer-aided methods, 
the presence of brain skull in structural magnetic resonance imaging (MRI) impacts brain tissue 
identification, which could result in serious misjudgments, specifically for patients with brain tumors. 
Though there are several existing works on skull stripping in literature, most of them either focus 
on healthy brain MRIs or only apply for a single image modality. These methods may be not optimal 
for multiparametric MRI scans. In the paper, we propose an ensemble neural network (EnNet), a 
3D convolutional neural network (3DCNN) based method, for brain extraction on multiparametric 
MRI scans (mpMRIs). We comprehensively investigate the skull stripping performance by using the 
proposed method on a total of 15 image modality combinations. The comparison shows that utilizing 
all modalities provides the best performance on skull stripping. We have collected a retrospective 
dataset of 815 cases with/without glioblastoma multiforme (GBM) at the University of Pittsburgh 
Medical Center (UPMC) and The Cancer Imaging Archive (TCIA). The ground truths of the skull 
stripping are verified by at least one qualified radiologist. The quantitative evaluation gives an 
average dice score coefficient and Hausdorff distance at the 95th percentile, respectively. We also 
compare the performance to the state-of-the-art methods/tools. The proposed method offers the best 
performance.

The contributions of the work have five folds: first, the proposed method is a fully automatic end-to-
end for skull stripping using a 3D deep learning method. Second, it is applicable for mpMRIs and is also 
easy to customize for any MRI modality combination. Third, the proposed method not only works for 
healthy brain mpMRIs but also pre-/post-operative brain mpMRIs with GBM. Fourth, the proposed 
method handles multicenter data. Finally, to the best of our knowledge, we are the first group to 
quantitatively compare the skull stripping performance using different modalities. All code and pre-
trained model are available at: https:// github. com/ plmoer/ skull_ strip ping_ code_ SR.

In the U.S., there were 23 per 100,000 population diagnosed with brain tumors during 2011–20151. Gliomas, orig-
inate from glial cells, are the most common primary brain malignancies, with varying degrees of  aggressiveness2. 
To make a proper treatment planning, accurate brain tumor detection and segmentation are strongly demanding. 
Due to time-consuming, inter-rater prone error, and low efficacy, manual brain tumor segmentation by radiolo-
gists is very challenging, and is not feasible for large-scale  data3. Therefore, an automatically computer-aided 
brain tumor segmentation/detection is highly  desired3–9. However, a high-resolution brain magnetic resonance 
image (MRI) contains non-brain tissues, such as eyeball, skin, neck, skin, and  muscle10. The presence of the non-
brain tissues is one of the major challenges for automatic brain image analysis. The non-brain tissues removal 
is a typical preprocessing step for most brain MRI studies, e.g., brain volumetric  measurement11, brain tissue 
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 segmentation12, assessing  schizophrenia13, and Alzheimer’s  disease14. Consequently, before applying automatic 
computational technique for brain MRI studies, skull stripping is a prerequisite for brain imaging  analysis15.

As a preprocessing step, skull stripping (i.e., brain extraction) removes the skull and other non-brain tissues 
out from the MRI scans. It reduces human rater variance and eliminates time-consuming manual processing 
steps that potentially impede not only the analysis but also the reproducibility of large-scale  studies16. The quality 
of skull stripping can be affected by several reasons, including imaging artifacts, MRI scanners, and acquisition 
protocol, etc. Furthermore, variability of anatomy, age, and the extent of brain atrophy, has impact on skull strip-
ping as  well17. When considering MRI scans with pathological conditions, such as brain tumors, the problem 
becomes more complicated. Intensity of brain tissues in MRI may be impacted due to presence of brain tumor. 
The situation could become worse when dealing with post-treatment of the MRI with brain tumors, specifically 
with resection surgery. The cavities resulting from resection not only change the reflection of intensity but also 
alter the brain anatomy. All these factors above undermine the performance of skull stripping.

We argue that a good skull stripping leads to a good following-up brain analysis. Therefore, in the paper, we 
propose a 3D deep neural network-based method for skull stripping. The proposed method utilizes multipara-
metric MRIs for skull stripping. Different MR acquisition protocols provides complementary information about 
brain tissues, which facilitates a better separation between brain, cerebrospinal fluid (CSF), and other tissues, such 
as skull, or fat. With ensemble of the high dimensional features by using the proposed method, the integration 
of all multiparametric MRI sequences offers the highest accuracy of brain extraction.

The contributions of this work include: first, it is a fully automatic end-to-end technique for skull stripping 
using a 3D deep learning method; second, it is applicable for multiparametric MRI (mpMRIs) and is also easy 
to customize for a single MRI modality; third, it works not only for healthy brain MRI, but also for pre-/post-
operative brain MRI with a brain tumor; fourth, the proposed method applies to multicenter data; finally, as the 
best of our knowledge, we are the first group to quantitatively compare the skull stripping performance using 
different modalities.

Previous work
There are several skull stripping methods proposed in literature. These methods can be broadly classified into 
four categories: morphology-based, intensity-based, deformable surface-based, and atlas-based10. The morphol-
ogy-based methods utilize a morphological erosion and dilation operations to remove skulls from the brain. 
Brummer et al. proposed an automatic skull stripping on MRI using a morphology-based  method18. It combines 
histogram-based thresholding and morphological operations for skull stripping. Similar work presented  in19, 
authors performed a 2D Marr-Hildreh operator to achieve edge detection, then employed several morphological 
operations for skull stripping. However, it is difficult to find the optimal morphology-based method. In addition, 
the proposed methods are sensitive to small data variations. Proper thresholding and edge detection are the chal-
lenges for these methods. For intensity-based methods, they separate the brain and non-brain according to the 
image intensity. A typical technique of the method is a watershed algorithm. The watershed algorithm extracts 
foreground and background, and then uses markers to make watershed run and detect the exact boundaries. 
Hahn et al. utilized the watershed algorithm to remove skull on T1-weighted MR  images20. There are some 
similar works, such  as21,22. These methods depend on the correctness of intensity distribution modeling and are 
sensitive to intensity bias. The deformable surface-based methods evolve and deform an active contour to fit the 
brain surface. A popular tool named the Brain extraction tool (BET) employs a deformable model for separating 
brain and non-brain from  MRI23. BET2 is the extension of BET, which generates a better result based on a pair 
of T1- and T2-weighted  MRI24. Other work, such  as25,26 also use the deformable surface-based methods for the 
skull stripping. However, these methods rely on the location of the initial curve and the image  gradient10. The 
atlas-based methods use the transferring knowledge of the anatomical structure of a template to separate skull 
and brain, such as  work27,28. Roy et al. proposed a robust skull stripping which uses a sparse patch based Multi-
cONtrast brain STRipping method (MONSTR)29. However, these methods rely on specific image modalities 
and lack flexibility of extending to other modalities, such as the work  in29 limits to the T1w and T2 modalities.

These atlas-based methods highly rely on the quality of image registration, and they are suffering from for 
multiparametric MRIs. Moreover, they are not applicable for pathological MRIs which contain brain tumors/
diseases.

In recent years, because of computer hardware development and big data availability, deep learning has 
been becoming prevalent in many domains, such as image  analysis30,31, natural language processing (NLP)32, 
computer  vision33, speech  recognition34, etc. Deep learning-based methods are also applied to medical image 
analysis, including brain  segmentation35, brain tumor  classification36, brain tumor  segmentation7, and lung 
cancer  segmentation37, etc. Deep learning-based methods also apply for skull stripping, such  as16,38–40. However, 
these methods may either only apply for normal healthy brain skull stripping, pre-operative brain with gliomas, 
or difficultly extend to other image modalities. We believe that there still are many spaces to improve the skull 
stripping performance by employing advanced deep-learning based methods. Therefore, to overcome the limita-
tions mentioned above, we propose a 3D convolutional neural network (3DCNN)-based end-to-end method for 
a general skull stripping. It not only works for healthy brain MRIs, but also for pre-/post-operative brain MRIs 
with glioblastoma multiforme (GBM). Furthermore, it is applicable for multicenter data.

The proposed method
All experiments in this study are performed in accordance with relevant guidelines and regulations as approved 
by the institutional IRB committee at the University of Pittsburgh. Approval was obtained from the ethical 
committee of University of Pittsburgh (Study19119234: PanCancer Imaging and Imaging Genomic Analysis).
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Deep neural networks have been becoming successful in many domains and achieve state-of-the-art perfor-
mance for many applications. Therefore, in the work, we build a deep neural network-based method for skull 
stripping because of its advantages. The motivation for creating a novel skull stripping has three facets. The 
first one is to process multiparametric brain MRI (mpMRI), which includes T1-weighted (T1), T1-weighted 
and contrast-enhanced (T1ce), T2-weighted (T2), and T2-fluid-attenuated inversion recovery (T2-FLAIR). 
The mpMRI offers a better result of skull stripping than that of a single image sequence. Moreover, it is easy to 
customize for any image sequence combination. Last, the proposed method is general for all conditional cases, 
including healthy brain MRI, and pre-/post- operative brain MRI.

The whole workflow of brain extraction is shown in Fig. 1. Firstly, we convert the raw digital imaging and 
communication in medicine (.dicom) multiparametric images into a compressed neuroimaging informatics 
technology initiative (.nii.gz) format, then change the orientation same as to the SRI24  atlas41. There are then two 
optional pre-processing steps: noise reduction and bias field correction. Subsequentially, each imaging modality 
registers to the atlas (1 mm × 1 mm × 1 mm), so that all image modalities are aligned into the same space having 
resolution of 1 mm × 1 mm × 1 mm. Thereafter, all co-registered isotropic image modalities are stacked following 
the sequence of T2-FLAIR, T1, T1ce, and T2. Finally, the fused images (dimension: 4× 155× 240× 240 ) are 
fed into the proposed deep neural network model to obtain a binary mask for skull stripping. The co-registered 
brain extraction is accomplished by multiplying the binary mask to the co-registered images.

The proposed architecture of a deep neural network is illustrated in Fig. 2. The proposed architecture custom-
izes the existing  UNet42 with a branch of feature ensemble. There are two main parts of the network. The first 
encoder part is to extract high-dimensional features. The encoder part consists of several convolution blocks and 
max-pooling blocks. A convolution block is composed of convolution with residual connection, group normaliza-
tion, and leaky rectified linear unit. Another part is a decoder, which is the opposite function to the encoder. The 
decoder expands the high-dimensional features to the target segmentation. It consists of convolution blocks and 
up-sampling blocks. In addition, we design an extra block (convolution block in green). We ensemble the feature 
maps by adding features from the regular decoder and that of the additional decoder. The feature maps aim to 
enforce the training convergence. We name the proposed architecture as an ensemble neural network (EnNet). 
For each residual block, it contains two convolutional layers, two group normalizations (GroupNorm), and two 

Figure 1.  The whole workflow of brain extraction proposed in this work.
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leaky Relu layers. For implementation details, please refer to source files in git repository at https:// github. com/ 
plmoer/ skull_ strip ping_ code_ SR.

Materials and experiment
Dataset. In this work, we use a total of 815 cases (347 female cases and 468 male cases) from multi-center 
for the experiment. Age of all patients ranges from 28 to 93. Each case has mpMRIs which contain T1-weighted 
(T1), T1-weighted and contrast-enhanced (T1ce), T2-weighted (T2), and T2-fluid-attenuated inversion recov-
ery (T2-FLAIR). Within the 815 cases, 776 cases are obtained from the University of Pittsburgh Medical Center 
(UPMC), and the rest of 39 cases are coming from The Cancer Imaging Atlas (TCIA), which collects data from 
multiple institutes. The data distribution is listed in Table 1. In UPMC, the mpMRIs are acquired from three 
different GE Healthcare System platforms: Discovery MR750 (3 T), Optima MR450W (1.5 T), and Signa HDxt 
(1.5 T). Unfortunately, we cannot find the device information for mpMRIs from TCIA dataset. The image size 
varies from 256× 256× 23 to 512× 512× 89 , where 23 and 89 is the slice number of each case. For the atlas, 
the size of the SRI24 is 240× 240× 155.

Experiment setup. Before skull stripping, there are several pre-processing steps, including image format 
conversion, orientation change, noise reduction, bias correction, and co-registration, as details discussed in Sec-
tion III. In the experiment, all cases are randomly split into training, validation, and testing dataset with ratio 
of 0.6:0.15:0.25. Specifically, there are 480 cases, 119 cases, and 216 cases for training, validation, and testing 
dataset, respectively. In the testing dataset, there are 177 cases and 39 cases from UPMC and TCIA, respectively. 
More specially, the 177 cases consist of 57, 57, and 63 cases for normal brain, pre-operative, post-operative cases, 
respectively. The 39 TCIA cases are composed of 20 pre-operative and 19 post-operative MRIs. Note that the 
training and validation data are obtained from our in-house UPMC, but the testing cases are obtained from both 
UPMC and TCIA for evaluating the generality of the proposed method.

The proposed EnNet is implemented using Pytorch (version 1.10.0). We execute the algorithm on a Nvidia 
Titan X with 12 GB RAM with the operating system Linux. To prevent overfitting and improve the generalization 
capacity of the model, data augmentation is applied on the fly during training process. It includes random crop 
3D, random rotation (0, 10°), random intensity change (− 0.1, 0.1), and random flip.

Hyper-parameter setting. In each iteration, we randomly crop all co-registered MRIs with the size 
of 160 × 192 × 128 because of the limited capacity of the graphics processing unit (GPU). We believe that the 
cropped image covers the most region-of-interest (ROI). The epoch number is 300 for the training process. The 

Figure 2.  The proposed deep neural network architecture for skull stripping. The blue and green blocks 
represent feature maps from two different convolutional operations. The former features are obtained from a 
conv3d computation, while the latter from a conTranspose3d operation. The gray arrow represents a conv3d 
computation.

Table 1.  Data distribution in the experiment.

Phase # of case Center MRI status

Training 480 UPMC Pre-operative

Validation 119 UPMC Pre-operative

Testing 216

UPMC (177 cases)

Pre-operative (57 cases)

Post-operative (57 cases)

Healthy (63 cases)

TCIA (39 cases)
Pre-operative (20 cases)

Post-operative (19 cases)

https://github.com/plmoer/skull_stripping_code_SR
https://github.com/plmoer/skull_stripping_code_SR
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batch size is set as 1 due to the large patch size and limited GPU memory. The loss function is computed as fol-
lows:

where p and y are the class prediction and ground truth (GT) at each voxel, respectively. The ǫ is a very small 
value.

Even the  Adam43 optimizer has poor generalization ability, it converges faster than stochastic gradient descent 
with momentum (SGDM)44. Therefore, Adam is widely used in deep learning-based digital image application. 
In the experiment, we employ the Adam optimizer with an initial learning rate of lr0 = 0.001 in training phase, 
and the learning rate ( ri ) is gradually decayed by the following:

where i is an epoch counter, and N is the total number of epochs in training.

Evaluation measurements. To quantitatively evaluate the performance of the proposed method, we 
employ several evaluation metrics in the work, such as dice, precision, recall, false positive rate (FPR), false 
negative ration rate (FNR), and Hausdorff distance at the 95 percentiles (HD95). They are calculated as follows:

where TP, FN, FP, TN are true positive, false negative, false positive, and true negative, respectively.
Dice is a statistic matrix that measures the similarity of the prediction and ground  truth45. A value of 1 means 

that the two groups are identical, and a value of 0 shows no overlap at all between the two groups. The precision 
indicates how many of the positively classified are relevant. Recall, also known as sensitivity, represents how 
good a test is at detecting the positives. The Hausdorff distance (HD) measures the extent to which each point 
of a model set (prediction) lies near some points of an image set and vice  versa46. A smaller value of HD suggests 
more similarity.

Results
In the section, we first share the overall performance of skull stripping using the proposed method, then inves-
tigate the performance difference for several conditional MRIs (healthy brain MRIs, pre-operative brain MRIs, 
and post-operative brain MRIs), subsequentially estimate the model robustness across multicenter data, and 
finally compare with state-of-the-arts.

Overall performance of skull stripping. As of the combination of all image sequences provides the best 
performance, we employ the best model for the testing data in the testing phase. With the total number of 216 
testing cases, our algorithm offers an average dice of 0.9851± 0.017 . The complete evaluation metrics are shown 
in Table 2. 

(1)L = 1−
2×

∑
p×

∑
y

∑
p2 +

∑
y2 + ǫ

(2)ri = r0∗(1−
i

N
)
0.9

,

(3)Dice = F =
TP

2TP+ FN+ FP

(4)Precision =
TP

TP+ FP

(5)Recall =
TP

TP+ FN

(6)FPR =
FP

FP+ TN

(7)FNR =
FN

FN+ TP

(8)HD95 = percentile(maxaǫpredminbǫgt{d(pred, gt)}, 95
th)

Table 2.  Overall performance of skull stripping in the testing phase.

Dice Precision Recall FPR FNR HD95 (mm)

Ave 0.9850 0.9940 0.9768 0.0012 0.0232 2.6098

Std 0.0171 0.0093 0.0307 0.0019 0.0307 2.4814
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Generality of the model. As discussed early, the proposed method works not only in healthy brain MRIs, 
but also in pre-/post- operative MRIs. To quantitatively evaluate the performance difference, we set up an experi-
ment. The result is shown in Table 3. Interestingly, we noticed that the best results happened in pre-operative 
brain tumor MRIs, rather than in healthy brain MRIs. In addition, we also compute the t-test among different 
types of MRI, as shown in Table 3. The p-value of Healthy vs. Post-op, Healthy vs. Pre-op, and Pre-op vs. Post-op 
is 0.3869, 0.0204, and 0.2301, respectively. It indicates a significant performance difference between healthy and 
pre-operative MRIs, but no significant difference in rest cases. The reason may be that the training data is from 
the pre-operative mpMRIs with glioblastoma. Overall, the skull stripping performance is stable in all conditions, 
either the healthy brain MRIs, or brain tumor MRIs. There are 3 showcases shown in Fig. 3.

Model robustness across multicenter
It is common that brain MRIs are acquired from multiple centers/institutes using different acquisition machines 
or following different protocols. The multicenter issue may undermine the performance of a model training with 
a single-center data. In this work, we also investigate the model robustness across multicenter. Additional to our 
in-house UPMC data (177 cases), we randomly take 39 cases (20 pre-operative cases and 19 post-operative cases) 
from TCIA that collects MRIs datasets from multiple institutes/hospitals. The experimental result is summarized 
in Table 4. We further calculate the t-test between the two data sources, the p-value is 0.0306, which shows a 
significant performance difference.

The comparison of the summary indicates that the performance at TCIA is around 2% lower than that of data 
obtaining from the same center for model training. However, the skull stripping performance across multicenter 
achieves good enough for following medical image analysis.

Comparison of state-of-the-art. In the work, we also compare the performance of skull stripping using 
the proposed deep learning-based method to the popular methods/tools. The selectively popular tools include 
three traditional computer vision-based methods and two deep learning-based methods. In doing so, we either 
re-implement the algorithm or directly use the published tools. The popular methods/tools include Brain Extrac-
tion Tool (BET)23, 3d skull stripping (3dSS)47, Robust Learning-Based Brain Extraction (ROBEX)48, UNet 3D 
(UNet3D)38, and DeepMedic by  UPNN39. The main difference between the two deep learning-based methods 
and the proposed method is the feature ensemble part in the network. We argue that the adding more context 
features leads to a better skull stripping. We apply the exactly same pre-processing steps as described in Fig. 1 to 
all methods for the state-of-the-art comparison. For the UNet3D method, we re-implement the architecture and 
re-train CNN network using our dataset, which has exactly same data distribution as to the proposed method. 
However, for the DeepMedic method, we directly apply the pre-trained model to our data. An example case 
showing contours overlaid with the multiparametric sequence is shown in Fig. 3. The visualization skull strip-
ping comparison is shown in Fig. 4 and the quantitative performance comparison is listed in Table 5. In addition, 
we also perform the analysis of variance (ANOVA) on dice score coefficient by comparing performances of these 

Table 3.  Performance comparison of skull stripping for different stage MRIs of UPMC data. The best result is 
highlighted in bold.

Type of MRI # of cases Dice Precision Recall FPR FNR HD95 (mm)
p-value
(t-test)

Healthy MRIs (Healthy) 57 0.9851 ± 0.0139 0.9963 ± 0.0070 0.9745 ± 0.0260 0.0007 ± 0.0013 0.0255 ± 0.026 2.4399 ± 1.568 0.3869 (vs Post-op)

Pre-operative MRIs (Pre-op) 57 0.9906 ± 0.0068 0.9910 ± 0.0111 0.9904 ± 0.0097 0.0019 ± 0.0027 0.0096 ± 0.0097 2.1655 ± 1.5278 0.0204 (vs Healthy)

Post-operative MRIs 
(Post-op) 63 0.9894 ± 0.0213 0.9942 ± 0.0080 0.9852 ± 0.0358 0.0011 ± 0.0016 0.0148 ± 0.0358 2.1751 ± 3.6873 0.2301 (vs Pre-op)

Figure 3.  Showcases of skull stripping in different stage: healthy brain T2-weighted MRI (left), pre-operative 
T1-ce brain tumor MRI (middle), and post-operative T1-ce brain tumor MRI (right). The green contour is the 
boundary of skull stripping using the proposed method.
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existing methods to our result, and the p-values are shown in the Table 5. All p-values are less than 0.001, which 
implies the proposed method providing a significant improvement on the skull stripping. The boxplot compari-
son of state-of-the-art is shown in Fig. 5.

The performance comparison demonstrates that the proposed method offers the best results in terms of the 
dice, precision, recall, FPR, FNR, and the HD95. The small value of the standard deviation indicates the robust-
ness of the skull stripping performance. We also notice an interesting thing: the BET has better performances 
on Recall and FPN, comparing to the proposed method. It may be that BET using T1 and T2 image modalities 
generates less false negatives. However, it produces lots of false positives.

Discussion
Even though there are extensive works on skull stripping in  literature16,24,38–40, to best of our knowledge, none 
of the methods/algorithms have explicitly quantitative analysis of performance on different image sequence 
combinations. It is known that different image provides different brain information, therefore, multiparametric 
MRIs are widely used in radiomics brain research, including brain segmentation, and brain tumor segmentation. 

Table 4.  Skull stripping performance across multicenter (UPMC and TCIA). The best result is highlighted in 
bold.

Center # of cases Dice Precision Recall FPR FNR HD95 (mm)
p-value 
(t-test)

UPMC 177 0.9884 ± 
0.0155

0.9939 ± 
0.0091

0.9834 ± 
0.0272 0.0012 ± 0.002 0.0166 ± 0.072 2.2573 ± 

2.516 0.0306

TCIA 39 0.9699 ± 
0.0016

0.9946 ± 
0.0105

0.9409 ± 
0.0281

0.0010 ± 
0.0018

0.0531 ± 
0.0281 4.2099 ± 1.52 –

Figure 4.  An example of skull stripping contours in color overlaid with T1, T1ce, T2, and T2-FLAIR (from left 
to right) using different methods/tools (color image for a better visualization). GT is the ground truth.

Table 5.  Skull stripping performance comparison to state-of-the-arts. The best result is highlighted in bold.

# of cases Dice Precision Recall FPR FNR HD95 (mm)

p-value
(t-test on 
Dice)

BET23 216 0.8494 ± 
0.0455

0.7463 ± 
0.0718

0.9916 ± 
0.0186

0.0650 ± 
0.0224

0.0084 ± 
0.0186

19.9951 ± 
5.4941 9.19× 10

−151

3dSS47 216 0.8427 ± 
0.0449

0.7430 ± 
0.0751

0.9809 ± 
0.0279

0.0660 ± 
0.0238

0.0191 ± 
0.0279

19.9087 ± 
4.4316 1.29× 10

−159

ROBEX48 216 0.9555 ± 
0.0173

0.9730 ± 
0.0236

0.9396 ± 
0.0318

0.0053 ± 
0.0057

0.0604 ± 
0.0318

4.4792 ± 
1.8869 7.52× 10

−54

UNet3D38 216 0.9773 ± 
0.0179

0.9818 ± 
0.0168

0.9735 ± 
0.0290

0.0035 ± 
0.0034

0.0265 ± 
0.0290

3.1219 ± 
2.7262 5.61× 10

−6

UPNN39 216 0.9743 ± 
0.0257

0.9814 ± 
0.0156

0.9684 ± 
0.0405

0.0035 ± 
0.0032

0.0316 ± 
0.0405

3.3924 ± 
2.8434 4.22× 10

−7

EnNet (ours) 216 0.9850 ± 
0.0171

0.9940 ± 
0.0093

0.9768 ± 
0.0307

0.0012 ± 
0.0019

0.0232 ± 
0.0307

2.6098 ± 
2.4814 –
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In this work, we are the first group quantitatively showing the performance difference with different image 
sequence combinations.

To train the model, we randomly take 480 cases as the training dataset, and 119 cases as the validation data-
set. We take the hyper-parameter setting as discussed in Section IV. The dice and loss change in the training 
phase and in the validation phase are plotted in Figs. 6 and 7. According to the result, it is easy to conclude that 
a combination of all four image sequences offers the best dice (0.9869 at epoch 300 in the validation phase) and 
least loss (0.0178 at epoch 300 in validation phase).

In the experiment, the average dice of skull stripping on the testing dataset is 0.985± 0.0171 . Considering 
the high mean dice of the performance with low standard deviation, it implies the proposed method offers a 
competitive and stable performance on brain extraction. In addition, we also investigate the model generality on 
different conditional MRIs, including healthy, pre-operative, and post-operative MRIs. The experimental result 
shows that the proposed method offers the best performance on pre-operative, which is most likely because the 
training data is coming from the pre-operative MRIs. However, there is no significant difference of the skull 
stripping between the healthy and post-operative MRIs as the p-value of the t-test is 0.3869. We further compare 
the performance of skull stripping on data from multi-centers. According to the experimental result, the perfor-
mance of data from same center is significantly better (p-value of 0.0306) than that of different center because 
of the different scanner device parameters, or acquisition protocols.

We also notice an interesting result in the experiment. The state-of-the-art comparison shows that the BET 
has the best performance on recall and FNR. It may because the BET has lower false negatives compared to 
other methods.

Figure 5.  Box plot of performance comparison to state-of-the-arts on dice (top left), precision (top right), recall 
(middle left), FPR (middle right), FNR (bottom left), and HD95 (bottom right), respectively.
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Furthermore, we also apply the models obtained from training with different modality combinations to 
quantitatively compare the skull stripping performance in the testing phase, and the result shows in Fig. 8. With 
integration of all multiparametric MRIs, the proposed convolutional neural network-based model which embeds 
ensemble features offers the best results.

Even though the proposed method provides a reliable and competitive performance on brain extraction, 
there are still some limitations. First, it requires a reliable co-registration for multi-parameters MRIs. Second, 
it has an underperformance on post-operative, specifically for cases with post-surgical cavity surgery close to 
outlier. The cavity may result in a poor performance. Third, source of image acquisition also impacts the skull 
stripping performance. To overcome the limitations, in future, we plan to increase more post-operative MRIs 
from multi-centers as the training data, and develop an advanced convolutional neural network model for the 
brain extraction.

Conclusion
In this work, we propose a 3D convolutional neural network-based method to extract the brain. It is a fully 
automatic computer-aided method. The proposed method generally works for healthy brain MRIs, and pre-/post- 
operative brain MRIs with tumors as well. Moreover, the trained model using the proposed method is robust. 
It is not only applicable for in-house private data, but also for multicenter data. Comparing to the performance 
of state-of-the-art, the proposed method provides the best result. In addition, we first quantitatively evaluate 
the impact of skull stripping using different MRI sequences (combination). In future, we plan to increase more 
post-operative mpMRIs from multi-centers as the training data, and develop an advanced convolutional neural 
network model for the brain extraction.

Data availability
The partial datasets generated and/or analyzed during the current study are available in The Cancer Imaging 
Archive (TCIA) repository (link: https:// www. cance rimag ingar chive. net). The rest data are de-identified and 
privately owned by the University of Pittsburgh Medical Center (UPMC). To access the mpMRIs dataset from 
UPMC, please contact Dr. Colen.

Figure 6.  The change of dice (left) and loss (right) in the training phase. In the legend, 1, 2, c, and f represent 
T1, T2, T1ce, and T2-FLAIR, respectively. For example, f1ce represents that the combination has all four image 
sequences.

Figure 7.  The change of dice (left) and loss (right) in the validation phase. To save training time, we execute the 
validation part in every 5 epochs. In the legend, 1, 2, c, and f represent T1, T2, T1ce, and T2-FLAIR, respectively. 
For example, f1ce means that the combination has all four image sequences.

https://www.cancerimagingarchive.net
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