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Triple-negative breast cancer (TNBC) occurs more frequently in young (<50 years) non-
Hispanic black and Hispanic/Latina women. It is considered the most aggressive subtype
of breast cancer, although, recently, immune infiltrate has been associated with long-term
survival, lower risk of death and recurrence, and response to neoadjuvant chemotherapy.
The aim of this review was to evaluate the clinical impact of the immune infiltrate in TNBC
by discussing whether its prognostic value varies across different populations. A
comprehensive systematic search in databases such as PubMed and Web of Science
was conducted to include papers focused on tumor-infiltrating lymphocytes (TILs) in
TNBC in different population groups and that were published before January 2021. TNBC
patients with higher levels of TILs had longer overall survival and disease-free survival
times compared with TNBC patients with low TIL levels. Similar results were observed for
CD4+, CD8+ TIL populations. On the other hand, patients with high TIL levels showed a
higher rate of pathological complete response regardless of the population group (Asian,
European, and American). These results altogether suggest that TIL subpopulations might
have a prognostic role in TNBC, but the underlying mechanism needs to be elucidated.
Although the prognosis value of TILs was not found different between the population
groups analyzed in the revised literature, further studies including underrepresented
populations with different genetic ancestries are still necessary to conclude in this regard.

Keywords: triple-negative breast cancer, tumor-infiltrating lymphocytes, prognosis, predictive, population groups
INTRODUCTION

Breast cancer (BC) is a heterogeneous disease in its phenotypic and genomic features (1). Four
intrinsic subtypes, luminal A, luminal B, HER2-enriched, and triple negative, have been reported,
each one characterized by differences in the transcriptional profile and clinical behavior (2–4). The
prevalence of these subtypes is variable between population groups (5, 6). Several studies have
agreed that the triple-negative subtype is more prevalent in NHB and in H/L compared with non-
Hispanic white (NHW) women (7–10).
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Triple-negative breast cancer (TNBC) is characterized by the
lack of expression of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2). It
constitutes 10–20% of all breast cancers and occurs more frequently
in young women (<50 years) (11, 12). It is the most aggressive
subtype of BC considering that it presents with a larger tumor size
and a higher histological grade at the time of diagnosis and has a
high expression of cell proliferation genes, which correlated with
their clinical characteristics and poor prognosis (13).

TNBC has been described as a transcriptionally heterogeneous
subtype (14–16). Lehmann et al. (14) identified 6 subtypes through
gene expression analysis: basal-like 1 (BL1) characterized by a high
expression of genes involved in cell cycle and cellular division, basal-
like 2 (BL2) that expresses genes that enrich the signaling by growth
factors such as MET and EGFR and expresses myoepithelial
markers, immunomodulator (IM) subtype that expresses genes
involved in the signaling of immune cells and cytokine-mediated
translation pathways, and the mesenchymal (M) and mesenchymal
stem-like (MSL) subtypes which display similarities in terms of the
high expression of genes involved in cell motility, epithelial–
mesenchymal transition pathways, and growth factors (such as,
NOTCH, PDGFR, FGFR, and TGFbeta dysregulation). However,
the MSL subtype differs from the M subtype as it presents a lower
expression of cell proliferation genes. Finally, the luminal androgen
receptor (LAR) subtype presents a high expression of genes that
participate mainly in hormonally regulated pathways, for example,
by the androgen receptor (AR) (14, 17–19).

An important characteristic of TNBC is that it is the most
immunogenic BC subtype. Its immune infiltrate has been
associated with both the control of tumor cells and with the
processes of tumor growth and metastasis (20–22). It has been
likewise associated with the effectiveness of neoadjuvant and
adjuvant therapy, thus correlating with the clinical outcome of
the disease (23).

The variability in the immune infiltrate and its clinical impact
in TNBC has been studied mainly in NHW women, but it is
Frontiers in Oncology | www.frontiersin.org 2
unknown how it may vary according to the population group.
The aim of this review was to systematize those studies that have
evaluated the clinical impact of the immune infiltrate in TNBC,
discussing whether there are differences in its prognostic value
based on the population groups.
TUMOR MICROENVIRONMENT
AND IMMUNE INFILTRATE IN
BREAST CANCER

The neoplastic progression of BC at the cellular level depends on
the interaction of the tumor microenvironment (TME) and the
adjacent immune system, which can act to promote or suppress
the tumor growth and invasion (24, 25).

TME is composed of tumor cells and different stromal cells,
such as fibroblasts, mesenchymal cells, immune cells, and
adipocytes. These stromal cells secrete growth factors,
cytokines, chemokines, and exosomes, molecules that maintain
a constant interaction among cells within the TME (26, 27).
Tumor cells are the only ones that have mutations within the
TME and can promote epigenetic modifications on non-tumor
cells. These modifications facilitate tumoral invasion, survival,
and growth in an autocrine and paracrine way (25) (Figure 1).
COMPOSITION OF TUMOR-INFILTRATING
LYMPHOCYTES IN TNBC

The antitumor immune response in the TME is mainly driven by
tumor-infiltrating lymphocytes (TILS) which, according to their
location in the TME, are divided into stromal (sTILs) and
intratumoral (iTILs). Most of the lymphocytes are sTILs,
which infiltrate the tissue adjacent to the tumor and are
considered the real tumor-infiltrating cells; on the other hand,
iTILs are in direct contact with the tumor, actively infiltrating it
FIGURE 1 | Composition of tumor microenvironment in breast cancer.
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into nests (28). It is noteworthy that different subtypes of TILs
may have inhibitory or stimulatory effects on tumor progression
(29)—for instance, CD8+ T cells show the highest antitumor
activity that is mediated by interferon-gamma (IFN-g), perforin,
and granzyme B secretion (30). In BC, a high number of CD8+ T
cells has been associated with a better prognosis and response to
neoadjuvant treatment (31). On the other hand, T helper cells
CD4+ have the function of enhancing the adaptive immune
response by increasing the infiltration and the effector functions
of CD8+ T cells and other immune cells (32). Regulatory T cells
(Treg), a subpopulation of CD4+ T cells, are positive for FOXP3
and CD25 markers and participate in immune escape by
suppressing the antitumor activity of CD8+ T cells (33). The
presence of Treg cells within the TME is commonly associated
with a poor prognosis in cancer (34). However, recent studies
have demonstrated the opposite in TNBC, where the presence of
Tregs in the TME was associated with longer overall survival
(OS) and disease-free survival (DFS) (35, 36).

B cells can produce specific antibodies for antigens present in
tumor cells; however, it has not yet been demonstrated if these
cells have the same degree of clinical significance as T cells (37).
The presence of B cells in the tumor stroma has been correlated
with longer DFS and metastasis-free survival (MFS) in TNBC
patients (38).

The role of both functionally distinct macrophage
subpopulations M1 and M2 has been reported. M1
macrophages exhibit antitumoral activity by activating natural
killer (NK) cells and Th1 cells (IFN- g, IL-2, and TNF-alpha
producers), which contributes to the activation of CD8+ T cells
(39). In contrast, M2 macrophages or tumor-associated
macrophages (TAMs) favor tumor growth and progression by
facilitating tumor invasion and angiogenesis, thus being
associated with a poor prognosis in patients with TNBC (40, 41).

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
group of cells with immunosuppressive activity, composed mainly
of granulocytes and monocytes. The MDSCs have been associated
with tumoral progression through the production of
immunosuppressive and pro-angiogenic cytokines that inhibit the
immune response of antitumor T cells (42, 43). It should be noted
that the role of MDSCs specifically in TNBC patients remains
relatively unexplored (44, 45).

NK cells recognize and delete tumor cells lacking MHC-1
expression on their cell surface, whose expression is necessary for
the activation of CD8 + T cells (46). Recent studies have shown
that NK cells are associated with a better prognosis in the early
stages of TNBC (47). More studies are needed.
TILS AS PROGNOSTIC AND PREDICTIVE
BIOMARKER IN TRIPLE-NEGATIVE
BREAST CANCER

In the last few years, the predictive and prognostic role of TILs in
TNBC have been studied. The relations between the composition of
TILs subpopulations, clinico-pathological characteristics, and the
survival of patients have likewise been explored (Table 1) (29, 62).
Frontiers in Oncology | www.frontiersin.org 3
Studies carried out in Asian populations mostly showed that
TILs, when evaluated in resected specimens, have a positive impact
on the prognosis of TNBC (48) (50). Some studies have 95%CI with
OS (HR: 0.493, 95% CI: 0.232–1.047, p = 0.066) when patients with
high TILs (≥10%) vs. low TILs (<10%) were compared (48). Hida et
al. (50) reported a poorer prognosis in TNBC patients with low TIL
levels (<10%) compared with intermediate/high-TIL groups (>50%)
(HR: 2.68, 95% CI: 1.13–5.95). This association remained significant
in the multivariate model (HR: 2.49, 95% CI: 1.05–5.55). Moreover,
TILs analyzed at the biopsy, before neoadjuvant chemotherapy,
were found to be associated with pCR rate (p = 0.024). Despite
previous results, opposite results have also been reported where
TILs did not correlate with survival outcomes (52).

When TILs have been evaluated in biopsies, a lower
likelihood of recurrence has been observed in patients with a
high TIL infiltration (≥10%) compared with those with a low TIL
infiltration (<10%) in univariate (HR: 0.18, 95% CI: 0.05–0.58)
and multivariate analyses (HR: 0.24, 95% CI: 0.07–0.82). In
addition, patients with higher TIL infiltration presented with
higher pCR rates (p = 0.013) when compared with patients with
low TIL infiltration (49) Similarly, Ruan et al. (51) reported a
significant association between the percentage of TILs and pCR
in a model adjusted for age, lymph–vascular invasion, and Ki67,
both for iTILs (OR: 1.06, 95% CI: 1.00–1.12, p = 0.04, per 10%
increase) and for sTILs (OR: 1.05, 95% CI: 1.02–1.09, p = 0.006,
per 10% increase). When the optimal thresholds for TILs were
analyzed, the results suggested that 20% is a better cutoff to
determine high or low sTILs infiltration since it seems to be a
better predictor of pCR (OR 2.85, 95% CI: 1.38–5.90, p = 0.005).

The differences in the prognosis impact of TILs between
studies might be related to the clinical stage of the patients
included. Presumably, there are lower amounts of tumor
antigens among patients at earlier stages (31, 52), which could
lead to misinterpretations regarding the relationship of TILs and
clinico-pathological variables and outcomes of interest, as few
studies have assessed the prognosis impact of TILs in early-stage
TNBC patients.

Studies in a European population show similar findings to
those in the Asian population. A study in France that evaluated
TILs in the primary tumor reported a 15% reduction in the risk
of death for every 10% of increase in sTIL levels (HR: 0.85, 95%
CI: 0.74–0.99) and 18% reduction in the risk of death for every
10% of increase in iTILs (HR: 0.82, 95% CI: 0.68–0.99) in the
multivariate analysis adjusted for the grade of lymph nodes
(LN) (53).

In Italy, two studies were carried out in a larger number of
TNBC patients and analyzed TILs in the resected specimen (54,
55). The first study included 897 women and reported TILs as an
independent prognostic factor for a longer distant disease-free
survival (HR: 0.76, 95% CI: 0.69–0.84, for every 10% increase in
TILs) and longer OS (HR: 0.76, 95% CI: 0.68–0.84, for every 10%
increase in TILs) in a model adjusted for age at diagnosis, lymph
node stage, peritumoral vascular invasion, tumor size and grade,
and Ki67 (54). The second study that evaluated sTILs in the
resected specimen and dichotomized patients in having TILs
≥50% vs. patients with TILs <50% likewise found a 13% risk
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TABLE 1 | Outcomes from studies that analyzed tumor-infiltrating lymphocytes (TILs) according to the region of origin.

Reference Population n (triple-
negative
breast
cancer)

Specimen
evaluated

TILs
evaluated

Cut-off value Outcomes for
univariate
analysis

Outcomes for
multivariate
analysis

Adjustment variables

(48) Asian 308 Resected
specimen

Stromal ≥10 vs. <10% No specified OS (HR:
0.493, 95%
CI: 0.232–
1.047)

Tumor size, LN metastasis, LVI, and histologic
grade

DFS (HR:
0.429, 95%
CI: 0.215–
0.859)

(49) Asian 61 Biopsy Stromal High (≥10%) vs.
low (<10%)

For DFS (HR:
0.18, 95% CI:
0.05–0.58)

DFS (HR:
0.24, 95% CI:
0.07–0.82)

Pathological response

(50) Asian 381 Resected
specimen

Stromal Low (<10%) vs.
Intermediate (10–
50%) + high
(>50%)

RFS (HR:
2.68, 95% CI:
1.13–5.95)

RFS (HR:
2.49, 95% CI:
1.05–5.55)

Nodal status

(51) Asian 166 Biopsy Stromal Continuous (per
10% increase)

pCR for sTILS
(OR: 1.07,

95% CI: 1.03–
1.10)

pCR for sTILS
(OR: 1.05,

95% CI: 1.02–
1.09)

Age, histological grade, tumor size, nodal
status, LVI, Ki67 index, and NAC

Intratumoral pCR for iTILS
(OR: 1.10,

95% CI: 1.04–
1.16)

pCR for iTILs
(OR: 1.06,

95% CI: 1.00–
1.12)

(52) Asian 121 Resected
specimen

Stromal Continuous (per
10% increase)

DFS for sTILs
(HR: 0.75,

95% CI: 0.28–
2.03)

DFS for sTILs
(HR: 0.99,

95% CI: 0.97–
1.01)

Age, T stage, and nodal status

Intratumoral DFS for iTILs
(HR: 0.66,

95% CI: 0.24–
1.83)

OS for sTILs
(HR: 0.99,

95% CI: 0.97–
1.02)

(53) European 199 Biopsy Stromal Continuous (per
10% increase)

OS for sTILs
(HR: 0.89,

95% CI: 0.78–
1.02)

OS for sTILs
(HR: 0.85,

95% CI: 0.74–
0.99)

Grade, LN status, and treatment arm

Intratumoral OS for iTILs
(HR: 0.83,

95% CI: 0.69–
0.99)

OS for iTILs
(HR: 0.82,

95% CI: 0.68–
0.99)

(54) European 897 Resected
specimen

Stromal Continuous (per
10% increase)

DDFS (HR:
0.79, 95% CI:
0.74–0.86)

DDFS (HR:
0.76, 95% CI:
0.69–0.84)

Age, LN status, tumor size, tumor grade,
peritumoral vascular invasion, and Ki67 index

OS (HR: 0.79,
95% CI: 0.72–

0.86)

OS (HR: 0.76,
95% CI: 0.68–

0.84)
(55) European 647 Resected

specimen
Stromal ≥50 vs. < 50% BCFI (HR:

0.87, 95% CI:
0.79–0.95)

BCFI (HR:
0.87, 95% CI:
0.79–0.96)

Age, nodal status, tumor size, and tumor
grade

DFS (HR:
0.89, 95% CI:
0.82–0.97)

DFS (HR: 0.9,
95% CI: 0.82–

0.97)
DRFI (HR:

0.84, 95% CI:
0.74–0.94)

DRFI (HR:
0.83, 95% CI:
0.74–0.94)

OS (HR: 0.83,
95% CI: 0.74–

0.92)

OS (HR: 0.83,
95% CI: 0.74–

0.93)
(56) European 607 Biopsy Stromal Continuous (per

10% increase)
DFS (HR:

0.93, 95% CI:
0.87–0.98)

DFS (HR:
0.95, 95% CI:
0.89–1.01)

Age, T stage, N stage, histopathological type,
tumor grading, and molecular subtype

(Continued)
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TABLE 1 | Continued

Reference Population n (triple-
negative
breast
cancer)

Specimen
evaluated

TILs
evaluated

Cut-off value Outcomes for
univariate
analysis

Outcomes for
multivariate
analysis

Adjustment variables

OS (HR: 0.92,
95% CI: 0.86–

0.99)

OS (HR: 0.95,
95% CI: 0.88–

1.03)
pCR (HR:

1.16, 95% CI:
1.10–1.22)

pCR (OR:
1.17, 95% CI:
1.11–1.24)

(57) European 314 Biopsy Stromal Continuous (per
10% increase)

pCR (HR:
1.15, 95% CI:
1.05–1.26)

pCR (HR:
1.17, 95% CI:
1.06–1.30)

LPBC, tumor grade, T stage, nodal status,
therapy, and age

(58) European 304 Residual
disease

Stromal Continuous (per
10% increase)

OS (HR: 0.79,
95% CI: 0.71–

0.89)

OS sTILs (HR:
0.86, 95% CI:
0.77–0.97)

Age, stage, histotype, grade, nodal status
after chemotherapy, residual tumor size, neo,
and neo + adj

OS iTILs (HR:
0.78, 95% CI:
0.68–0.89)

OS iTILs (HR:
0.86, 95% CI:
0.75–0.99)

Intratumoral MFS sTILs
(HR: 0.79,

95% CI: 0.71–
0.88)

MFS sTILs
(HR: 0.86,

95% CI: 0.77–
0.96)

MFS iTILs
(HR: 0.77,

95% CI: 0.68–
0.88)

MFS iTILs
(HR: 0.85,

95% CI: 0.75–
0.98)

(59) European 375 Residual
disease

Stromal Continuous (per
10% increase)

RFS (HR:
0.83, 95% CI:
0.76–0.90)

RFS (HR:
0.86, 95% CI:
0.78–0.93)

Age, pretreatment tumor size, pretreatment
nodal status, and RCB class

OS (HR: 0.82,
95% CI: 0.75–

0.89)

OS (HR: 0.85,
95% CI: 0.77–

0.94)
(21) Australian 134 Biopsy Stromal Continuous (per

10% increase)
DDFS (HR:

0.79, 95% CI:
0.64–0.98)

DDFS (HR:
0.77, 95% CI:
0.61–0.98)

Tumor size, histological grade, nodal status,
and age

OS (HR: 0.80,
95% CI: 0.62–

1.03)

OS (HR: 0.81,
95% CI: 0.61–

1.1)
(22) United

States
481 Resected

specimen
Stromal Continuous (per

10% increase)
DRFI (HR:

0.82, 95% CI:
0.68–0.99)

DFS (HR:
0.84, 95% CI:
0.74–0.95)

Tumor size, node status, and age

OS (HR: 0.81,
95% CI: 0.69–

0.95)

DRFI (HR:
0.81, 95% CI:
0.68–0.97)

OS (HR: 0.79,
95% CI: 0.67–

0.92)
(60) United

States
157 Resected

specimen
Stromal Continuous DFS (HR:

0.96, 95% CI:
0.93–1.00)

DFS (HR:
0.95, 95% CI:
0.91–1.00)

LV invasion and Nottingham histologic grade
and stage

OS (HR: 0.96,
95% CI: 0.93–

1.00)

OS (HR: 0.95,
95% CI: 0.91–

1.00)
(61) United

States
605 Resected

specimen
Stromal Continuous (per

10% increase)
IDFS (HR:

0.89, 95% CI:
0.83–0.95)

IDFS (HR:
0.90, 95% CI:
0.86–0.94)

Age, menopausal status, tumor size, nodal
status, Nottingham grade, Ki67 index, LPBC,
histopathology subtypes, and type of breast
surgery
Frontiers in O
ncology | ww
w.frontiersin.
org
 5
OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival; pCR, pathological complete response; DDFS, distant disease-free survival; BCFI, BC-free interval; DRFI,
distant recurrence-free interval; MFS, metastasis-free survival; IDFS, invasive disease-free survival; LN, lymph nodes; LVI, lymph–vascular invasion; NAC, neoadjuvant chemotherapy;
LPBC, lymphocyte-predominant BC.
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reduction in BC-free interval (HR: 0.87, 95% CI: 0.79–0.96,
p = 0.006), 10% risk reduction for DFS (HR: 0.9, 95% CI:
0.82–0.97, p = 0.01), 17% for distance recurrence-free interval
(HR: 0.83; 95% CI 0.74–0.94, p = 0.004) in a model adjusted for
age, nodal status, tumor size, and tumor grade (55). A study
carried out in France and Italy reported that the high presence of
TILs in the residual disease after neoadjuvant treatment had a
positive impact on MFS (sTIL: HR = 0.86, 95% CI: 0.77–0.96,
p = 0.01; iTILs: HR: 0.85, 95% CI: 0.75–0.98, p = 0.02, per 10%
increase in TILs) and longer OS (sTIL: HR: 0.86, 95% CI:
0.77–0.97, p = 0.01; iTILs: HR: 0.86, 95% CI: 0.75–0.99,
p = 0.03, per 10% increase in TILs). The 5-year OS rate was
91% (95% CI, 68 to 97%) for patients with higher TILs in residual
disease compared with 55% (95% CI, 48 to 61%) for patients with
low TIL levels (58). Similarly, Luen et al. (59) found that a higher
percentage of TILs in residual disease was associated with a
longer recurrence-free survival (RFS) (HR: 0.86, 95% CI:
0.78–0.93, per 10% increase in TILs) and a longer OS (HR:
0.85, 95% CI: 0.77–0.94, per 10% increase in TILs).

Denkert et al. (56) also reported in a model adjusted for clinical
parameters that patients with high TIL levels in the biopsy have
longer DFS (HR: 0.93, 95% CI: 0.87–0.98, p = 0.011) and longer OS
(HR: 0.92, 95% CI: 0.86–0.99, p = 0.032). However, when pCR was
included in the multivariate analysis for both outcomes, the TILs
were no longer significantly associated (HR: 0.95, 95%CI: 0.89–1.01,
p = 0.11 for DFS, HR: 0.95, 95% CI: 0.88–1.03, p = 0.24 for OS).
They also analyzed if TILs are predictors for pCR in TNBC and
found a positive association for sTILs (OR: 1.17, 95% CI: 1.11–1.24,
per 10% increase in sTILs). Similar results were reported by the
same authors in a different study (57). A different effect of TILs
according to chemotherapy regimen has been observed. TILs
conferred the greatest survival benefit in patients treated with
cyclophosphamide, methotrexate, and 5-fluorouracil +
cyclophosphamide doxorubicin regimen (HR: 0.60, 95% CI: 0, 48
to 0.76) (54). More studies are needed to explore differences in the
prognosis value of TILs according to the chemotherapy regimen.

The relationship between higher TIL levels and higher pCR
rates could be explained by the degree of antitumor immune
response by TILs against cancer cells that act synergistically with
the natural-immunity-restoring antitumor response (20, 22). In
addition, it has been demonstrated that chemotherapy treatment
can promote the antitumor immune response due to the
production of danger signals—danger-associated molecular
patterns—during cell death. The expression of calreticulin
(CALR) and release box 1 of the high mobility group
(HMGB1) also boosts this antitumor immune response (63).
All these could be together related to the presence of TILs in
residual disease (58), and thus a good prognosis was reported for
TILs in residual disease (64).

In the Australian population, an analysis that included early-
stage TNBC patients showed that for every 10% increase in the
presence of TILs in the primary tissue, there was a 13% decrease
in the risk of distant relapse (HR: 0.77, 95% CI: 0.61 –0.98,
p = 0.02) in a model adjusted for clinico-pathological
characteristics. No statistically significant differences were
observed for OS (21).
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In the United States, Adams and colleagues (22) reported
that for every 10% increase in sTILs evaluated in surgical
specimens, there was a 16% reduction in the risk of recurrence
(HR: 0.84, 95% CI: 0.74–0.95, p = 0.005) and a 21% reduction
in the risk of death (HR: 0.79, 95% CI: 0.67–0.92). In the same
direction, Krishnamurti and colleagues (60) showed that
higher peripheral TILs were associated with a better survival
(HR: 0.95, 95% CI: 0.91–1.00, p = 0.0354) and less chance of
recurrence (HR: 0.95, 95% CI: 0.91–1.00, p = 0.0314).
Leon-Ferre et al. (61) reported a similar association between
sTILs and invasive disease-free survival in patients with
TNBC diagnosed at early stages (HR: 0.90, 95% CI:
0.86–0.94, per 10% increment in TILs).

The case-only study that includes 86 Peruvian women with
TNBC observed a statistically significant association between TIL
density and a higher tumor grade (p = 0.006), but no significant
association was found regarding the relationship between sTILs and
survival (65). More studies are needed in the Latino population.
THE SUBPOPULATION OF TILS AND ITS
PROGNOSTIC VALUE

Due to the relevance of TILs in TNBC, in recent years, an
attempt has been made to elucidate the role of the different TIL
subpopulations, in particular, the most recurrent ones such as
CD8, CD4, and FOXP3 (Table 2).

A study conducted in the Asian population in which the number
of TILs CD8+ and TILs FOXP3+ was analyzed in biopsy and
residual tissue reported that a high rate of change in the CD8
+/FOXP3+ ratio was an independent prognostic factor for
recurrence and survival (66). In a different study, high levels of
iTILs CD8+ were associated with DFS (HR: 0.48, 95% CI: 0.27–0.83)
but not with OS (HR: 0.59, 95% CI: 0.32–1.07). On the other hand,
patients with higher levels of sTILs CD4+ presented longer DFS (HR:
0.46, 95% CI: 0.26–0.82) and OS (HR: 0.44, 95% CI: 0.24–0,83) (67).
Regarding clinico-pathological variables, a correlation between the
immune infiltrate and age at diagnosis has also been reported. The
highest rates of the CD8+/FOXP3+ ratio were observed more
frequently in women diagnosed at an early age (p = 0.003),
specifically when they are still in a premenopausal state (p =
0.002) (68). Moreover, a high CD8+/FOXP3+ ratio was found as a
strong predictor of pCR (OR: 5.32, 95% CI: 1.62 to 19.98) (68).

Studies in less common subpopulations, such as B-cell (CD20+)
and Tregs (FOXP3+/CD3+), have found them positively associated
to better outcomes. A Kaplan–Meier analysis showed that patients
with higher intratumoral Treg presented longer DFS (p = 0.001). A
multivariate analysis confirmed this association (HR: 0.33, 95% CI:
0.165 to 0.659). High intratumoral Treg infiltration was also found
to be associated with OS (HR: 0.49, 95% CI: 0.25–0.95).
Additionally, patients with higher CD20+ B-cell infiltration in
both the intratumoral (DFS: p = 0.015; OS: p = 0.020) and
stromal (DFS: p = 0.012; OS: p = 0.031) compartments presented
better clinical outcomes (35). Tian and colleagues (69), in a Chinese
study, categorized patients according to the DFS times and reported
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huertas-Caro et al. TILs and Triple-Negative Breast Cancer
TABLE 2 | Outcomes from studies that analyzed tumor-infiltrating lymphocytes (TIL) subpopulations according to the region of origin.

Reference Population n
(triple-negative
breast cancer)

Specimen
evaluated

Biomarker
analyzed

Outcomes for
univariate analy-

sis

Outcomes for
multivariate
analysis

Adjustment variables Methodology

(66) Asian 39 Biopsy and
residual
disease

CRF CRF low vs. high CRF low vs. high Pathological response Tissue
sectionsRFS (HR: 11.420,

95% CI: 2.215–
208.742)

RFS (HR: 13.021,
95% CI: 2.241–

258.136)
OS (HR: 9.847,
95% CI: 1.883–

180.764)

OS (HR: 8.346,
95% CI: 1.538–

155.128)
(67) Asian 164 Biopsy CD8 None reported CD8 iTILs high vs.

low
Tumor size, LN stage TMA

DFS (HR: 0.48,
95% CI: 0.27–

0.83)
OS (HR: 0.59,
95% CI: 0.32–

1.07)
CD4 CD4 iTILs high vs.

low
DFS (HR: 0.62,
95% CI: 0.36–

1.07)
OS (HR: 0.55,
95% CI: 0.30–

1.01)
CD4 sTILs high

vs. low
DFS (HR: 0.46,
95% CI: 0.26–

0.82)
OS (HR: 0.44,
95% CI: 0.24–

0.83)
(68) Asian 110 Biopsy CD8 CD8/FOXP3 (high

vs. low)
CD8/FOXP3 (high

vs. low)
Age, menopausal status, tumor
size, TNBC subtype, Ki67, CD8,
and VPR

Tissue
sections

FOXP3 pCR (HR: 4.93,
95% CI: 1.82–

15.09)

pCR (HR: 5.32,
95% CI: 1.62–

19.98)
(35) Asian 164 Biopsy Treg Intratumoral Treg

(high vs. low)
Intratumoral Treg
(high vs. Low)

Tumor size, nuclear grade, and age TMA

OS (HR: 0.59,
95% CI: 0.33–

1.04)

OS (HR: 0.49,
95% CI: 0.25–

0.95)
DFS (HR: 0.49,
95% CI: 0.20–

0.83)

DFS (HR: 0.33,
95% CI: 0.17–

0.66)
(69) Asian 278 Resected

specimen
FOXP3 Stromal FOXP3

(high vs. low)
Stromal FOXP3
(high vs. low)

TNM stage, p53 status, EGFR
status, Scd8, TILs, Sfoxp3, and
prognostic risk score

Tissue
sections

OS (HR: 1.743,
95% CI: 1.111–

2.734)

OS (HR: 1.712,
95% CI: 1.085–

2.702)
(70) European 179 Resected

specimen
CD8 High vs. low High vs. low Tumor size Tissue

sectionsOS (HR: 2.1, 95%
CI: 1.1–4.5)

OS (HR: 1.8, 95%
CI: 1.1–4.4)

(71) European 213 Biopsy TILs None reported Average TILs CD3, CD8, FOXP3, CD20, and
CD68

Tissue
sectionsBCSS (HR: 0.3,

95% CI: 0.1–0.8)
(72) European 175 Resected

specimen
FOXP3 None reported High vs. low N/A TMA

RFS (HR: 0.371,
95% CI: 0.213–

0.644)

(Continued)
Frontiers in O
ncology | ww
w.frontiersin.org
 7
 July 2022 | Volume 12 |
 Article 910976

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huertas-Caro et al. TILs and Triple-Negative Breast Cancer
that patients in the DFS ≥5 years group had higher NK cell stromal
infiltration (p < 0.001) and low stromal TAM infiltration
(p = 0.004). Stromal FOXP3+ TILs were found as an independent
prognostic factor for OS (sTILs FOXP3+ low/high HR: 1.712, 95%
CI: 1.085–2.702) (69).

Regarding the studies in a European population, it was
observed that patients with low TIL CD8+ infiltration were
associated with a higher risk of death from BC (HR: 2.2, 95%
CI: 1.0–3.8) (70). On the contrary, Althobiti and colleagues (71)
only found TILs as an independent predictor of good prognosis
in a model that included various immune cells, such as CD3,
CD8, FOXP3, CD20, and CD68. West and colleagues (72)
reported that a high infiltration of TILs FOXP3+ was strongly
associated with better outcomes (RFS: HR = 0.371, 95% CI:
0.213–0.644; p = 0.0004) and disease-specific survival (HR =
0.416, 95%: CI 0.231–0.750; p = 0.0036). In contrast, a study from
the United States reported that a high expression of FOXP3 and
CD163 was associated to a worse OS (HR = 12.7, 95% CI: 4.5–
35.6 and HR = 3.2, 95% CI: 1.7–6.2, respectively) (73).

Few studies have analyzed the differences in the tumor
microenvironment between European American (EA) women
and African American (AA) women, and the results have been
contradictory. Preliminary data fromWright and colleagues (75)
found higher levels of TILs in early-stage (I–II) tumors from AA
patients compared with EA (p = 0.019), but this difference was
not observed for late-stage (III–IV) tumors. TILs also correlated
negatively with AR expression and positively with PD-L1
expression. The analysis of CD8+ T cell infiltration in AA and
EA women revealed that AAs with high CD8 infiltration have a
trend towards better survival compared with AA with low CD8
infiltration (HR: 0.51, 95% CI: 0.25–1.04) (74). On the other
hand, a study that analyzed The Cancer Genome Atlas database
and compared the immune gene expression between AA and EA
women did not find large-scale immunogenic differences (76).

TILs have a useful prognostic role in TNBC based on TIL
populations. Nevertheless, the immune infiltrate phenotype and its
prognostic value require better understanding. Thus, it is
necessary to include other immune cell populations in future
Frontiers in Oncology | www.frontiersin.org 8
studies. The association reported between the high Treg FOXP3
infiltrate and better DFS and OS in TNBC is interesting
considering that Treg has been associated with a poor prognosis
as it can suppress antigen-presenting cells and other immune cells,
events that are regulated through the secretion of inhibitory
cytokines, granzyme B, and perforin (77). On the contrary, the
favorable prognosis may be explained by the positive correlation
between FOXP3 infiltration and TILs CD8+ infiltration (68).
There is a need to clarify the prognostic role of Treg FOXP3+ in
TNBC tumors.
EXPRESSION OF MEMBRANE MARKERS
IN THE IMMUNE INFILTRATE

In addition to the different immune cell’s populations mentioned
before, there are other biomarkers of special interest, such as the
expression of PD-L1. Studies in different populations have
consistently showed a correlation between a high expression of
PD-L1 in tumor cells and higher levels of sTILs (78–80).

Regarding the impact of PD-L1 in a patient’s prognosis,
controversial results have been published. A study from Japan
found PD-L1 positive/TILs low expression as an independent
negative prognostic factor for RFS (HR = 4.7, 95% CI: 1.6–12.7)
and OS (HR = 8.4, 95% CI: 2.3–30.3) (79). AiErken and
colleagues (80) conducted a study that included Chinese
patients diagnosed with TNBC and reported a positive PD-L1
expression as an independent prognosis factor for OS (HR: 0.302,
95% CI: 0.127–0.721) and DFS (HR: 0.451, 95% CI: 0.211–0.963).
A study from the United States reported that elevated levels of
PD-L1 were associated with decreased OS compared with a low
expression (HR: 10.4, 95% CI: 3.6–29.6) (73). On the contrary, Li
and colleagues found that any stromal PD-L1 expression was
associated with better DFS but not OS (81).

The association between the expression of PD-L1 and a high
percentage of TILs could be explained by activated T cells, which
produce IFNg (82). It has been proposed that IFNg induce PD-L1
TABLE 2 | Continued

Reference Population n
(triple-negative
breast cancer)

Specimen
evaluated

Biomarker
analyzed

Outcomes for
univariate analy-

sis

Outcomes for
multivariate
analysis

Adjustment variables Methodology

DSS (HR: 0.416,
95% CI: 0.231–

0.750)
(73) United

States
183 None

specified
FOXP3 High vs. low None reported N/A TMA

OS (HR = 12.7,
95% CI: 4.5–35.6)

CD163 High vs. low
OS (HR = 3.2,

95% CI: 1.7–6.2)
(74) United

States
160 Resected

specimen
CD8 High vs. low in AA High vs. low in AA Age TMA

OS (HR: 0.51,
95% CI: 0.25–

1.03)

OS (HR: 0.51,
95% CI: 0.25–

1.04)
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expression as an immune evasion mechanism by the tumor (83).
Additionally, the relationship of high TIL levels and PD-L1
expression could also explain the association between PD-L1
expression and DFS and OS in Asian populations (83) and the
pCR rates in European populations (80).

Cerbelli et al. (78) analyzed 54 TNBC biopsies taken from
different institutions in Rome, Italy, and found a statistically
significant association between PD-L1 expression in ≥25% of
neoplastic cells and pCR (OR: 1.13, 95% CI: 1.01–1.27).
Additionally, it was observed that 100% of the patients who
achieved a pCR presented jointly a higher percentage of TILs and
PD-L1 expression in ≥25% of tumor cells (p = 0.011). These
results suggest that PD-L1 expression could be a marker of
response to neoadjuvant chemotherapy in patients with TNBC.
However, to reach this conclusion, more and larger studies that
focus on the expression of PD-L1 in TNBC patients treated or
not with neoadjuvant chemotherapy are needed—for instance,
PD-L1 is described to be more commonly expressed in primary
tumors than metastatic tumors (p = 0.002) (84), although some
controversial results have also been published (85).

TIM3 is an immune checkpoint molecule that is expressed on
CD4+ helper 1 (Th1) cells, CD8+ T cells, dendritic cells, and
other subpopulations of lymphocytes, macrophages, and
monocytes (86). The high expression of PD-1 and PD-L1 was
each associated with a high expression of TIM-3 (p = 0.0001 and
p = 0.0019, respectively). Patients with a higher TIM-3
expression presented better DFS (HR: 0.1072, 95% CI: 0.0319–
0.3603) and longer OS (HR: 0.1129, 95% CI: 0.0323–0.3948) (86).

Interestingly, a German study analyzed the expression levels
of 12 immune genes that included T cells, B cells, cytokines, and
immune checkpoints markers (CXCL9, CCL5, CD8A, CD80,
CXCL13, IGKC, CD21, IDO1, PD-1, PD -L1, CTLA4, and
FOXP3). Based on their gene expression, they categorized the
patients in three immune groups: low expression (A),
intermediate expression (B), and high expression (C). They
observed differences in the pCR rates among the three groups:
24% for A, 37.4% for B, and 50.4% for C (p <0.001). All 12
immune genes at the mRNA level were significantly linked to
pCR; the best predictors were PD-L1 (OR: 1.44, 95% CI: 1.18 to
1.77, per DCt) and CD80 (OR: 1.74, 95% CI: 1.28 to 2.38, per
DCt) (57).
CONCLUSIONS

Although it is not doubted that TILs play an essential role in
tumor development, the methods used across studies to measure
the infiltrate are heterogeneous (87)—for example, it has been
recommended to consider as high an infiltration value >50% (88)
or a cutoff point >60% (89) or even to consider three cutoff points
(<10%, between 10 and 50%, and >50%) (90). Moreover, studies
differ in their sample sizes and inclusion criteria. Some studies
Frontiers in Oncology | www.frontiersin.org 9
evaluate TILs in biopsies and others in the resected specimens of
patients that received neoadjuvant chemotherapy or not. Other
studies included only early-stage patients. Therefore, all these
circumstances make it difficult to provide an assertive
comparison between studies to conclude on the role of TILs
in carcinogenesis.

The classification of triple-negative breast cancer by
immunohistochemical techniques could also be a source of
heterogeneity. As mentioned above, some studies included
biopsies and others resected specimens. The heterogeneity in
the expression of immunohistochemistry markers such as ER,
PR, and HER2, when evaluated in core needle biopsies or in a
resected specimen, could lead to the misclassification of breast
cancer into intrinsic subtypes (91–93). We cannot rule out that
there may be misclassified cases among studies and that this may
explain, in part, why some studies did not find statistically
significant differences in some of the outcomes evaluated. It is
also important to consider if TILs were evaluated in resected
specimens from patients who previously received neoadjuvant
chemotherapy since it is well known that chemotherapy can
modify the panorama of the immune infiltrate, and this could
impact the results of TIL characterization (94–96).

Germline BRCA1/2 mutations range between 9 and 21% in
unselected TNBC patients (97, 98). The presence of mutations in
repair genes could lead to a greater formation of neoantigens,
which would translate into an increase in immune infiltrate in
these cases (99–102). For this reason, it is important to analyze
the results of the studies considering the germinal component to
avoid bias in the results.

In any case, the results presented below on the prognostic and
predictive value of TILs in different populations such as Asian,
European, Australian, and American present similar risk
directions highlighting that TILs might be an independent
prognostic factor for recurrence and survival and an
independent predictor factor for pCR regardless on the origin
of the patients.
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