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ABSTRACT There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of
applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples.
Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows
them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability.
We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more
complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally
operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap
in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method,
we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced
and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the
different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our
results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a
practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is
freely available under an open-source license.
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IN most catalogs of genetic variation, the data consist of
variants that derive from amixture of mutagenic processes.

Whether analysis of the genetic variants alone allows the
causative mechanism for an individual genetic variant to be
resolved remains an open question. Instances of a singular
etiological relationship between a point mutationmechanism
and flanking sequence are known for only a small number of

relatively simple cases. From a biochemical perspective, it
seems a reasonable conjecture that the sequence of neighbor-
ing bases should affect mutagenic processes in general. This
conjecture remains substantively unverified, as is the related
conjecture that knowledge of neighboring sequence is suffi-
cient to identify the specific mutagenic origin. Methods have
been developed that can discriminate between entire muta-
tion spectra (Zhu et al. 2017), such as those characteristic of
cancers, and to estimate the major components of these spec-
tra (Alexandrov et al. 2013; Shiraishi et al. 2015). As far as we
are aware, there has not been a detailed examination of the
relationship between a mutation mechanism and neighbor-
ing bases with a view to identifying mechanistic origins of
individual variants. Here, we employmachine learningmeth-
ods to address this using a data set of point mutations of
known origin.We limit discussion, and analysis, to 12 distinct
single nucleotide point mutations.
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We can decompose the process of a mutation into two
fundamental steps: lesion formation followed by a failure of
DNArepair to reconstitute theoriginalbasepair.Highexposure
of cells to UV light, which elevates formation of dipyrimidine
lesions, illustrates the role of lesion creation on mutagenesis
(Pfeifer et al. 2005). The accumulation of defects in DNA mis-
match repair genes, which contribute to development of co-
lorectal cancer, illustrate the role of defective DNA repair (Viel
et al. 2017). In both of these cases, the rate at which the
different point mutations occur can be affected, highlighting
that different types of point mutation can have a common
mechanistic origin. As systemic changes to mutation process
are a feature of cancer cells, a primary analysis focus in cancer
biology has been to resolve mutagenic signatures that charac-
terize cancers (Alexandrov et al. 2013; Shiraishi et al. 2015).
This work exploits the presumed relationship between point
mutation processes and flanking DNA sequence.

The nucleotides flanking a mutated position contain in-
formation regarding the mutagenesis process responsible for
the change. Hypermutability of the CpG dinucleotide illus-
trates the relationship between neighboring bases and the
point mutation mechanism. Association of a 39-G with ele-
vated C/T mutation rates derives from the binding prefer-
ence of DNA methylases (Gruenbaum et al. 1982). These
enzymes bind to this dinucleotide and modify C to
5-methyl-cytosine. The resulting modified base exhibits a
10-fold increase in spontaneous deamination rate, an effect
so pronounced as to almost entirely swamp alternate causes
of C/Tmutations (Zhu et al. 2017). The apparent simplicity
of the relationship between C/T point mutations and flank-
ing nucleotides reflects the dominance of a single chemical
process in creating lesions.

While non-C/T point mutations also exhibit significant
associations with neighboring sequence, the identified se-
quence motifs are more complex (Zhu et al. 2017). It was
shown from an analysis of millions of human single nucleo-
tide variants (SNVs), which originated as germline muta-
tions) that more than one nucleotide at flanking positions
were associated with non-C/T point mutations (Zhu et al.
2017). At present, the mechanistic basis underlying these
mutation associated sequence motifs (mutation motifs) re-
mains unknown.

The systematic use of mutagens in forward genetic screens
provides an opportunity to develop an understanding of
the relationship between neighboring sequence and muta-
genesis. N-ethyl-N-nitrosourea (ENU) is a synthetic alky-
lating chemical widely employed in mutagenesis studies
(Álvarez et al. 2003; Lee et al. 2012; Stottmann and Beier
2014), causing new germline mutations at rates �100 times
higher than the spontaneous mutation rate (Stottmann and
Beier 2014). Exposure to ENU can induce formation of a
number of alkylation adducts, including N1-adenine, O4-
thymine, O2-thymine, and O2-cytosine (Noveroske et al.
2000; Shrivastav et al. 2010). If the DNA repair system fails
in repairing these adducts, they are mispaired during DNA
replication to a noncomplementary nucleotide, resulting in a

single base change mutation (Justice et al. 1999; Noveroske
et al. 2000). The resulting ENU-induced mutations are dom-
inated by A/G* and A/T* mutations, with rare reported
occurrences of C/G* mutations (Takahasi et al. 2007).

Whether ENU mutagenesis induces mutations randomly
with regards to flanking DNA sequence is debated (Barbaric
et al. 2007; Bauer et al. 2015). The unique ENU-induced
mutation spectra distribution described above have provided
the basis for an ENU-induced variant filtering strategy
(Andrews et al. 2012). For example, removing any C/G*
transversions leaves only genetic variants likely to be gener-
ated by ENU, and, thus, candidates for novel phenotypes. We
refer to this filtering strategy as the naïve (classification)
method, in which the mutation mechanism is assigned solely
on the basis of mutation direction. The approach has high
accuracy solely because of the excess of ENU-induced muta-
tions. However, there remains a possibility of misclassifica-
tion of mutation origin in these studies as some fraction of the
point mutations labeled as being ENU-induced will instead
have originated by non-ENU mutagenesis. If sequence neigh-
borhood does affect mechanism, then mutation classification
techniques that exploit this information should be an im-
provement over the naïve method.

Machine learning techniques arewell suited to theproblem
of sequence-based classification of samples (Ben-Hur et al.
2008; James et al. 2013). The goal of machine learning clas-
sification is to find a rule, based on observed object features,
that can assign new objects to one of several classes
(Sonnenburg 2008; James et al. 2013). Machine learning
techniques have been applied to a diverse array of se-
quence-based classification problems ranging from microbial
taxon assignment (e.g., Bokulich et al. 2018) to predicting the
position of nucleosomes in eukaryotic cells from ChIP-seq
data (e.g., Peckham et al. 2007).

The existence of heterogeneity in the genomic distribution
of sequence composition is a factor that requires consideration
for developing a robust mutation classifier. In mammals, the
within-genomeheterogeneityofsequencecomposition is taken
as an indicator of the heterogeneous operation of muta-
tion processes operating in the germline [for review see
Hodgkinson and Eyre-Walker (2011)]. The factors that have
been implicated in driving this pattern range from several
processes that distinguish gametogenesis between the sexes
(e.g., Huttley et al. 2000) to the localized operation of tran-
scription-coupled DNA repair (e.g., Svejstrup 2002). One sta-
tistic with which such heterogeneity in genetic variation has
been correlated is the abundance of G and C nucleotides
(hereafter GC). The primary explanation for the existence of
GC heterogeneity is that it originates from a causal relation-
ship between recombination rate and the process of biased
gene conversion (Meunier and Duret 2004; Hellmann et al.
2005; Hodgkinson and Eyre-Walker 2011). However, other
contributors to GC heterogeneity have been proposed. For in-
stance, the difference in GC between sex-chromosomes and
autosomes has been attributed to differences between the
sexes in the spectrum of point mutations (Huttley et al. 2000).
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In this study, we evaluate whether sequence features can
improve the performance of classifiers devised to discriminate
heritable genetic variants induced by a mutagen from those
arising as spontaneous point mutations in the mouse. We
affirmed a highly significant influence of neighboring nucle-
otides on ENU-induced point mutations, and that these asso-
ciations differ from those evident in spontaneous mutations.
Our results reveal that a combination of k-mer size and rep-
resentation of second-order interactions among nucleotides
was able to markedly improve classification performance in
comparison with the naïve classifier approach.

Materials and Methods

Spontaneous and ENU-induced germline mutation data

We constructed the data set for mutation origin identification
from Ensembl release 88 and an ENU variation database from
the Australian Phenomics Facility. The number of variants per
chromosome are reported in SupplementalMaterial, Table S4
in the Supplemental Information.

As defined in the Introduction, we adopt the following no-
tation to refer to the12different pointmutations. Themutation
of base X into base Y is indicated by X/Y. We denote a point
mutation and its strand complement using *. For instance,
A/G* refers to both A/G and its strand complement T/C.

Mouse spontaneous germline variants: The germline spon-
taneous variant data were identified by the mouse genome
project (Keane et al. 2011) from a collection of inbred mouse
strains, and obtained from the Ensembl database using
EnsemblDb3 (https://ensembldb3.readthedocs.io). For each
genetic variant, we obtained the SNP name, genomic loca-
tion, effect, and alleles. Only biallelic SNPs were used. Be-
cause the Ensembl database did not include mutation
direction for mouse variants, we computed mutation direc-
tion using phylogenetic methods.

Inference of mutation direction was performed using an-
cestral sequence reconstruction (Yang et al. 1995). The ge-
nomic alignments of mouse protein-coding genes and their
one-to-one orthologs from the rat and squirrel were sampled
from Ensembl using EnsemblDb3. Checks were performed to
ensure the obtained syntenic alignments could be used. Spe-
cifically, only mouse genetic variants where the genomic
alignment contained unambiguous bases for all species were
retained. The genomic alignments were sliced to be cen-
tered on a genetic variant. We fitted the HKY85 substitution
model (Hasegawa et al. 1985) by maximum likelihood using
PyCogent3 (Knight et al. 2007, https://cogent3.readthedocs.io)
and estimated themost likely base at themouse variant locus for
the common ancestor of mouse and rat. This ancestral base,
which matched one of the reported mouse alleles, is taken as
the starting base, and this allows inference of the mutation di-
rection that produced the genetic variant.

A total of 254,680 validated mouse germline spontaneous
variants within protein coding regions were sampled. These

variant records are further separated into subcategories
according to mutation direction and chromosomal location
(Table S4).

ENU variants: ENU induced variant data examined in this
study were obtained from the Australian Phenomics Facility
website (https://pb.apf.edu.au/phenbank/download/). The
ENU variants are de novomutations that were induced in the
ancestors of a three generation pedigree where both original
males in the pedigree were ENU mutagenised (see Andrews
et al. 2012). Variants were identified by exome sequencing.
In the database, each genetic variant record includes the
variant identifier, genomic location, putative effect, reference
base, and variant base. The mutation direction is inferred as a
change from the reference to variant base. Only synonymous
and nonsynonymous mutations in mouse exonic protein cod-
ing regions were used for this study. This resulted in 234,177
ENU-induced mutations. Summary details of ENU variant
records regarding mutation direction and the chromosomal
location are presented in Table S4.

Association of neighboring bases using
log-linear modeling

We employ our previously published log-linear methods
(Zhu et al. 2017) and corresponding MutationMotif soft-
ware (https://github.com/HuttleyLab/MutationMotif) for
evaluating the association of neighboring nucleotides and
spontaneous and ENU-induced point mutations in the
mouse. In summary, these methods allow statistical evalu-
ation of the association between point mutations and bases
at individual, or multiple, sequence positions. They further
allow comparisons between samples for these associations.
The log-linear models operate via comparing the count of
observed bases at a position in sequences for which the
point mutation is known against a paired reference distri-
bution of counts from unmutated sequences. The associa-
tion of bases at a single position with point mutations is
referred to as an independent effect, and the influence of
bases at two or more positions are referred to as dependent
effects. These tests were used to assess the null hypotheses
that ENU-induced point mutations occur independent of
neighboring bases. We also tested the null that the neigh-
boring base effects were the same between ENU-induced
and spontaneous point mutations. As the paired reference
for each mutation was also drawn from exonic sequence
within a 1000 bp segment centered on the mutation, the
method controls for local variation in sequence composition
(Zhu et al. 2017).

Mutation motifs were visualized in a sequence logo style.
The stack height in these figures corresponds to relative
entropy (RE). Individual letter heights within a stack repre-
sent the relativemagnitude of the residual from the log-linear
model for that letter. Base(s) that are overabundant in mu-
tated sequences are on topwith a normal orientation. Base(s)
with letters rotated 180� are underrepresented in mutated
sequences.
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Prediction of mutation origins

A difference in the association of neighboring bases with
spontaneous and ENU-induced mouse point mutations pro-
vides a basis for using machine learning classifiers to predict
mutation origin.We consider two scenarios for such analyses.
In the first, two mutation classes are known in advance
allowing development of a discriminating function. In the
second, we consider the case inwhich only onemutation class
is known inadvanceandwe seek to identifymutations that are
“outliers” to this known class. Of the numerous alternate
machine learning techniques that could be applied to the
two-class problem, we employ logistic regression (LR),
XGBoost (XGB), and Naïve Bayes (NB). We employ LR be-
cause of its similarity to the log-linear modeling approach
described above. XGBoost was chosen as a representative of
ensemble style learning algorithms. NB was chosen as it is
methodologically quite different from LR, and has also been
used extensively for sequence classification. For the one-class
(OC) problem, we use a support vector machine (SVM). We
use the open source software library scikit-learn (Pedregosa
et al. 2011) for these, along with the XGBoost library (Chen
and Guestrin 2016).

Logistic regression: The parametric nature of LR facilitates
mechanistic interpretation of the developed classifier (Prosperi
et al. 2009; Wålinder 2014). This is of particular interest here
aswe seek to relate attributes of the biological data to classifier
performance. LR is based on the logistic function (James et al.
2013) as shown in Equation 1. The response value of LR ranges
from 0 to 1. In classification, the probability that an observa-
tion belongs to a certain mutation class (e.g., ENU) is
expressed in Equation 2. We classify mutation X as originating
by mutation class 1 if PrðY ¼ 1jXÞ is $0.5.

FðtÞ ¼ 1
1þ e2t; (1)

PrðY ¼ ENUjXÞ ¼ 1
1þ e2bX ; (2)

The approximate probability pq of a mutation given feature
sets can be expressed as:

PðXÞ ¼ PrðOrigin ¼ ENUjXÞ: (3)

P(X) ranges between 0 and 1, and the LR expression of P(X) is

logitðPðXÞÞ ¼ log
PðXÞ

12 PðXÞ ¼
�
1;XT�b (4)

or

PðXÞ ¼ exp
��
1;XT�b�

1þ expðð1;XTÞbÞ; (5)

where X is the input vector of features. b is a parameter
weight vector describing how important each feature is, a

larger b value indicating a more important feature; however,
a large bmay also indicate that the associated feature is over-
fitted. Also, according to Equation 5, we found that different
settings ofb valuewill lead to different prediction probability.
We want our classifier to perform as accurate as possible,
therefore, we need to find the optimal set of b that generates
the maximum prediction probability without overfitting fea-
ture weights. The ℓ1 norm ðℓ1Þ regularization was performed
to achieve this.

In this study, we used ℓ1 regularization because it prunes
out unneeded features by setting their associated weights to
0. This characteristic allows us to understand the contribu-
tion of each feature better. Mathematically, ℓ1 regularized LR
by solving the following optimization problem (Pedregosa
et al. 2011)

min
b;C

X
jbj þ C

X
log
�
exp
�
2PðXÞ�XTbþ c

��þ 1
�
; (6)

where hyperparameter C is a positive constant that balances
how much we care about fitting the training data compared
to penalizing large weights. C was tuned during the cross
validation process to maximize the likelihood, and the result-
ing estimates of b were stored for subsequent use in predict-
ing mutation origin based on the selected feature set.

Naïve bayes: NB classifiers are built upon the assumption of
conditional independenceof thepredictive variables given the
class. This assumption is typically violated. However, for at
least the ENU variant data used here, the variants were
sampled randomly from different mice, and, thus, depen-
dency between ENU-induced mutations is relatively low.
We therefore expected theNBclassifier toperform reasonably.

To learn information from training samples according to
defined feature sets, and to predict origins of mutation with
NB classifier, similar to the LR classification, each variant data
were ultimately represented as a vector of binary features
including mutation direction and the neighborhood se-
quences. In a NB algorithm, the posterior probability that a
variable was ENU-induced given a feature set is calculated as

PrðOrigin ¼ 1jXÞ
¼ pðOrigin¼1Þ 3 pðXjOrigin¼1Þ

pðOrigin¼1Þ 3 pðXjOrigin¼1Þ þ pðOrigin¼0Þ 3 pðXjOrigin¼0Þ
;

(7)

where Origin classes 1, 0 correspond to ENU-induced and
spontaneous germline mutations, respectively. This product
goes over all data in the training sample, where xq represent
feature vectors. If the resulting posterior probability is higher
than a defined cutoff threshold, then a mutation is classi-
fied as an ENU-induced mutation; otherwise, it is considered
to be a normal mouse germline mutation. To optimize
PrðOrigin ¼ 1jXÞ, key components pðXjOriginÞ for each origin
class, in Equation 7 are estimated by a smoothed version of
maximum likelihood
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pðXjOriginÞ ¼
NðOrigin\xiÞ þ a

NðOriginÞ þ an
; (8)

where, for each origin class, NðOrigin\xiÞ is the frequency count
of feature xi; xi 2 X appearing in a sample belonging to that
particular origin class, and, similarly, NðOriginÞ is the frequency
count of sample belonging to a particular origin class. a is the
smoothing factor, the value of a is tuned during the cross
validation process to optimize the result, and n is the number
of features.

One of themain advantages ofNB classifiers is that they are
probabilisticmodels. Inaddition topredicting theclass label of
a point mutation, the probability of each class label is also
generated.

Gradient boosting using XGBoost: Gradient boosting is an
ensemble class ofmachine learning algorithms, with XGBoost
a popular variant (Chen and Guestrin 2016). Ensemble learn-
ing approaches evaluate and combinemultiple base functions
for classification. In XGBoost, the base functions are classifi-
cation and regression trees, which are combined additively
using boosting. The objective function used in boosting uses
logistic loss (the same as LR) and a penalty term involving the
complexity of the trees. Gradient boosting techniques operate
such that the function that most improves the overall score is
added at each iteration.

We address the challenge of training XGBoost by an in-
cremental search over parameter space. We specifically
employed https://github.com/Jie-Yuan/xgboost-tuner (ver-
sion 0.1.2) to train XGBoost classifiers. This implements a
best practice approach to exploring the numerous possible
settings that tune how the classifier training is done the pa-
rameters that affect performance. We specified LR as the
objective function and employed the incremental (exhaus-
tive) grid-search with threefold cross validation. The exact
scope of the parameter grid used for the incremental search is
specified within the mutation_origin.classify.xgb function.

OC classification using SVM: The LR classifier and Naïve
Bayes classifiers are designed to solve the two-class situation,
that is to distinguish whether a mutation is a germline spon-
taneous mutation or an ENU-induced mutation. An interest-
ing possibility that may arise in real studies is that the
properties of an alternative mutation mechanism are un-
known, but a well characterized reference data set exists.
In that case, we are interested in finding out whether a

mutation is likely to be a member of the reference set. In
the present case, the reference distribution corresponds to
spontaneous germline point mutations, and we wish to know
whether we can successfully identify the ENU-induced
mutations.

To address this question, we employed a OC SVM algo-
rithm to identifywhether or not amutation is considered to be
a spontaneous mutation given training data and a proposed
feature set. The spontaneous mutations are now the target
objects, and are labeled as +1, and the ENU-induced muta-
tions are outliers, and are labeled as 21. Training of the OC
classifier involves analysis of only spontaneous mutations to
learn a classification boundary. To make the OC SVM classi-
fier results comparable to the LR classifier results, we adop-
ted the linear kernel when constructing the classifier, and we
have the following decision function

fðxÞ ¼ sgn

 Xn
i¼1

aiKðx;xiÞ2 r

!
; (9)

where ai are the Lagrange multipliers, r are the parameters
of the hyperplane, and Kðx;xiÞ is the linear kernel function. The
classifier are then applied to the test data to determine
whether a mutation is a spontaneous (positive) or a ENU-
induced (negative) mutation.

Feature sets employed for classification

The machine learning approaches require numerical repre-
sentation of the data. The choices of features employed will

Table 1 One-hot encoding of two mutation records for analysis:
example data

Feature ENU Spontaneous

Mutation direction C/A G/T
Pos 21 A G
Pos +1 G T

An example raw data set containing an ENU and a spontaneous mutation record.
For each record, 1 bp neighboring bases on both side are shown (i.e., k = 3),
positions 21, +1 are the left and right flanking neighboring positions respectively.

Table 2 One-hot encoded data

Feature Value Record 1 Record 2

Variant class ENU +1 21
Spontaneous 21 +1

Mutation direction A/C 21 21
A/G 21 21
A/T 21 21
C/A +1 21
C/G 21 21
C/T 21 21
G/A 21 21
G/C 21 21
G/T 21 +1
T/A 21 21
T/C 21 21
T/G 21 21

Independent effect, Pos 21 A +1 21
C 21 21
G 21 +1
T 21 21

Independent effect, Pos +1 A 21 21
C 21 21
G +1 21
T 21 +1

The one-hot encoding of the example data for a M+I classifier. In our notation, the
feature “Mutation direction” corresponds to M and the features “Pos” correspond
to I. Within a Feature, there are multiple possible values: 12 for the “Mutation
direction” feature, four for each “Pos” features. For each record (column), only a
single row within a feature can equal “+1.”
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affect the final performance of a classifier. If the feature is not
enough to describe a data sample, then there is not enough
information available for a classifier to learn the data structure
well. Intuitively, increasing the number of noncorrelated fea-
tures typically increasesclassificationperformance.However, if
toomany featuresare selected, it is computationally expensive.

We explored four different types of features: mutation
direction, independent neighborhood effects, dependent
neighborhood effects, and GC%. Mutation direction, which
we represent by M, is the point mutation direction (e.g.,
C/T), of which there are 12 possible. Independent effects,
which we represent by I, is the influence of bases at flanking
positions independent of what bases are present at other
positions. Dependent effects are indicated by #D, where #
is the effect order. For example, a second-order dependent
effect, represented by 2D, is the influence of the bases at two
separate positions. For a 5-mer with the mutation at the cen-
tral base there are six possible pairs of positions. The fully
saturated (FS) feature set contains the mutation direction
and all possible independent, dependent features. We further
employ a restriction on the dependent effect, that the com-
ponent positions were proximal to each other in the sequence
(after excluding the mutated position). We represented this
feature set variant using a “p” suffix, e.g., 2Dp. For a 5-mer,
there are three 2Dp features. Each of these features are log-
ical propositions that are represented by a one-hot encoding
(illustrated in Table 1 and Table 2).

We further considered the percentage of G and C nucleo-
tides (GC%) around a point mutation. We include this prop-
erty as a significant positive correlation exists between
inferred mutation rate and GC% in mammals (Hodgkinson
and Eyre-Walker 2011). The GC% is obtained from 500 bp
flanking sequences around a mutation (500 bp from each
side), numerical data.

For feature sets that were strictly categorical, genetic
variantdatawere encodedwith theone-hot encoding scheme.
We use a {+1,21} encoding for binary features, where +1
indicates that the logical proposition is true, and21 indicates
that the logical proposition is false. Application of this process
is illustrated for a small example in Tables 1 and 2. In this
example, the first record was derived from ENU-mutagenised
mice, and, for the feature Variant class, is assigned +1 for the
ENU value, and 21 for the Spontaneous value. This process
continues such that, for a single record, only one of the pos-
sible values of a feature can be assigned +1.

As theGC% feature is not categorical, a different numerical
representation was employed. The mutation direction fea-
tures are categorical features, and labeled as+1 if true, or21
if not true. On the other hand, the GC% feature is a numerical
feature requiring a numerical representation of average GC
percentage in neighboring sequences around a mutation,
ranges from 0 to 100%. Because the range of values of raw
data varies widely, the proposed classifier may not work
properly without normalization. During a normalization

Figure 1 Overview of classifier algorithm evaluation. (A) Two-class classification includes labeled spontaneous and N-ethyl-N-nitrosourea (ENU)-induced
germline point mutations in the training data. (B) One-class (OC) classification includes only spontaneous germline point mutations in the training data.
For both approaches, training data were limited to mutations occurring on mouse chromosome 1.
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application, the different numerical scales of GC% and the
one-hot encoded categorical feature values were adjusted to
a notionally common scale. This leads to these different fea-
tures having approximately the same effect in the computa-
tion of similarity (Aksoy and Haralick 2001). We used the
scikit-learn StandardScaler to obtain a scalar for a normal-
ized transform of the training data. The scalar derived from
the training set was also used to normalize the test data.

Machine learning experimental design

There aremultiple factors thatmay influence theperformance
of a classifier. These include choices regarding the algorithm,
the values of associated hyperparameters, and the feature set
to be used for classifying. In addition, there are design con-
siderations concerning selection of data for training and
subsequent testing. The processes we employed for both
the one- and two-class classification problems are illustrated
for LR, NB, andOC in Figure 1. Our core algorithm choices are
described above. Our experimental design involved training
our classifiers on data derived from mouse chromosome 1
only. For each algorithm, we used cross validation to tune the
hyperparameters and optimize the classifier. For every cross
validation iteration, we first performed a random train-test
split, and divided our data sets into training data and testing
data. Then, inside the training data, we further split training
data to actual training data and validation data (Figure 2).
We trained the classifier on training data, set hyperpara-
meters on validation data, and finally evaluated classification
performance on testing data. Within each validation process,
we compared algorithm performance with different hyper-
parameter values and the hyperparameter generating the
best performance for the available data were saved. For each
classification experiment, this process was repeated 10 times.

For the LR classification, thehyperparameterC is the trade-
off regularization parameter that trades off misclassification
of training examples against simplicity of the decision sur-
face. A low Cmakes the decision surface smooth, while a high
C aims at classifying all training examples correctly by giving
themodel freedom to select more samples as support vectors.

We considered candidate C options from the log-scale of:
0.01, 0.1, 1, 10, 100. The C value that resulted in the best
performance (please refer to section Classifier performance
evaluation), was chosen for all subsequent analyses.

For the NB classification, the hyperparameter alpha is the
Laplace parameter used to smooth categorical data. We con-
sidered candidate alpha options of: 0.01, 0.1, 1, 2, and 3. The
value of alpha that resulted in the best performance was
chosen for all subsequent analyses.

Classifier performance evaluation: We evaluated classifier
performance using the area under the receiver operating
characteristic curve (AUC). One of the advantages of using
AUC score as the performance measure is that the score does
not require a choice of a cutoff threshold. Many binary clas-
sification algorithms compute a series of performance scores
(e.g., overall accuracy, sensitivity, and specificity), and they
classify based upon whether or not the score is above a cer-
tain threshold. Therefore, as the choice of threshold is of
particular importance in these scoring schemes, shifting of
the threshold may dramatically alter the score and thus the
performance of a classifier. AUC score has the advantage of
illustrating the trade-off between sensitivity and specificity
for all possible thresholds rather than just the one that was
chosen by the modeling technique. The AUC also has a prob-
abilistic interpretation. Specifically, AUC is the probability
that the predicted value (and thus rank) of a randomly drawn
positive case is higher than the predicted value of a randomly
drawn negative case. Here, the AUC scores of the different
experiments are reported, and we interpret a larger AUC
score as indicating better classification performance.

The effect of increasing the number of examples during
training: The whole classification process is achieved by
implementing training and testing phases. In the training
phase, a set of data and their respective labels are used to
build a classification model. In the test phase, the trained
classifier is used to predict new cases. Overlap sampling be-
tween training and testing data will make the prediction

Figure 2 Procedure of cross validation. For each
cross validation iteration, the data were shuffled
and then divided into three segments, one for train-
ing, one for validation, and the third one for testing.
For each experiment, performance of algorithms
with different hyperparameter were compared.
The best algorithm for the available data were
saved. The process was repeated 10 times.
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performance of a classifier overly optimistic, because of the
overfitting problem. To avoid the overfitting situation, for
each experiment, to start with, both ENU-induced mutations
and mouse germline mutations are split into two nonover-
lapping sets for training and testing.

The accuracy of a classifier improves with the number of
observations used to train the algorithm. This improvement
tends to be rapid initially, and then when the training size is
sufficient to a point, the improvement decreases gradually.
The “learning curve” is used to describe this phenomenon,
and is used to estimate the number of samples needed to train
a particular classifier to achieve its optimal accuracy
(Mukherjee et al. 2003). To plot learning curves and find
the desired training size, after selecting a specific classifier
and set of features, we used progressively larger samples of
observations to train the classifier and then plot accuracy
performance against the number of training observations.

Data availability statement

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Supplemental figures and tables are
available at Zenodo https://zenodo.org/record/3715528.
The preprocessed data used in this study are available at
Zenodo https://zenodo.org/record/1204695 under the
Creative Commons Attribution-Share Alike license. Data
files are typically gzip compressed standard formats, e.g.,
tab delimited text files, fasta formatted sequence files. The
source code for a command line application is made avail-
able under the BSD clause-3 license at https://github.com/
HuttleyLab/mutationorigin and https://zenodo.org/record/
3497585. The scripts used to perform the data sampling and
analyses reported in this work along with the derived data are
freely available at https://github.com/HuttleyLab/enuproject
and https://zenodo.org/record/3497584.

Results

Distinctions between variants arising from ENU and
spontaneous mutagenesis

A logical requirement for using sequence features to discrim-
inate samples is that those features differ in abundance
between the samples. We addressed this using two comple-
mentary formal hypotheses tests. The “spectra” hypothesis
test compares the distribution of point mutation outcomes
in the two source materials. The “neighborhood” hypothesis
test contrasts the association of neighboring bases with those
point mutations. In both cases, variants arising from ENU-
induced germline point mutations were obtained from the
Australian Phenomics Facility, and variants arising from
spontaneous germline mutations were obtained from the
Ensembl database (see Materials and Methods).

We employed a log-linear model to test the null of equiv-
alence in spectra between the ENU-induced and spontaneous
samples (Zhu et al. 2017). This test considers the relative

distribution of outcomes from mutations of, for example,
the base T. A separate test was employed for each possible
starting base. Consistent with published reports, the esti-
mated spectra of mutations originating from ENU and spon-
taneous processes in the mouse were significantly different
(Figure S1 and Table S1). To simplify the following, we ab-
breviate the description of a point mutation and its strand
complement using the notation X/Y*, i.e., A/G* refers to
both A/G and its strand complement T/C. Direct exami-
nation of counts for the ENU-induced variants reveals they
were dominated by A/G* and A/T* mutations, with esti-
mated frequencies of 42 and 27% respectively. These contrast
with their abundance in the mouse spontaneous sample of
29 and 3.7%, respectively. Visualization of the spectrum anal-
yses (Figure S1) reflects these changes in proportion. These
differences affirm the basis for the current naïve mutation
classification algorithms applied to ENU samples.

The striking difference in estimated mutation spectra was
alsoaccompaniedby strikingdifferences in themagnitudeand
identity of neighboring base influences. Prior to discussing the
results, we briefly describe the log-linear modeling analyses
employed.Weuseposition indices thatare relative to thepoint
mutation location, defined as position 0, with negative/pos-
itive indices representing 59-/39- positions respectively. Con-
sider, for example, the question of whether bases at the
position immediately 39- to a point mutation of A/G asso-
ciate with the mutation. The test assesses the null hypothesis
that, in sequences where an A/G mutation occurred, the
base counts at the +1 position are equivalent to those at
the +1 position for occurrences of A in the reference distri-
bution. This is an example of a single position (first-order), or
independent position (denoted I in our modeling notation)
effect. We can also evaluate whether the joint counts of bases
at two positions are equal between the mutated and refer-
ence sequence collections (second-order dependence, or 2D).

Table 3 Log-linear analysis of mutation motif comparison
between mouse A/G variants induced by ENU or originating
spontaneously in the germline

Position(s) Deviance df P-value

+2 88.6 3 4.4 3 10219

22 1105.6 3 0.0
+1 1393.7 3 0.0
21 5693.3 3 0.0
(22, +2) 12.0 9 0.2145
(21, +2) 50.3 9 9.4 3 10218

(+1, +2) 96.1 9 9.5 3 10217

(22, +1) 123.0 9 3.3 3 10222

(22, 21) 284.1 9 6.2 3 10256

(21, +1) 353.1 9 1.3 3 10270

(22, 21, +2) 41.2 27 0.0396
(21, +1, +2) 46.9 27 0.0100
(22, +1, +2) 55.1 27 0.0011
(22, 21, +1) 62.2 27 0.0001
(22, 21, +1, +2) 118.6 81 0.0042

Position is relative to the mutating base. Deviance is a likelihood ratio from the log-
linear model, with df degrees-of-freedom and corresponding P-value obtained from
the x2 distribution.

32 Y. Zhu, C. S. Ong, and G. A. Huttley

https://zenodo.org/record/3715528
https://zenodo.org/record/1204695
https://github.com/HuttleyLab/mutationorigin
https://github.com/HuttleyLab/mutationorigin
https://zenodo.org/record/3497585
https://zenodo.org/record/3497585
https://github.com/HuttleyLab/enuproject
https://zenodo.org/record/3497584


Our previous analyses of spontaneous germline mutations
from humans identified neighbor effects as highly influential,
and that independent and second-order effects dominated
higher-order effects (Zhu et al. 2017). These analyses are
readily extended to comparing equivalence between sam-
ples, as is the objective here. See Materials and Methods for
more details.

Our analyses established that there were strongly signifi-
cant differences between the ENU-induced and spontaneous
mutations in the identity of the associated mutation motifs,
and their relative magnitude. To simplify the exposition, we
limit our discussion here to description of the results from the
A/G* case, the most abundant ENU-induced point muta-
tion. (We note that all mutation directions exhibited strongly
significant differences and summarize these in Table S2.) The
maximum RE association of independent positions with
A/G was fivefold larger in the ENU-induced sample. This
maximum association was at +1 in the ENU-induced sample,
compared with 21 for the spontaneous sample (Figure 3).
Using the log-linear model, we rejected the null hypothesis of
the equivalence between ENU-induced and spontaneous
samples for neighboring base associations with A/G muta-
tion direction. While these samples revealed highly signifi-
cant differences for nearly all effect orders (Table 3), the
magnitude of difference was greatest for the I and 2D effects
(Figure S2). Again, these patterns held true for all point mu-
tation directions (Table S2).

Of further relevance to feature selection for classifierdesign
is the physical limit to these associations. Estimation of the
physical limit of association from longerflanking contextswas
obtained using relative entropy as per Zhu et al. (2017) (see
Figure S3 and Table S3). The ENU-induced sample showed
the physical limit mean, median, and SD of 3.2, 2, and 1.7 bp
respectively. In contrast, the corresponding statistics for spon-
taneous mutations were 2.9, 2.5, and 2 bp. As a consequence
of this variability, we considered a range of different neigh-
borhood sizes in development of the classifiers.

Development of a two-class machine learning classifier

In developing classifiers, we evaluated a collection of algo-
rithms, sample sizes, sequence feature sets, k-mer size, and
hyperparameter values (see Materials and Methods for de-
tails). Classifier development was strictly limited to data from
a single mouse chromosome. We arbitrarily chose chromo-
some 1 given availability of sufficient data (see Table S4).
We note here that we present only the LR classifier results in
the manuscript. LR was chosen because of its systematically
better performance than the NB classifiers and interpretabil-
ity of the resultant classifiers, compared with XGBoost. It is
noteworthy that XGBoost exhibited a superior learning re-
sponse compared with LR. When applied to the genome,
however, the advantage of XGBoost over LR was weak. This
drop in performance likely arises from substantial overfitting
by XGBoost. (See Figure S4 for the learning curves from the
best classifiers for each algorithm.)

Unless indicated otherwise, classifier performance was
measured as the AUC score (see Materials and Methods for
more detailed justification of this choice). For any particular
classifier, its performance was measured using the mean and
SE derived from 10 replicate AUC measures obtained from
the cross validation analysis. A classifier whose mean AUC
score was greater than that of another classifier was taken to
be superior, after considering the SE.

In the following, we describe the classifier feature sets
using a combination of the terms M, I, 2D, 2Dp, FS, and GC
%. These terms correspond to themutation direction (M), the
set of contributions from independent flanking positions (I),
and the set of contributions arising from two-waydependence
among flanking positions (2D). The 2Dp notation refers to a
subset of 2D where the positions are physically proximal to
each other and/or the mutating site. The FSmodel is a model
containingM and all possible independent andmulti-position
interactions. (In the regressions, the exact values for the I and
D terms depend on the value of k.) The GC% corresponds to

Figure 3 Neighboring base associations significantly
differ between A/G variants induced by ENU or orig-
inating spontaneously in the germline. Position is rela-
tive to the point mutation at position 0. Relative entropy
(RE) is derived from the deviance of the log-linear model
(Zhu et al. 2017). Letter height is proportional to the
relative entropy term for that base. Normally oriented
(180�-rotated) letters represent bases that are positively
(negatively) associated with the point mutation. See
Materials and Methods for more details.
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the percentage of G+C nucleotides in flanking DNA se-
quence. We refer the reader to Materials and Methods for
more detailed descriptions.

For LR, we made choices regarding two hyperparameters.
ℓ1 regularization was chosen as it prunes out unneeded fea-
tures by setting their associated weights to 0 (Bühlmann and
Van De Geer 2011). This allowed us to establish which fea-
tures contribute to the classification. The regularization pa-
rameter C controls overfitting by affecting the trade-off
between variance and bias of regression parameter estimates.
We selected the value of C that returned the best classifier
performance on the validation set (see Materials and
Methods).

Comparison of training curves resulting from classifier
evaluation indicated that M+I+2D provided robust perfor-
mance. The learning curves show the sensitivity of the clas-
sifier performance to training set size, where the latter is the
total of both ENU-induced and spontaneous classes. For the
categorical feature sets, we considered four distinct models:
M, M+I, M+I+2D, and FS. It can be seen from Figure 4 that,
when training size is .4000 samples, the rate of classifier
performance improvement with increasing sample size drop-
ped off markedly. For subsequent comparisons, we used clas-
sifiers trained on data sets with �16,000 samples as their SE
allowed greater resolution between the feature sets. Of the
classifiers that included only categorical features, the naïve
classifier employed for classifying ENU-induced mutations,
M, was the least accurate. Inclusion of individual position
features, represented by I, provided a substantial improve-
ment over M. The best performing classifiers, however, in-
cluded features representing dependence among positions
(see Table S5 for detailed statistics). That said, the overlap
in SE of the AUC for the M+I+2D and FS models (Figure 4)
indicate that inclusion of two-way dependence captured the
majority of information contained by the sequence neighbor-
hood. The value of C that returnedmaximal performance was

consistently 0.1 for all models and all samples that consid-
ered higher-order interactions (i.e., 2D and above).

Choosing neighborhood size: As illustrated by the log-linear
analyses reported above, the physical limit of neighboring
base influence differs between point mutation direction and
mutation origin (Figure S3 and Table S2). Recalling that a
symmetric neighborhood size of three equates to k = 7, we
initially assessed the impact of sequence neighborhood size
by comparing performance for three different k-mer sizes (3,
5, 7) for the M+I and M+I+2D feature sets. Comparison of
learning curves established that for training set sizes.4000,
classifiers based on a 7-mer context performed better than
the other two values of k (Figure 5). The impact of choice of k
differed between the feature sets, with the strongest im-
provements with increasing k evident for the M+I+2D
model. These results motivated exploration of larger k. Initial
efforts at modest k failed due to excessive memory require-
ments as the number of 2D parameters increases k2. The log-
linear results presented here and previously (Zhu et al.
2017), indicated that most information arising from interac-
tions between positions is captured by just proximal posi-
tions. Accordingly, we considered the 2Dp feature subset
(see Materials and Methods) where an interaction between
two positions was included only if they were physically adja-
cent to each other, or straddled the mutating base. For anal-
yses with k . 7, we considered just M+I and M+I+2Dp
feature sets. The results reinforced our choice of the
M+I+2Dp feature set and identified k= 59 as an upper limit
(Figure 6).

In the following analysis, all classification experiments
were performed with the 59-mer neighborhood context.
(For detailed AUC statistics please refer to Tables, S5–S8.)

Incorporating GC% feature did not improve the classifi-
cation performance: As described in the Introduction, the
existence of a correlation between sequence GC% and muta-
tion-related processes in mammals has been known for some
time. We therefore considered whether inclusion of GC% as a
feature would improve classifier performance. GC% was es-
timated from 6500 bp flanking each mutation. Only the na-
ïve classifier (M) performance was improved by inclusion of
the GC% feature (Figure S5). The impact on classifiers con-
taining sequence features ranged from no effect (M+I) to
substantially worse (FS). We speculate that the improvement
of M+GC% over the M feature set arises because the GC%
term indirectly measures the base composition of the imme-
diate neighborhood captured by the I term.

Applying classifiers to the whole genome: From the classifier
development process described above, we selected the LR
classifier with k= 59, M+I+2Dp feature set, and hyperpara-
meters ℓ1, C = 0.1 trained on the �16,000 data sample from
chromosome 1. We applied this classifier to all mouse vari-
ants and display the results by chromosome in Figure 7. The
vertical axis is the AUC score for all chromosomes. We

Figure 4 Model M+I+2D was sufficient for classifying variants. Learning
curves from training data are shown for four proposed classification
models from 7-mers: M, M+I, M+I+2D, and FS. The mean ðAUCÞ and
SE were calculated from the 10 chromosome 1 training samples. See the
text for an explanation of model notation.
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distinguish chromosome 1 because it was used for training
(seeMaterials andMethods). Typically, classifier performance
on data on which it was trained is expected to be greater.
From chromosomes 2–19, X, and Y, the mean and SD of the
chromosome AUC scores was 0.84 and 0.01, respectively.
Thus, the LR M+I+2Dp classifier has a relatively good per-
formance across the entire genome. Despite its markedly su-
perior learning curve, the XGBoost genome classification
performed only marginally better than the LR classifier (Fig-
ure S6).

Performance of the OC classifier was substantially worse:
Wesought toevaluatewhether themutationmotifs associated
with variants from the spontaneous sample were sufficiently
distinctive as to allow a machine learning algorithm to effec-
tively identify nonspontaneous variants. This corresponds to
an outlier analysis. We tackled this using a OC SVM (see
Materials and Methods for more detail). We considered the
same feature set choices as for the LR models in a 7-mer
context. As shown in Figure 8, the M+I+2D feature set
showed the best performance. However, all OC classifiers
had much lower AUC than even the simplest two-class clas-
sifier (M). Furthermore, the OCM+I+2D classifier applied to
the entire genome exhibited a systematically lower AUC com-
pared to the LR classifier (Figure 9).

Discussion

Wehave sought to establish the extent towhich the etiological
relationship between flanking sequence andmutagenesis can

be used to identify the mechanism via which individual ge-
netic variants originated. Genetic variants in the mouse
arising from application of ENU, a potent chemical mutagen,
were contrasted with those arising spontaneously as inferred
from SNP data. We show that ENU-induced point mutations
are very strongly associated with neighboring bases in a
manner that differs to their spontaneous counterparts. A
two-class classifier performed markedly better to the current
standard technique for identifying ENU-induced mutations
and was robust to genomic sequence attributes that have
previously been shown to affect mutation processes. Our
examination of the potential for machine learning based on
the single categoryof spontaneousgermlinevariants revealed
substantial challenges remain to resolving this more general
case.

One complication potentially affecting the interpretation
of our results concerns the origins of the spontaneous muta-
tion reference data. These were estimated from exonic poly-
morphisms identified from inbred mouse lineages. As such,
they likely include a subset of variants that have been sub-
jected to nonmutagenic processes such as natural selection
and biased gene conversion. The relative abundance of
inferred point mutations in this sample may therefore differ
from the true de novo spectrum. The classifiers we obtained
can therefore only be guaranteed to exhibit error rates con-
sistent with what we report here on data with a provenance
matching that of our training data. Of particular interest is
whether the broad properties of the classifiers, in particular
the feature sets, are robust to these potential confounders.
We address both of these issues in the following.

Figure 5 Classifier learning curves
indicated increasing performance
with k. The influence of k-mer
choice on learning curves is shown
for models M+I and M+I+2D. Plot
titles indicate the model being
evaluated. AUC and SE were com-
puted as described in Figure 4.
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Comparison of the estimated mutation spectra between
spontaneousandENU-inducedgermlinemutations supported
previous conclusions. The spectral analysis compared the
breakdown of mutation outcomes from a single starting base
between the samples of ENU-induced and spontaneous mu-
tations. The proportions of A/G*andA/T*mutationswere
substantially increased�1.5 fold and�7.5 fold, respectively,
in the ENU-induced compared to the spontaneous sample.
These observations are consistent with previous reports
(Justice et al. 1999; Noveroske et al. 2000; Barbaric et al.
2007; Takahasi et al. 2007). The abundance of A/G* point
mutations in both the ENU-induced and spontaneous samples
underscores the challenge of using mutation direction alone
for classifying mechanistic origin, and the likelihood that
such an approach will be error prone.

Our analyses established that the DNA sequence flanking
ENU-induced variation does contain distinctive information.
After correcting for multiple hypothesis tests (Holm 1979),
highly significant associations between neighboring bases
and point mutation direction were found for the ENU-in-
duced sample, along with highly significant differences in
neighborhood between the ENU-induced and spontaneous
samples. As ENU induces an elevated rate of DNA lesion
formation, it seems plausible that these differing neighboring
base associations reflect that chemistry. Alternately, they may
derive from operation of different DNA repair processes to
those typically active in the germline (Noveroske et al. 2000;
Takahasi et al. 2007; Shrivastav et al. 2010). In addition to
independent neighborhood effects, all ENU-induced muta-
tions were found to be significantly associated with higher-
order effects. Similar to what was observed from humans

(Zhu et al. 2017), the higher-order effects on ENU-induced
mutations were evident in a manner such that bases at phys-
ically contiguous positions showed the largest RE (Figure
S2). The latter may reflect the importance of base stacking
on helix stability (Yakovchuk et al. 2006). The robustness of
these results is supported by their consistency with the pre-
viously reported patterns in effect order estimated for inter-
genic, intronic, and exonic sequence regions (Zhu et al.
2017).

The analyses of the influence of sequence neighborhood
on ENU-induced point mutations clarify previous reports.
Barbaric et al. (2007) found a significant enrichment of base
G or base C at one of the two most immediate flanking posi-
tions. Their measurement encompassed all 12mutation types
and thus could not resolve whether this was a systemic influ-
ence of ENU, or one related to a specific point mutation. In-
dicating it is the latter, our results identified this specific pair
of neighboring bases as highly significantly associated with
ENU-induced A/G*. This result contradicts the claim, by
Bauer et al. (2015), that there are no neighboring base
influences.

A succinct LR model was capable of strong performance,
evenwhen trainedon just a small fractionof the totaldata.The
current standard classifier, model M, represents the baseline
performance. M considers only mutation direction and ig-
nores sequence neighborhood entirely. The performance
ðAUCÞ of the M+I+2D feature set on the trading data from
mouse chromosome 1 was � 7% better than that of M while
the FS model exhibited comparable performance (Figure 4).
This observation indicates that including dependent ef-
fects with order .2 confers little benefit to classification

Figure 6 Large k and proximal
2D feature sets substantially im-
proved classifier performance. Plot
titles indicate the model being eval-
uated. AUC and SE were computed
as described in Figure 4.
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performance. This observation is consistent with the results
from our log-linear analysis, which showed a small residual
deviance after fitting the I+2D model (Figure S2).

The GC% statistic, previously correlated with mutation
processes in mammals, was determined to be a crude surro-
gate of more explicit neighborhood features. GC% is a se-
quence composition summary statistic. Inclusion of this
feature in the classifier only improved the M model. In all
other cases it had no effect or reduced classifier performance
(Figure S5). This result suggests the performance of classifiers
with neighbor effects should be robust to genomic heteroge-
neity in GC%.

Application of the developed LR classifier to the whole
genome produced a greater performance than what we ob-
served on the training chromosome. We evaluated classifier
performance on a per-chromosome basis to facilitate evalu-
ating whether a relationship existed between classifier per-
formance and the sex chromosomes due either to their
distinctive k-mer distributions (Huttley et al. 2000) or their
greater exposure to natural selection. For the LR classifier, the
AUC from the combined sex-chromosomes was the lowest of
all AUC scores (Figure 7). However, at � 0.82 it was not
markedly distant from the range of autosomal values (with
AUC � 0:84), indicating the discriminatory resolution of the
LR classifier was largely robust to such differences.

It is worth noting that our LR classifier was trained using
relatively balanced data, that is the number of ENU and
germline mutations were comparable in our data set. This
design reflects our interest in understanding what sequence
factors affect classifier performance, rather than the specific
objective of delivering a classifier for studies employing ENU.
In such studies, themutation classeswill behighly imbalanced
as we expect many more ENU than spontaneous mutations
(up to 100-fold excess). This attribute needs a different trade-
off between false positive and false negative predictions from

the classifier. There are several extensions to this work that
may be useful when a practitioner attempts the class imbal-
anced task. The first is to consider using a performancemetric
that is less sensitive to class imbalance (Davis and Goadrich
2006). The second is to extend the learning method to man-
age class imbalance during both the training and prediction
steps. This can be done in part using resampling or cost-sen-
sitive methods (e.g., Haixiang et al. 2017). The third is to
consider the suitability of the classifier for the imbalanced
case. The categories of classifiers differ in the ease with which
they can represent class imbalance. NB classifiers explicitly
accommodate such imbalance via class priors. Application of
LR for classification on imbalanced data are less obvious,
although approaches involving adjustment of the intercept
terms have been proposed (King and Zeng 2001). The differ-
ent performance of these two classifier categories evident
in this study (discussed further below), however, indicates
a final choice for the imbalanced case requires further
investigation.

Aone-class classifierwould also provide ameans of generic
identification of variants that did not match a designated
reference sample. For instance, a forward genetics screen
employingENUwhere spontaneousmutations are rare.While
the outcome of feature selection identified the feature set
M+I+2D as the best performing OC classifier, the AUC from
the genome was 0.67. This is significantly better than a ran-
dom guess, but much worse than the two-class classifier per-
formance. This discrepancy in performance likely reflects the
overlap between sequence features of the ENU-induced and
spontaneous mouse germline variants. Since the one-class
models are trained only on one sample, they are much more
sensitive to irrelevant neighborhoods than the two-class clas-
sifiers. In other words, the presence of “noise” makes it diffi-
cult to identify neighborhoods that are unique to the positive
class. Furthermore, the one-hot encoding (see Materials and

Figure 7 Per chromosome classifi-
cation performance on the mouse
genome of the best logistic regres-
sion (LR) classifier. The classifier
was trained on 16,000 muta-
tions from chromosome 1 using a
59-mer M+I+2Dp feature set. The
AUC score from the chromosomes
not used for training is shown on
the figure.
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Methods) for one-class classification produces a sparse ta-
ble for the sample size, which can reduce classification
performance.

Both the choice of k and the corresponding feature set had
a pronounced impact on the results obtained here. For values
of k in {3,5,7}, we considered all possible alternate feature
sets, i.e., M, I, and all possible dependent interaction terms.
Classifier performance increased with value of k, but a trade-
off between classifier performance and memory usage pre-
cluded naïve extension to large k. Consideration of the sim-
pler M+I model for much larger values indicated potentially
quite substantial gains in performance may be attainable.
Learning curve analysis of theM+Imodel for k=59 returned
AUC � 0:81. Further extension of this model was re-
stricted to 2D terms between proximal positions. This
M+I+2Dp model further increased classifier performance
to AUC � 0:83 (Figure 6).

The generally poorer performance of the NB approach
(Figure S4) led us to discard it. There have been systematic
examinationsofdifferencesbetweenLRandNBclassifiers (Ng

and Jordan 2002). These differences are due to the different
structural assumptions used by the classifiers. LR is a discrim-
inative classifier, and it directly estimates the conditional
probability of interest. NB is a generative classifier, estimating
both the prior and likelihood before using them to estimate
the posterior probability of interest. The design choice of
estimating the likelihood makes NB more sensitive to data
that violates the Gaussian noise assumption. Therefore, when
the underlying data does not exhibit Gaussian noise, LR clas-
sifiers have lower asymptotic error than NB. In addition, if
training sizes are relatively large, then LR performs better
than NB classifiers (Ng and Jordan 2002).

While the estimation of spontaneous mutagenesis using
SNP data can include the influences of natural selection and
biased gene conversion, there was little evidence that these
affected classifier accuracy. Recalling that classifier training
was done using only variants from chromosome 1, a pro-
nounced impact on classifier performance is predicted for sex-
chromosome linked variants if natural selection strongly
affects the spontaneous mutagenesis spectrum. Due to their
hemizygosity, sex-chromosome linked variants are more ex-
posed toscrutinybynatural selection thanautosomalvariants.
Yet, as discussed above, classifier performance on the sex-
chromosome variants was not an obvious outlier to the auto-
somes. Biased gene conversion is the proposed mechanism
by which intragenomic heterogeneity in GC% arises. If this
process strongly shaped themutation direction relative abun-
dance and neighboring base associations, a classifier perfor-
mance benefit from inclusion of GC% was expected. Instead,
as discussed above, the opposite effect occurred. It will be
worthwhile revisiting these possibilities with large-scale data
from de novo mutation discovery studies.

Our results have established the utility of including a
representation of sequence neighborhoods in classifiers for
resolving point mutation origins. The information analysis of
ENU-induced variants established that they exhibited the
dominance of first- and second-order effects, adding to pub-
lishedevidence that theseareageneral featureofmutagenesis

Figure 9 The one-class SVM classifier performed worse
than the logistic regression classifier on the entire ge-
nome. The classifier was trained on �1000 variants
from chromosome 1 using a 5-mer M+I feature set.
The AUC score from the chromosomes not used for
training is shown on the figure.

Figure 8 The OC support cector machine (SVM) classifier performed
worse than all logistic regression classifiers. x-axis is the size of the train-
ing sample, y-axis is the AUC and SE were calculated as per Figure 4.
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(Zhu et al. 2017). There remain open questions as to why
should large k be so informative, when the analysis of infor-
mation content of neighboring bases revealed a quite restric-
tive limit (Figure S3 and Zhu et al. 2017). Perhaps, as
speculated previously (Bauer et al. 2015), this reflects
broader sequence features correlated with open chromatin
status during spermatogenesis. Irrespective of the biological
mechanism, the marked improvement in classifier perfor-
mance we were able to achieve suggests that further im-
provements are possible.

We have shown that neighboring positions can be used to
classify the mechanistic origins of variants using machine
learning techniques. The LR classifier can be expressed in
relation to the log-linearmodels, and this relationshipallowed
us to “dissect” the contribution level between different posi-
tions. However, the classifier features used here were
designed mainly for two classes. While we used them for
the OC classification as well, and the performance was better
than random guessing, the best customization of feature se-
lection for the one-class classifier remains unresolved.
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