

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tricarbonylbis(triphenylphosphane-*κP*)iridium(I) hexafluoridophosphate methanol monosolvate

Ilana Engelbrecht,* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa

Correspondence e-mail: Engelbrechtl@ufs.ac.za

Received 7 August 2012; accepted 13 August 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.019; w*R* factor = 0.044; data-to-parameter ratio = 19.4.

In the title compound, $[Ir(C_{18}H_{15}P)_2(CO)_3]PF_6\cdot CH_3OH$, the Ir^I atom is coordinated by two triphenylphosphine ligands in axial sites and three carbonyl ligands in the equatorial plane of a fairly regular trigonal bipyramid: the equatorial C-Ir-C angles range from 115.45 (9) to 126.42 (10)°. The small deviations from the ideal tetrahedral geometry around the P atoms are illustrated by C-P-C angles ranging from 104.08 (9) to 106.46 (9)°. In the crystal, the molecules are linked by weak $C-H\cdots F$, $C-H\cdots O$ and $C-H\cdots \pi$ interactions.

Related literature

For related complexes, see: Randall *et al.* (1991, 1994); Raper & McDonald (1973). For other *P*-donor ligands, see: Purcell *et al.* (1995); Otto & Roodt (2001); Otto *et al.* (2005); Muller *et al.* (2008). For their use in catalytic olefin transformation reactions, see: Haumann *et al.* (2004); Crous *et al.* (2005); Booyens *et al.* (2007); Ferreira *et al.* (2007).

 $V = 3817 (2) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.18 \times 0.14 \times 0.06 \; \rm mm$

68611 measured reflections

9501 independent reflections

8699 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 3.69 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.037$

489 parameters

 $\Delta \rho_{\rm max} = 1.01 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.75$ e Å⁻³

Z = 4

Experimental

Crystal data

[Ir($C_{18}H_{15}P$)₂(CO)₃]PF₆·CH₄O $M_r = 977.80$ Monoclinic, $P2_1/c$ a = 16.487 (5) Å b = 13.571 (4) Å c = 20.903 (5) Å $\beta = 125.297$ (5)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.556, T_{\rm max} = 0.809$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.044$ S = 1.039501 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C15-H15\cdots F3^{i}$	0.95	2.39	3.281 (3)	157
C16−H16···F6 ⁱ	0.95	2.53	3.319 (3)	141
$C42 - H42 \cdot \cdot \cdot F6^{i}$	0.95	2.38	3.138 (3)	136
$C43-H43\cdots F2^{i}$	0.95	2.49	3.386 (3)	158
C45-H45···O01 ⁱⁱ	0.95	2.50	3.281 (3)	139
C64−H64···F4 ⁱⁱⁱ	0.95	2.47	3.200 (3)	133
$O01 - H01 \cdots F3^{i}$	0.84	2.27	3.059 (3)	157
$C53-H53\cdots Cg1^{iv}$	0.95	2.68	3.523 (2)	148
$C35-H35\cdots Cg3^{iv}$	0.95	2.91	3.587 (2)	129
$C13-H13\cdots Cg2^{v}$	0.95	2.97	3.744 (2)	140
Symmetry codes:	(i) $x, -y +$	$-\frac{3}{2}, z + \frac{1}{2};$ (ii)	$-x+1, y+\frac{1}{2},$	$-z + \frac{3}{2};$ (iii

 $\begin{array}{c} \text{Symmetry} \quad \text{codes.} \quad (1) \quad x, -y + 2, z + 2, \quad (11) \quad -x + 1, y + 2, -z + 2, \quad (11) \\ -x + 2, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 2, y - \frac{1}{2}, -z + \frac{3}{2}. \end{array}$

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT-Plus* (Bruker, 2008); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (SA-NRF/THRIP), the DST– NRF centre of excellence (c*change), the University of the Free State and INKABA yeAfrica funding projects are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6932).

References

Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512.

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). *Dalton Trans.* pp. 1108–1116.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). *Angew. Chem. Int. Ed.* 46, 2273–2275.
- Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). *Dalton Trans.* pp. 1679–1686.

Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.

Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.

- Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49-52.
- Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). *Inorg. Chim. Acta*, 234, 153–156.
- Randall, S. L., Miller, C. A., See, R. F., Churchill, M. R., Janik, T. S., Lake, C. H. & Atwood, J. D. (1994). *Organometallics*, **13**, 5088–5095.
- Randall, S. L., Thompson, J. S., Buttrey, L. A., Ziller, J. W., Churchill, M. R. & Atwood, J. D. (1991). *Organometallics*, **10**, 683–688.
- Raper, G. & McDonald, W. S. (1973). Acta Cryst. B29, 2013-2014.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m1187-m1188 [doi:10.1107/S1600536812035593]

Tricarbonylbis(triphenylphosphane-*κP*)iridium(I) hexafluoridophosphate methanol monosolvate

Ilana Engelbrecht, Hendrik G. Visser and Andreas Roodt

Comment

P donor ligands (Muller *et al.*, 2008; Purcell *et al.*, 1995; Otto *et al.*, 2005; Otto & Roodt, 2001) form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann *et al.*, 2004; Crous *et al.*, 2005), metathesis (Booyens *et al.*, 2007) and methoxycarbonylation (Ferreira *et al.*, 2007). As part of our studies in this area, we now describe the structure of the title compound: all bond distances and angles fall within the range for similar complexes (Randall *et al.* 1991, 1994; Raper & McDonald, 1973).

The main fragment of the crystal structure of the title compound, $[Ir(CO)_3(PPh_3)_2](PF_6)$.MeOH, was originally reported by Randall *et al.*, 1991, in the trigonal form, crystallizing in the space group $R\overline{3}$ with hydrogen sulfate as counter ion. In this case, the Ir(I) complex (Figure 1) crystallizes with one hexafluoridophosphate anion and a methanol solvent molecule in the $P2_1/c$ spacegroup. The trigonal bipyramidal complex consists of three carbonyl groups in the equatorial plane and two triphenylphosphine ligands in the axial plane.

Similar Ir—P distances (2.3620 (8) and 2.3599 (8) Å) and P1—Ir—P2 angle of 177.047 (18) $^{\circ}$ make the phosphine ligands equally *trans*. Ir—C3 distance of 1.947 (2) Å is slightly longer than for Ir—C1 and Ir—C2 distances, both equal to 1.938 (2) Å. Ir—C—O angles are close to linear (175.6 (2) - 178.8 (2) $^{\circ}$) and C—O distances range from 1.107 (3) - 1.135 (3) Å, with C3—O3 distance the shortest. Angles between the equatorial ligands show some distortion with C2—Ir1—C3 = 115.45 (9) $^{\circ}$ and C1—Ir1—C3 = 118.13 (9) $^{\circ}$ compared to C2—Ir1—C1 = 126.42 (10) $^{\circ}$. C—P—C angles range from 104.07 (9) - 106.46 (9) $^{\circ}$ illustrating the distorted tetrahedral geometry around the P atoms.

In the crystal, weak C—H…F, C—H…O and C—H… π , interactions link the molecules into a supra-molecular network (Table 1).

Experimental

CO was bubbled through a solution of $[Ir(COD)(PPh_3)_2]PF_6$ (cod = 1,5-cyclooctadiene) (50.0 mg, 0.0515 mmol) in benzene while the mixture was vigorously stirred under gentle reflux. Rapid displacement of COD occurs after which all solvents were evaporated. The product was filtered after the addition of methanol and diethyl ether. Slow evaporation of methanol solution gave yellow blocks. (Yield: 40.1 mg, 82%)

Refinement

The methine and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00 and 0.95 Å, respectively and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest peak is located 0.79 Å from Ir1 and the deepest hole is situated 0.79 Å from F4.

Computing details

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT-Plus* (Bruker, 2008); data reduction: *SAINT-Plus* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Tricarbonylbis(triphenylphosphane-κP)iridium(I) hexafluoridophosphate methanol monosolvate

Crystal data	
$[Ir(C_{18}H_{15}P)_2(CO)_3]PF_6 \cdot CH_4O$	F(000) = 1928
$M_r = 977.80$	$D_{\rm x} = 1.701 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
Hall symbol: -P 2ybc	Cell parameters from 9817 reflections
a = 16.487 (5) Å	$\theta = 2.6 - 28.3^{\circ}$
b = 13.571 (4) Å	$\mu = 3.69 \text{ mm}^{-1}$
c = 20.903 (5) Å	T = 100 K
$\beta = 125.297 (5)^{\circ}$	Block, yellow
$V = 3817 (2) Å^3$	$0.18 \times 0.14 \times 0.06 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.556, T_{\max} = 0.809$ 68611 measured reflections	9501 independent reflections 8699 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -21 \rightarrow 19$ $k = -18 \rightarrow 15$ $l = -27 \rightarrow 27$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.044$ S = 1.03 9501 reflections 489 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0153P)^2 + 4.3801P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 1.01$ e Å ⁻³ $\Delta\rho_{min} = -0.75$ e Å ⁻³

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of ?? s/frame. A total of ??? frames were collected with a frame width of $0.5\$ covering up to $\theta = 28.0$ ° with 99.9% completeness accomplished.

Spectroscopy data: ¹H NMR (300 MHz, (CD₃)₂CO): δ = 7.5–7.8 (m, 30H). ³¹P NMR (121 MHz, (CD₃)₂CO): δ = -1.6 (*s*), -143.0 (m, PF₆). *v*(CO): 1989, 2008, 2025 cm⁻¹.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	v	7	U*/U.a	
$\overline{C1}$	0.85401 (15)	<i>y</i> 0.60650 (15)	0 67007 (12)		
CI	0.83491 (13)	0.09039 (13)	0.07007 (13)	0.0193 (4)	
C01	0.6389 (2)	0.5239 (2)	0.77777 (18)	0.0440 (7)	
H01A	0.6237	0.5943	0.7739	0.066*	
H01B	0.5781	0.4873	0.74	0.066*	
H01C	0.6881	0.5132	0.7663	0.066*	
C2	0.70334 (17)	0.63622 (15)	0.47318 (13)	0.0203 (4)	
C3	0.64299 (15)	0.57286 (14)	0.59226 (12)	0.0171 (4)	
C11	0.84576 (14)	0.41711 (14)	0.68487 (11)	0.0147 (4)	
C12	0.85577 (16)	0.31492 (15)	0.68521 (12)	0.0183 (4)	
H12	0.8498	0.2832	0.6422	0.022*	
C13	0.87431 (16)	0.25962 (15)	0.74810 (13)	0.0209 (4)	
H13	0.8808	0.1901	0.7479	0.025*	
C14	0.88347 (16)	0.30508 (16)	0.81104 (13)	0.0216 (4)	

H14	0.8963	0.2668	0.854	0.026*
C15	0.87397 (17)	0.40654 (17)	0.81152 (13)	0.0238 (5)
H15	0.8806	0.4378	0.855	0.029*
C16	0.85477 (16)	0.46261 (15)	0.74836 (12)	0.0194 (4)
H16	0.8478	0.5321	0.7486	0.023*
C21	0.95198 (14)	0.51021 (14)	0.62908 (12)	0.0143 (4)
C22	1.03624 (15)	0.46978 (15)	0.69615 (13)	0.0199 (4)
H22	1.0308	0.4353	0.7331	0.024*
C23	1.12827 (16)	0.48030 (17)	0.70857 (14)	0.0257 (5)
H23	1.1859	0.4531	0.7543	0.031*
C24	1.13651 (16)	0.52994 (16)	0.65505 (14)	0.0239 (5)
H24	1.1995	0.5358	0.6637	0.029*
C25	1.05332 (17)	0.57136 (16)	0.58874 (14)	0.0227 (4)
H25	1.0594	0.6059	0.5522	0.027*
C26	0.96128 (16)	0.56221 (15)	0.57591 (12)	0.0189 (4)
H26	0.9044	0.5914	0.5309	0.023*
C31	0.77070 (15)	0.40644 (14)	0.52184 (11)	0.0153 (4)
C32	0.82977 (17)	0.34357 (15)	0.51186 (13)	0.0186 (4)
H32	0.9001	0.348	0.5461	0.022*
C33	0.78507 (18)	0.27437 (16)	0.45141 (14)	0.0236 (5)
H33	0.8251	0.2313	0.4448	0.028*
C34	0.68332 (19)	0.26832 (17)	0.40143 (14)	0.0273 (5)
H34	0.6533	0.2209	0.3605	0.033*
C35	0.62365 (18)	0.33144 (17)	0.41046 (13)	0.0261 (5)
H35	0.5533	0.3274	0.3755	0.031*
C36	0.66749 (16)	0.39985 (16)	0.47064 (13)	0.0207 (4)
H36	0.627	0.4425	0.4771	0.025*
C41	0.60501 (15)	0.81216 (14)	0.60849 (12)	0.0162 (4)
C42	0.66416 (16)	0.78861 (16)	0.68786 (12)	0.0201 (4)
H42	0.7243	0.7532	0.7092	0.024*
C43	0.63557 (17)	0.81664 (18)	0.73602 (13)	0.0254 (5)
H43	0.6761	0.8006	0.7902	0.03*
C44	0.54769 (18)	0.86814 (17)	0.70476 (15)	0.0273 (5)
H44	0.5286	0.8881	0.7379	0.033*
C45	0.48746 (17)	0.89072 (16)	0.62554 (14)	0.0250 (5)
H45	0.4267	0.9249	0.6043	0.03*
C46	0.51604 (16)	0.86333 (15)	0.57727 (13)	0.0206 (4)
H46	0.4752	0.8793	0.5231	0.025*
C51	0.54265 (15)	0.78888 (14)	0.44876 (11)	0.0160 (4)
C52	0.46604 (15)	0.72272 (16)	0.42633 (13)	0.0212 (4)
H52	0.4704	0.6798	0.4641	0.025*
C53	0.38338 (17)	0.71896 (17)	0.34916 (13)	0.0253 (5)
H53	0.3314	0.6735	0.334	0.03*
C54	0.37697 (18)	0.78165 (19)	0.29442 (13)	0.0298 (5)
H54	0.3195	0.7806	0.2418	0.036*
C55	0.4536 (2)	0.8458 (2)	0.31567 (14)	0.0367 (6)
H55	0.4495	0.8874	0.2774	0.044*
C56	0.53717 (18)	0.84969 (17)	0.39324 (13)	0.0273 (5)
H56	0.5899	0.8938	0.4078	0.033*

C61	0.72295 (15)	0.89687 (14)	0.56249 (11)	0.0160 (4)
C62	0.69580 (16)	0.98774 (15)	0.57625 (13)	0.0212 (4)
H62	0.641	0.9916	0.5798	0.025*
C63	0.74831 (16)	1.07195 (16)	0.58478 (13)	0.0247 (5)
H63	0.7293	1.1336	0.5938	0.03*
C64	0.82869 (17)	1.06647 (16)	0.58012 (13)	0.0241 (5)
H64	0.8649	1.1244	0.5862	0.029*
C65	0.85644 (17)	0.97694 (16)	0.56662 (13)	0.0232 (5)
H65	0.9117	0.9733	0.5637	0.028*
C66	0.80312 (17)	0.89215 (15)	0.55739 (13)	0.0207 (4)
H66	0.8217	0.8308	0.5475	0.025*
01	0.92145 (12)	0.73141 (12)	0.72421 (10)	0.0309 (4)
O01	0.67752 (15)	0.49056 (17)	0.85393 (12)	0.0471 (5)
H01	0.7328	0.5175	0.8858	0.071*
O2	0.67796 (14)	0.63197 (12)	0.40991 (10)	0.0315 (4)
O3	0.58781 (12)	0.53708 (12)	0.59882 (10)	0.0289 (4)
F1	0.9118 (2)	0.70324 (13)	0.40752 (13)	0.0768 (7)
F2	0.80028 (14)	0.79216 (18)	0.41110 (11)	0.0678 (6)
F3	0.88792 (15)	0.92851 (11)	0.43228 (10)	0.0497 (5)
F4	0.99908 (15)	0.8406 (2)	0.42799 (15)	0.0823 (8)
F5	0.95832 (15)	0.79933 (13)	0.51178 (9)	0.0612 (6)
F6	0.83935 (13)	0.83280 (13)	0.32776 (9)	0.0436 (4)
P1	0.82838 (4)	0.48994 (3)	0.60498 (3)	0.01235 (9)
P2	0.65123 (4)	0.78758 (4)	0.54975 (3)	0.01324 (10)
P3	0.90070 (4)	0.81519 (4)	0.41996 (3)	0.02208 (12)
Ir1	0.737840 (5)	0.637207 (5)	0.578891 (4)	0.01155 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0173 (10)	0.0155 (9)	0.0248 (11)	0.0027 (8)	0.0119 (9)	-0.0008 (8)
C01	0.0380 (16)	0.0500 (17)	0.0486 (17)	-0.0059 (13)	0.0276 (14)	0.0050 (14)
C2	0.0247 (11)	0.0148 (9)	0.0231 (11)	0.0036 (8)	0.0148 (9)	0.0028 (8)
C3	0.0192 (10)	0.0129 (9)	0.0193 (10)	0.0051 (7)	0.0111 (8)	0.0033 (7)
C11	0.0152 (9)	0.0134 (9)	0.0157 (9)	0.0012 (7)	0.0089 (8)	0.0029 (7)
C12	0.0227 (10)	0.0138 (9)	0.0221 (10)	0.0004 (8)	0.0151 (9)	0.0000 (8)
C13	0.0227 (11)	0.0145 (9)	0.0261 (11)	0.0026 (8)	0.0144 (9)	0.0042 (8)
C14	0.0220 (11)	0.0228 (11)	0.0193 (10)	0.0028 (8)	0.0116 (9)	0.0074 (8)
C15	0.0323 (12)	0.0226 (11)	0.0175 (10)	0.0031 (9)	0.0151 (9)	0.0012 (8)
C16	0.0252 (11)	0.0141 (9)	0.0188 (10)	0.0016 (8)	0.0126 (9)	0.0006 (8)
C21	0.0156 (9)	0.0112 (8)	0.0191 (9)	-0.0007 (7)	0.0119 (8)	-0.0032 (7)
C22	0.0193 (10)	0.0158 (9)	0.0231 (10)	0.0014 (8)	0.0113 (9)	0.0012 (8)
C23	0.0162 (10)	0.0230 (11)	0.0312 (12)	0.0028 (8)	0.0097 (9)	-0.0021 (9)
C24	0.0184 (10)	0.0218 (11)	0.0369 (13)	-0.0046 (8)	0.0190 (10)	-0.0099 (9)
C25	0.0256 (11)	0.0220 (10)	0.0297 (11)	-0.0068 (8)	0.0213 (10)	-0.0062 (9)
C26	0.0197 (10)	0.0189 (10)	0.0199 (10)	-0.0020 (8)	0.0124 (9)	-0.0009 (8)
C31	0.0203 (10)	0.0116 (8)	0.0170 (9)	-0.0027 (7)	0.0125 (8)	-0.0007 (7)
C32	0.0229 (11)	0.0163 (9)	0.0223 (10)	-0.0030 (8)	0.0164 (9)	-0.0026 (8)
C33	0.0354 (13)	0.0198 (10)	0.0290 (11)	-0.0067 (9)	0.0264 (11)	-0.0075 (9)
C34	0.0379 (13)	0.0244 (11)	0.0253 (11)	-0.0109 (10)	0.0215 (11)	-0.0102 (9)

C35	0.0236 (11)	0.0272 (11)	0.0225 (11)	-0.0077 (9)	0.0104 (10)	-0.0061 (9)
C36	0.0211 (10)	0.0175 (10)	0.0235 (10)	-0.0013 (8)	0.0129 (9)	-0.0007 (8)
C41	0.0182 (10)	0.0128 (9)	0.0200 (10)	-0.0001 (7)	0.0124 (8)	-0.0003 (7)
C42	0.0201 (10)	0.0214 (10)	0.0183 (10)	0.0020 (8)	0.0107 (9)	-0.0013 (8)
C43	0.0271 (12)	0.0296 (12)	0.0188 (10)	0.0013 (9)	0.0129 (9)	-0.0038 (9)
C44	0.0315 (13)	0.0272 (12)	0.0326 (13)	-0.0019 (9)	0.0240 (11)	-0.0093 (10)
C45	0.0235 (11)	0.0203 (10)	0.0352 (13)	0.0038 (8)	0.0193 (10)	-0.0017 (9)
C46	0.0193 (10)	0.0183 (10)	0.0249 (11)	0.0033 (8)	0.0131 (9)	0.0034 (8)
C51	0.0154 (9)	0.0142 (9)	0.0148 (9)	0.0017 (7)	0.0067 (8)	0.0010 (7)
C52	0.0179 (10)	0.0217 (10)	0.0216 (10)	0.0002 (8)	0.0100 (9)	0.0052 (8)
C53	0.0187 (11)	0.0272 (11)	0.0245 (11)	-0.0036 (9)	0.0094 (9)	0.0008 (9)
C54	0.0238 (12)	0.0374 (13)	0.0170 (10)	-0.0045 (10)	0.0054 (9)	0.0017 (9)
C55	0.0366 (14)	0.0411 (15)	0.0195 (11)	-0.0104 (11)	0.0088 (11)	0.0101 (10)
C56	0.0272 (12)	0.0264 (11)	0.0191 (11)	-0.0097 (9)	0.0081 (10)	0.0021 (9)
C61	0.0175 (10)	0.0123 (9)	0.0144 (9)	-0.0004 (7)	0.0070 (8)	0.0014 (7)
C62	0.0168 (10)	0.0151 (9)	0.0277 (11)	0.0006 (8)	0.0105 (9)	-0.0013 (8)
C63	0.0221 (11)	0.0147 (10)	0.0304 (12)	-0.0002 (8)	0.0111 (10)	-0.0029 (8)
C64	0.0260 (11)	0.0158 (10)	0.0270 (11)	-0.0059 (8)	0.0132 (10)	-0.0004 (8)
C65	0.0271 (11)	0.0198 (10)	0.0287 (11)	-0.0054 (9)	0.0196 (10)	-0.0020 (9)
C66	0.0283 (11)	0.0134 (9)	0.0264 (11)	-0.0018 (8)	0.0191 (10)	-0.0006 (8)
01	0.0211 (8)	0.0299 (9)	0.0331 (9)	-0.0048 (7)	0.0107 (7)	-0.0090 (7)
O01	0.0427 (12)	0.0584 (14)	0.0467 (12)	-0.0160 (10)	0.0296 (10)	0.0019 (10)
O2	0.0462 (11)	0.0303 (9)	0.0228 (9)	0.0040 (8)	0.0226 (8)	0.0037 (7)
03	0.0280 (9)	0.0250 (8)	0.0375 (10)	0.0001 (7)	0.0211 (8)	0.0052 (7)
F1	0.136 (2)	0.0262 (9)	0.0671 (13)	0.0119 (11)	0.0580 (14)	-0.0049 (9)
F2	0.0527 (11)	0.1141 (18)	0.0538 (11)	-0.0414 (12)	0.0407 (10)	-0.0299 (12)
F3	0.0909 (14)	0.0237 (8)	0.0456 (10)	0.0033 (8)	0.0458 (10)	0.0005 (7)
F4	0.0368 (11)	0.129 (2)	0.0927 (17)	-0.0237 (12)	0.0442 (12)	-0.0429 (15)
F5	0.0807 (14)	0.0453 (10)	0.0234 (8)	0.0142 (9)	0.0104 (9)	0.0076 (7)
F6	0.0566 (11)	0.0478 (9)	0.0238 (8)	-0.0030 (8)	0.0216 (8)	0.0000 (7)
P1	0.0147 (2)	0.0100 (2)	0.0142 (2)	0.00026 (17)	0.00941 (19)	0.00037 (17)
P2	0.0144 (2)	0.0102 (2)	0.0147 (2)	0.00088 (17)	0.0081 (2)	0.00118 (18)
Р3	0.0224 (3)	0.0202 (3)	0.0206 (3)	-0.0001 (2)	0.0107 (2)	-0.0002 (2)
Ir1	0.01286 (4)	0.00918 (4)	0.01346 (4)	0.00053 (3)	0.00809 (3)	0.00089 (3)

Geometric parameters (Å, °)

Ir1—C1	1.938 (2)	С35—Н35	0.95
Ir1—C2	1.938 (2)	С36—Н36	0.95
Ir1—C3	1.947 (2)	C41—C42	1.391 (3)
Ir1—P1	2.3620 (8)	C41—C46	1.398 (3)
Ir1—P2	2.3599 (8)	C41—P2	1.811 (2)
C101	1.128 (3)	C42—C43	1.389 (3)
C01—O01	1.405 (3)	C42—H42	0.95
C01—H01A	0.98	C43—C44	1.386 (3)
C01—H01B	0.98	C43—H43	0.95
C01—H01C	0.98	C44—C45	1.386 (3)
C2—O2	1.135 (3)	C44—H44	0.95
С3—О3	1.107 (3)	C45—C46	1.388 (3)
C11—C16	1.392 (3)	C45—H45	0.95

C11—C12	1.396 (3)	C46—H46	0.95
C11—P1	1.815 (2)	C51—C56	1.384 (3)
C12—C13	1.386 (3)	C51—C52	1.392 (3)
C12—H12	0.95	C51—P2	1.815 (2)
C13—C14	1.380 (3)	C52—C53	1.386 (3)
C13—H13	0.95	С52—Н52	0.95
C14—C15	1.387 (3)	C53—C54	1.380 (3)
C14—H14	0.95	С53—Н53	0.95
C15—C16	1.393 (3)	C54—C55	1.379 (3)
C15—H15	0.95	С54—Н54	0.95
C16—H16	0.95	C55—C56	1.396 (3)
C21—C22	1.395 (3)	С55—Н55	0.95
C21—C26	1.398 (3)	С56—Н56	0.95
C21—P1	1.815 (2)	C61—C66	1.388 (3)
C22—C23	1.391 (3)	C61—C62	1.397 (3)
С22—Н22	0.95	C61—P2	1.818 (2)
C^{23} C^{24}	1 378 (3)	C62 - C63	1 382 (3)
C23—H23	0.95	C62—H62	0.95
C_{24} C_{25}	1 386 (3)	C63—C64	1 386 (3)
C_{24} H24	0.95	C63—H63	0.95
$C_{24} = C_{26}$	1 386 (3)	C64—C65	1384(3)
C25_H25	0.95	C64—H64	0.95
C26_H26	0.95	C65	1 392 (3)
C_{20} C_{120} C_{20}	1 304 (3)	C65_H65	0.05
$C_{31} = C_{30}$	1.394(3) 1.308(3)	C66 H66	0.95
$C_{31} = C_{32}$	1.396(3) 1.816(2)	001 H01	0.95
C_{22} C_{22}	1.010(2) 1.205(2)	$D_{2} = E_{1}$	1.5608(10)
$C_{22} = C_{23}$	1.595 (5)	r_{3} r_{1} r_{2} r_{2}	1.5096(19) 1.5870(10)
C32—H32	0.93	F_{3} F_{2} F_{2}	1.3870(19) 1.5022(17)
$C_{22} = U_{22}$	1.574 (5)	P3—P3	1.5955(17)
C33—H33	0.95	P3—F4	1.509 (2)
$C_{34} = C_{35}$	1.397 (3)	P3—F5	1.5890 (17)
C34—H34	0.95	P3—F0	1.5945 (10)
C35—C36	1.384 (3)		
01—C1—Ir1	177.8 (2)	C45—C46—C41	119.9 (2)
O01—C01—H01A	109.5	C45—C46—H46	120
O01—C01—H01B	109.5	C41—C46—H46	120
H01A—C01—H01B	109.5	C56—C51—C52	119.69 (19)
O01—C01—H01C	109.5	C56—C51—P2	121.59 (16)
H01A—C01—H01C	109.5	C52—C51—P2	118.61 (16)
H01B-C01-H01C	109.5	C53—C52—C51	120.4 (2)
O2—C2—Ir1	175.6 (2)	С53—С52—Н52	119.8
O3—C3—Ir1	178.8 (2)	С51—С52—Н52	119.8
C16—C11—C12	119.26 (18)	C54—C53—C52	119.7 (2)
C16—C11—P1	120.58 (15)	С54—С53—Н53	120.2
C12—C11—P1	120.06 (15)	С52—С53—Н53	120.2
C13—C12—C11	120.23 (19)	C55—C54—C53	120.3 (2)
C13—C12—H12	119.9	С55—С54—Н54	119.8
C11—C12—H12	119.9	С53—С54—Н54	119.8

C14—C13—C12	120.3 (2)	C54—C55—C56	120.3 (2)
C14—C13—H13	119.8	С54—С55—Н55	119.9
C12—C13—H13	119.8	С56—С55—Н55	119.9
C13—C14—C15	120.0 (2)	C51—C56—C55	119.6 (2)
C13—C14—H14	120	С51—С56—Н56	120.2
C15—C14—H14	120	С55—С56—Н56	120.2
C14—C15—C16	120.0 (2)	C66—C61—C62	119.29 (19)
C14—C15—H15	120	C66—C61—P2	121.26 (16)
C16—C15—H15	120	C62—C61—P2	119.44 (16)
C11—C16—C15	120.14 (19)	C63—C62—C61	120.3 (2)
C11—C16—H16	119.9	С63—С62—Н62	119.8
C15—C16—H16	119.9	С61—С62—Н62	119.8
C22—C21—C26	119.65 (19)	C62—C63—C64	120.0 (2)
C22—C21—P1	121.71 (16)	С62—С63—Н63	120
C26—C21—P1	118.50 (15)	С64—С63—Н63	120
C23—C22—C21	119.5 (2)	C65—C64—C63	120.2 (2)
C23—C22—H22	120.2	С65—С64—Н64	119.9
C21—C22—H22	120.2	С63—С64—Н64	119.9
C24—C23—C22	120.5 (2)	C64—C65—C66	119.8 (2)
C24—C23—H23	119.8	С64—С65—Н65	120.1
С22—С23—Н23	119.8	С66—С65—Н65	120.1
C23—C24—C25	120.4 (2)	C61—C66—C65	120.3 (2)
C23—C24—H24	119.8	С61—С66—Н66	119.9
C25—C24—H24	119.8	С65—С66—Н66	119.9
C26—C25—C24	119.8 (2)	C01—O01—H01	109.5
C26—C25—H25	120.1	C11—P1—C21	105.79 (9)
C24—C25—H25	120.1	C11—P1—C31	104.93 (9)
C25—C26—C21	120.2 (2)	C21—P1—C31	104.07 (9)
С25—С26—Н26	119.9	C11—P1—Ir1	114.58 (7)
C21—C26—H26	119.9	C21—P1—Ir1	113.22 (7)
C36—C31—C32	119.51 (19)	C31—P1—Ir1	113.28 (7)
C36—C31—P1	120.43 (16)	C41—P2—C51	105.55 (10)
C32—C31—P1	119.92 (16)	C41—P2—C61	104.08 (9)
C33—C32—C31	119.8 (2)	C51—P2—C61	106.46 (9)
С33—С32—Н32	120.1	C41—P2—Ir1	114.40 (7)
С31—С32—Н32	120.1	C51—P2—Ir1	110.59 (7)
C34—C33—C32	120.2 (2)	C61—P2—Ir1	114.98 (7)
С34—С33—Н33	119.9	F4—P3—F1	91.02 (14)
С32—С33—Н33	119.9	F4—P3—F2	178.61 (15)
C33—C34—C35	120.4 (2)	F1—P3—F2	90.22 (14)
С33—С34—Н34	119.8	F4—P3—F5	92.35 (13)
С35—С34—Н34	119.8	F1—P3—F5	91.35 (11)
C36—C35—C34	119.7 (2)	F2—P3—F5	88.26 (12)
С36—С35—Н35	120.2	F4—P3—F3	89.76 (12)
С34—С35—Н35	120.2	F1—P3—F3	179.21 (13)
C35—C36—C31	120.4 (2)	F2—P3—F3	88.99 (12)
С35—С36—Н36	119.8	F5—P3—F3	88.74 (9)
С31—С36—Н36	119.8	F4—P3—F6	89.48 (12)
C42—C41—C46	119.6 (2)	F1—P3—F6	89.89 (11)

C42 C41 P2	110 11 (16)	F7 D2 F6	80.80 (10)
$C_{42} - C_{41} - 12$	120.03 (16)	F5 P3 F6	17778(10)
$C_{43} - C_{41} - C_{41}$	120.33(10)	F3F6	90.00(9)
$C_{43} = C_{42} = C_{41}$	110.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126.00(0)
$C_{41} C_{42} H_{42}$	110.0	C_2 Irl C_3	120.42(10) 115.45(0)
$C_{+1} - C_{+2} - 11_{+2}$	119.9 110.8(2)	C_2 — H_1 — C_3	113.43(9) 118.13(0)
$C_{44} = C_{43} = C_{42}$	119.8 (2)	$C_1 = 111 = C_3$	88 65 (6)
$C_{44} = C_{43} = H_{43}$	120.1	$C_2 = m_1 = m_2$	88.05(0)
$C_{42} = C_{43} = 1143$	120.1	$C_1 = \frac{1}{1} \frac{1}{2}$	90.20 (0)
$C_{43} = C_{44} = C_{43}$	120.4 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.49 (0) 80.28 (6)
$C_{45} = C_{44} = 1144$	119.0	C_2 —IIII—II	89.28 (0)
C43 - C44 - H44	119.0	$C_1 = \prod_{i=1}^{n} P_i$	09.27(0)
$C_{44} = C_{45} = C_{40}$	120.0 (2)	C_3 —III—PI	92.30(0)
C44—C45—H45	120	P2—IF1—P1	1//.04/(18)
C40—C43—H43	120		
C16-C11-C12-C13	0.1.(3)	C12—C11—P1—C31	26 42 (19)
P1-C11-C12-C13	176 57 (16)	C_{16} C_{11} P_{1} $I_{r_{1}}$	-32.28(19)
$C_{11} - C_{12} - C_{13} - C_{14}$	-0.3(3)	C12— $C11$ — $P1$ — $Ir1$	151 30 (14)
C_{12} C_{13} C_{14} C_{15} C_{14}	0.5(5)	$C_{22} = C_{21} = P_1 = C_{11}$	2 27 (19)
$C_{12} = C_{13} = C_{14} = C_{15} = C_{16}$	0.1(3)	$C_{22} = C_{21} = P_1 = C_{11}$	177.92(16)
C_{12} C_{14} C_{15} C_{16} C_{15}	0.3(3)	$C_{20} = C_{21} = P_1 = C_{31}$	-108.02(10)
P1 C11 C16 C15	-17618(17)	$C_{22} = C_{21} = P_1 = C_{31}$	67.63(17)
C_{14} C_{15} C_{16} C_{11}	-0.5(3)	$C_{20} = C_{21} = 11 = C_{31}$	12854(15)
$C_{14} = C_{13} = C_{10} = C_{11}$	-1.1(3)	$C_{22} = C_{21} = 1 = 11$	-55.80(17)
$P_1 = C_{21} = C_{22} = C_{23}$	1.1(5) 174.40(16)	$C_{20} = C_{21} = 1 = 11$	33.80(17)
11 - 021 - 022 - 023	-0.2(3)	$C_{30} = C_{31} = 1 = C_{11}$	-94.74(18)
$C_{21} = C_{22} = C_{23} = C_{24}$	-0.2(3)	$C_{22} = C_{21} = F_{1} = C_{11}$	-64.74(10)
$C_{22} = C_{23} = C_{24} = C_{23}$	1.0(3)	$C_{30} = C_{31} = P_1 = C_{21}$	-138.07(17)
$C_{23} = C_{24} = C_{23} = C_{20}$	-0.3(3)	$C_{32} = C_{31} = P_1 = C_{21}$	20.19(19)
$C_{24} = C_{23} = C_{20} = C_{21}$	-0.9(3)	$C_{30} = C_{31} = P_1 = H_1$	-34.08(18)
$C_{22} = C_{21} = C_{20} = C_{25}$	1.7(3)	C_{32} C_{31} P_1 If_1	149.57(14)
P1 = C21 = C26 = C23	-1/4.0/(10)	C42 - C41 - P2 - C51	101.74(10)
$C_{30} - C_{31} - C_{32} - C_{33}$	-0.0(3)	C40 - C41 - P2 - C31	-24.91(19)
P1 - C31 - C32 - C33	1/5.1/(16)	C42 - C41 - P2 - C61	-86.35 (18)
$C_{31} - C_{32} - C_{33} - C_{34}$	0.4(3)	C46 - C41 - P2 - C61	86.99 (18)
$C_{32} = C_{33} = C_{34} = C_{35}$	0.2(4)	C42 - C41 - P2 - Ir1	39.93 (18)
$C_{33} = C_{34} = C_{35} = C_{36}$	-0.6(4)	C46-C41-P2-Ir1	-146./2(15)
C34—C35—C36—C31	0.4 (3)	C56—C51—P2—C41	124.9 (2)
C32—C31—C36—C35	0.2 (3)	C52—C51—P2—C41	-58.94 (19)
P1—C31—C36—C35	-175.57 (17)	C56—C51—P2—C61	14.6 (2)
C46—C41—C42—C43	-0.7(3)	C52—C51—P2—C61	-169.15 (17)
P2—C41—C42—C43	172.75 (17)	C56—C51—P2—Ir1	-110.90 (19)
C41—C42—C43—C44	0.1 (3)	C52—C51—P2—Ir1	65.30 (18)
C42—C43—C44—C45	0.9 (4)	C66—C61—P2—C41	151.24 (17)
C43—C44—C45—C46	-1.2 (4)	C62—C61—P2—C41	-29.95 (19)
C44—C45—C46—C41	0.6 (3)	C66—C61—P2—C51	-97.51 (18)
C42—C41—C46—C45	0.3 (3)	C62—C61—P2—C51	81.29 (18)
P2—C41—C46—C45	-173.00 (17)	C66—C61—P2—Ir1	25.32 (19)
C56—C51—C52—C53	-1.5 (3)	C62—C61—P2—Ir1	-155.87 (15)
P2-C51-C52-C53	-177.75 (18)	C41—P2—Ir1—C2	154.66 (10)

C51—C52—C53—C54	-0.3 (4)	C51—P2—Ir1—C2	35.65 (10)
C52—C53—C54—C55	1.9 (4)	C61—P2—Ir1—C2	-84.94 (10)
C53—C54—C55—C56	-1.7 (4)	C41—P2—Ir1—C1	-78.91 (10)
C52—C51—C56—C55	1.6 (4)	C51—P2—Ir1—C1	162.08 (10)
P2-C51-C56-C55	177.8 (2)	C61—P2—Ir1—C1	41.48 (10)
C54—C55—C56—C51	0.0 (4)	C41—P2—Ir1—C3	39.22 (10)
C66—C61—C62—C63	-0.1 (3)	C51—P2—Ir1—C3	-79.79 (10)
P2-C61-C62-C63	-178.91 (17)	C61—P2—Ir1—C3	159.61 (9)
C61—C62—C63—C64	-0.3 (3)	C11—P1—Ir1—C2	-156.99 (10)
C62—C63—C64—C65	0.3 (4)	C21—P1—Ir1—C2	81.56 (10)
C63—C64—C65—C66	0.3 (4)	C31—P1—Ir1—C2	-36.64 (10)
C62—C61—C66—C65	0.6 (3)	C11—P1—Ir1—C1	76.58 (10)
P2-C61-C66-C65	179.41 (17)	C21—P1—Ir1—C1	-44.87 (10)
C64—C65—C66—C61	-0.7 (3)	C31—P1—Ir1—C1	-163.08 (10)
C16—C11—P1—C21	93.15 (18)	C11—P1—Ir1—C3	-41.55 (9)
C12-C11-P1-C21	-83.26 (18)	C21—P1—Ir1—C3	-163.00 (9)
C16-C11-P1-C31	-157.16 (17)	C31—P1—Ir1—C3	78.80 (10)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
C15—H15…F3 ⁱ	0.95	2.39	3.281 (3)	157
C16—H16…F6 ⁱ	0.95	2.53	3.319 (3)	141
C42—H42…F6 ⁱ	0.95	2.38	3.138 (3)	136
$C43$ — $H43$ ···· $F2^{i}$	0.95	2.49	3.386 (3)	158
C45—H45…O01 ⁱⁱ	0.95	2.50	3.281 (3)	139
C64—H64…F4 ⁱⁱⁱ	0.95	2.47	3.200 (3)	133
O01—H01…F3 ⁱ	0.84	2.27	3.059 (3)	157
C53—H53··· <i>Cg</i> 1 ^{iv}	0.95	2.68	3.523 (2)	148
С35—Н35…Сд3 ^і	0.95	2.91	3.587 (2)	129
C13—H13…Cg2 ^v	0.95	2.97	3.744 (2)	140

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x+2, y-1/2, -z+3/2.