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Abstract

A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few
definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease,
provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation
and exploration. In this study, we collected and curated candidate genes from four major categories: association studies,
linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the
magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized
candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes.
Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix
metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-b) family, all of which have been previously
implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an
integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the
first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we
proposed in this work can be applied to other complex diseases.
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Introduction

Dental caries (also known as tooth decay) is a chronic disease

with high prevalence worldwide. The occurrence and progression

of caries are known to be influenced by numerous environmental

factors, including microbial flora, salivary flow and composition,

and fluoride exposure, among others. Despite the environmental

contributions, the impact of genetic factors has been recognized

for a long time [1], with heritability being estimated to be between

40% and 60% [2,3,4]. Over the past decade, a great number of

studies have been published using a variety of experimental

designs and technologies, including genetic association studies

[5,6,7,8], genome-wide linkage scans [9], and expression profiles

[10,11,12], aiming to dissect the genetic architecture of dental

caries. A wealth of molecular genetic data has been thus

accumulated rapidly. However, results across different studies

are often influenced by various factors such as experiment designs,

sample sizes and ethnicities, and analysis methods. Therefore, a

comprehensive investigation by integrating data and information

from heterogeneous sources may broaden our knowledge of caries

pathogenesis. Such concept has been implemented by some

computational gene prioritization approaches whose goal is to

provide a ranked list of genes with combined evidence, depicting

their biological relevance to disease [13,14,15]. Most of those

integration approaches are similar and need two input gene sets: a

small list of genes for training purpose and a large list of candidate

genes for ranking. Training genes are usually well-studied or

verified for the disease in investigation. For candidate genes, the

prioritization is based on the relationships between them and

training genes upon different evidence (e.g., the co-expression level

of two genes in an expression profiling study). Thus, each

candidate gene will have multiple ranks due to various types of

evidence. Finally, statistical models are adopted to combine

multiple ranks into a global prioritization.

However, the interpretation of such prioritized candidate genes

is often challenging. Although pooled information may yield

additional knowledge, the prioritization result is difficult to

evaluate due to the lack of a generally accepted benchmarking
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strategy [16,17]. Hence, the prioritized results are necessarily

followed by a systematic biological exploration. Now investigators

have accepted the notion that complex diseases or traits are

influenced by multiple genes and the complicated interplays or

interactions between them [18,19]. So the gene set enrichment

approaches are proposed to investigate the biological roles by

conceptualizing a function through a predefined pathway (e.g., a

KEGG [20] pathway) or a Gene Ontology (GO) [21] term [22].

One representative example of such approaches is the Gene Set

Enrichment Analysis (GSEA) family, which studies the distribution

of genes from the same pathway across a list of genes ranked

according to differential expression [23], genome-wide association

studies (GWAS) [24], and others [25,26]. Nevertheless, clustering

genes through predefined pathways or functional annotations may

lead to a poor understanding of the cellular complexity in some

conditions [27]. The knowledge of current pathways or ontologies

is incomplete and thus has limited us to identify a meaningful

combination of genes, especially for those diseases or traits that are

not well studied (e.g., dental caries). The human interactome, that

is, the whole protein-protein interactions (PPIs) in humans, include

the functional relationships among gene products. Searching genes

and their interactions in the PPI network is more flexible and

dynamic, allowing us to find enriched functional interactions of

candidate genes beyond the canonical pathway annotations. One

rationale of the PPI approaches is that proteins often tend to

interact with each other if they involve in the same physiopatho-

genic processes [28,29]. So far, PPI-based analyses have been

applied in numerous genetic studies [30,31,32].

In this study, we aimed to rank candidate genes from

heterogeneous data sources for dental caries and then investigate

their functional interactions through module search of the ranked

candidates that were mapped onto the human PPI network. We

collected all currently available candidate genes from multiple

sources, including genetic association studies, genome-wide linkage

scans, gene expression studies, and literature mining. These

reported genes had been weighted in the original studies.

However, the evidence employed to weight genes can hardly be

treated consistently due to the inherent distinctiveness of

experiment designs or platforms, analytical strategies, sample

sizes, among others. To mitigate the inconsistency, we adopted a

gene prioritization method, ENDEAVOUR [13], to obtain a

global ranking of candidate genes. This resulted in a full list of

prioritized genes. To focus on a subset of genes with plausible

biological functions, we incorporated the PPI data to search for the

dense modules enriched with the prioritized genes by applying a

sub-network searching tool, dmGWAS [33]. This analysis resulted

in 23 dense modules comprising of 53 genes. Three major gene

clusters were observed among those 53 genes: cytokine network

relevant genes, matrix metalloproteinases (MMPs) family, and

transforming growth factor-beta (TGF-b) family, all of which have

been previously implicated to play important roles in tooth

development and carious lesions. To our knowledge, this is the first

study to prioritize candidate genes and then to interpret the

prioritized results through the perspective of PPI for dental caries.

Our findings provided biological insights into the potential

molecular mechanisms underlying dental caries, which helps to

improve our understanding of the disease beyond the single gene

strategies.

Materials and Methods

We developed a computational framework to prioritize dental

caries genes from multiple sources and then search for enriched

modules of the highly ranked genes followed by module

evaluation. Figure 1 illustrates the workflow. It consists of four

steps: data collection, gene prioritization, module search, and

module evaluation. For data collection, we prepared two sets of

genes: (1) training genes, which were generated by exploring a

comprehensive biomedical knowledge database BioGraph [34],

and (2) candidate genes, which were collected and curated from

previous genetic studies and literatures. Then, we applied a gene

prioritization method, ENDEAVOUR [13], to rank the candidate

genes. Next, we employed dmGWAS [33] to search for modules

by mapping the prioritized genes onto the human PPI networks.

Finally, we evaluated the generated modules and selected

promising ones for further investigation or discussion.

Candidate Gene Collection
Candidate genes were collected from multiple sources, including

association studies, linkage scans, gene expression, and literature

mining. Although the first genetic research for dental caries could

be traced back to 1930s [35], there are not as many high-

throughput experiments have been performed for dental caries as

for other complex diseases (e.g., cancer, diabetes). This is largely

due to the difficulty in sample preparation [10,12]. Therefore, in

addition to the genes collected from genetic studies (association,

linkage scans, and gene expression), we also conducted literature

mining to obtain more caries related candidate genes. To address

the great variety of data, we explicitly grouped candidate genes

into four categories: ‘association’, ‘linkage’, ‘expression’, and

‘literature’. The collection procedure for each category is

described below.

Association studies. Candidate genes reported in associa-

tion studies were collected via searching the published articles.

One recent review [35] offered an overview of genetic influence on

dental caries. It reviewed eight individual association studies (as of

2010) that showed evidence for genetic influence to tooth decay

susceptibility. We manually checked these publications and

extracted 12 caries related genes. In addition, we searched NCBI

PubMed database for the genetic association studies published

after 2010 or those that were not included in [35]. As of January

31, 2013, we found a total of 14 association studies for dental

caries [4,5,6,7,8,36,37,38,39,40,41,42,43,44], including three ge-

nome-wide association (GWA) studies [8,43,44]. Shaffer and

colleagues [8] conducted the first GWA study on caries and

suggested several loci (ACTN2, MTR, EDARADD, MPPED2, LPO,

EPHA7, and ZMPSTE24) with plausible biological roles in the

susceptibility to childhood caries. The other two GWA studies

[43,44] focused on caries in the permanent dentition. The

association analyses were performed on novel dental caries

patterns [43] and independent cohorts [44], which resulted in

12 and 6 genes that were implicated to harbor genetic association

signals respectively. For non-GWA studies, we manually scruti-

nized the 11 remaining papers and extracted 18 association-based

candidate genes. Putting together, we obtained 55 non-redundant

genes from association studies (Table 1). It is worth noting that the

samples recruited in these published association studies encompass

diverse ages and populations. For instance, the samples recruited

in the first GWAS [8] had age range between 3 and 12 years old,

while the other one [43] focused on participants with ages between

18 and 75 years. The association between AMELX polymorphisms

and caries were found in Korean children [7], while another study

[38] suggested HLA class II allele as a susceptibility locus in

Brazilians. Nevertheless, this is the largest collection of association

genes for dental caries.

Linkage scans. So far, there has been only one linkage scan for

dental caries [9]. In that study, Vieira and colleagues scanned 46

families with similar cultural and behavioral habits. The loci whose

Dental Caries Genes and Network
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logarithmic odds (LOD) scores were greater than 2 or p-values

were less than 0.0009 were considered as risk susceptibility.

According to these criteria, the original study reported five

susceptibility loci (5q13.3, 14q11.2, Xq27.1, 13q31.1, and

14q24.3). We mapped these five loci to the human genome

(hg18) by their corresponding physical locations, and then

extracted the genes within these genomic regions. This resulted

in a total of 349 linkage-based candidate genes (Table 1).

Gene expression data. There are only a few high-through-

put characterization studies of gene expression profiling under

carious lesion due to the difficulties in collecting the sufficient

amount of dental tissues [10,12]. We searched the NCBI PubMed

database and collected two published high-throughput gene

expression studies using microarray techniques [11,12] and one

small scale gene expression study for caries [10]. In [11], gene

expression of 12 healthy and 11 carious teeth was screened using

human Affymetrix HG_U133A oligonucleotide arrays (readers are

referred to the original publication for more details). In [12], the

investigated samples were 42 sound and 62 carious molars, and the

platform was Atlas Glass Human 1.0 microarray. We manually

checked the differentially expressed genes provided in the original

papers and selected only those with at least 2-fold change.

Correspondingly, we obtained 324 and 8 differentially expressed

genes from [11] and [12], respectively. In the third gene

expression study for carious teeth [10], histological findings

indicated DSPP and NES were promising genes in pulpal tissues.

By using semi-quantitative reverse transcriptase polymerase chain

reaction (sq-RT-PCR), the authors verified the gene expression of

DSPP, NES, and related genes in healthy and carious teeth [10].

We obtained 13 differentially expressed genes from that study.

Collectively, we gathered 344 non-redundant differentially

expressed genes from three independent studies (Table 1).

Literature mining. Literature mining was performed by

searching NCBI PubMed for the co-occurrence of two entries in

title/abstract: a gene name and a caries-related item. All human

coding genes (hg18) were included for searching. Three keywords

(‘dental caries’, ‘tooth decay’, and ‘teeth decay’) were selected by

experts in dental caries research and used for the literature mining.

If a gene and any of the three keywords co-occurred in the same

publication, a hit would be assigned to the gene. For example,

gene CXCL10 and keyword ‘dental caries’ co-occurred in 5

publications; thus, 5 hits were assigned to CXCL10. After a

Figure 1. The workflow of this study. First, the biological knowledgebase BioGraph [34] was explored to identify training gene set, and candidate
genes were collected from previous studies and publications. We obtained 11 training genes and 1214 candidate genes in this data collection step.
Second, a computational method ENDEAVOUR [13] was utilized to prioritize the candidate genes. In this step, a ranked list of 960 candidate genes
that could be recognized by ENDEAVOUR was generated. Third, dmGWAS [33] was employed to search for the dense modules upon human protein-
protein interaction (PPI) network collected by Protein Interaction Network Analysis (PINA) platform [53]. This resulted in 469 dense modules. Finally,
the 469 modules were evaluated and the top 23 ones were selected as promising modules.
doi:10.1371/journal.pone.0076666.g001

Table 1. Dental caries candidate genes in four categories.

Category # candidate genes Reference

Association 12 [35]

8 [8]

12 [43]

6 [44]

20 [4–7,36–42]

Linkage 349 [9]

Expression 13 [10]

324 [11]

8 [12]

Literature 570 –

Totala 1214 –

aThe total number is smaller than the sum of the four categories due to
redundancy.
doi:10.1371/journal.pone.0076666.t001

Dental Caries Genes and Network
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systematic search of the combination of all genes and keywords in

PubMed, we manually examined the results by removing genes

with special symbol names (e.g., GRASP, LARGE, MAX). A total

of 570 genes were collected with at least one hit. Note that genes

identified by literature mining may overlap with previously

collected candidate genes, but number of hits has the weight of

genes in this category (Figure 2).

Training Gene Set
The reliability of training genes is critical to the gene

prioritization [16]. However, few of the reported caries genes

have been rigorously replicated or confirmed to date [43]. Instead

of using such gold standard genes, we explored a comprehensive

database, BioGraph [34], to identify genes for training purpose.

BioGraph is a data mining platform for the discovery of

biomedical knowledge. It integrates 21 publicly available curated

databases encompassing multiple relationships between heteroge-

neous biological concepts such as genes, proteins, diseases,

pathways, and ontology terms. Based on these integrated

databases, BioGraph generates an interaction map linking

different biological concepts. By fixing a specific biological concept

(e.g., a disease) as a potential target, it provides an online resource

(http://www.biograph.be/) to extract the most significant links

between other biological concepts and this target. Setting ‘dental

caries’ as our disease target, a list of related concepts could be

obtained from BioGraph, such as ‘gene’, ‘compound’, ‘pathway’,

among others. We only focused on ‘gene’ while excluding all the

other concepts. Through manually scrutinizing the top 100 related

genes from BioGraph, we found 11 genes (IL6, IL8, AMELX,

MMP2, TAS1R2, INS, DSPP, TNF, TRPV1, HLA-B, and LTF) had

literature support. The literature evidence stretched over multiple

experiment types. Specifically, six genes (AMELX, MMP2,

TAS1R2, DSPP, HLA-B, and LTF) were supported by genetic

association studies [4,6,7,36,38,39,40,41,45,46,47]; four genes

(IL6, IL8, TNF, and TRPV1) were supported by expression

analyses [48,49,50,51]; and gene INS was supported by a contrast

trial [52]. These 11 genes were used as training genes in our

downstream analysis.

Candidate Gene Prioritization
We utilized ENDEAVOUR [13] to carry out gene prioritiza-

tion. ENDEAVOUR is a prioritization method integrating the

prior disease knowledge and fused genomic data to rank candidate

genes for the disease. Based on the gene similarity originated from

multiple heterogeneous data sources, ENDEAVOUR adopts

statistical models to investigate the matching qualities between

candidate genes and training genes. The order statistics based p-

values, which are transformed from the matching qualities, are

then used to generate a global gene ranking. More details of the

algorithm can be found in the original publications [13].

Dense Module Search
Upon the prioritized genes, we employed dmGWAS [33] to

search for dense modules by incorporating human PPI data. The

human PPI data was downloaded from Protein Interaction

Network Analysis (PINA) platform [53]. PINA integrated PPI

data from six manually curated databases (HPRD, IntAct, DIP,

MINT, BioGRID and MIPS/MPact). To ensure the reliability, we

only retained the interactions with experimental evidence. As of

January 31, 2013, approximately 13,000 nodes and 101,000

interactions with experimental evidence were included in PINA.

We utilized the data to build a whole human PPI network, upon

which dmGWAS could search for dense modules. dmGWAS was

specifically designed for searching combined association signals

from a GWAS dataset [33] or multiple GWAS datasets [30]. Each

gene was assigned a p-value from the GWAS signals. From a seed

module (at first a single gene in the PPI network), dmGWAS

expanded the module via investigating its neighborhood nodes. If

the p-value of a neighborhood gene was significant enough (a

dynamic threshold was designed to determine the significance

based on its transformed score), it would be added into the

module. This step was repeated until no more nodes could be

added. dmGWAS reports the constructed sub-network as a final

module. Readers may find more details in the original publication

[33]. In this study we applied the underlying algorithm of

dmGWAS to select highly ranked and interconnected candidate

genes and built a disease-specific sub-network. Specifically, we

substituted the GWAS p-values of candidate genes with the order

statistics based p-values from ENDEAVOUR’s results.

Dense Module Evaluation
In addition to search for the dense modules, dmGWAS provides

a procedure to evaluate them. Briefly, a module score Zm is

computed as Zm~
P

zi=
ffiffiffi
k
p

, where k is the number of genes in

the module. For each gene i, zi is transformed from its p-value pi

according to zi~W{1(1{pi), where W{1 is the inverse distribu-

tion function of the standard normal distribution. Under this

scoring system, a larger Zm means that the corresponding module

holds a higher proportion of low p-value genes. However, the

connection between ENDEAVOUR’s prioritization and network

topology is not reflected in the module score Zm. Considering this,

Zm is then calibrated to determine whether it is higher than

expected relative to a random set of genes selected from the PPI

network. Specifically, for a module with k genes, a background

distribution of module scores Zm(p) is generated by computing Zm

through randomly choosing the same number of genes from the

whole network 100,000 times. Accordingly, Zm is normalized as

ZN~(Zm{mean(Zm(p)))=SD(Zm(p)), where SD is standard

deviation. Under this correction, ZN reflects information resided

in both gene ranking and network topology and, thus, can be used

to select the modules with enriched signals.

Results

Comparison of Candidate Genes in Four Data Categories
In order to collect a list of candidate genes as comprehensive as

possible, we performed an extensive and systematic search of

publications and carefully curated the results from them. Table 1

summarizes the collected data, representing the most comprehen-

sive collection and curation of candidate genes for dental caries to

date. The number of genes varied greatly among categories,
Figure 2. Overlap of candidate genes between four categories.
doi:10.1371/journal.pone.0076666.g002
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reflecting the scale of the studies and resolution of the data

generated by different technologies. After removing the redun-

dancy, we obtained a union of 1214 candidate genes (Table 1 and

Figure 1). Among them, no genes belonged to all four categories; 6

genes belonged to three categories; 92 genes belonged to two

categories; and the remaining 1116 genes were found only in one

signal category (Figure 2). As shown in Figure 2, the genes from

linkage scan displayed fewer overlap with all the other three

categories (‘association’, ‘expression’, and ‘literature’). This might

be because only one study was conducted for linkage analysis of

dental caries (Table 1).

Candidate Gene Prioritization
ENDEAVOUR provides a freely accessible web service

interface (http://homes.esat.kuleuven.be/,bioiuser/endeavour/

index.php) for users. The 11 training genes and 1214 candidate

genes in our data collection were used to perform gene

prioritization by ENDEAVOUR. Specifically in this analysis, for

the prior knowledge used to establish the link between training and

candidate genes, we excluded four PPI interaction databases

(HPRD, IntAct, MINT, BioGRID) because they were included in

the PINA PPI data upon which we would search for dense

modules. Order statistics were employed to combine the rankings

based on each line of evidence, and then integrated p-values were

computed from order statistics. Note that a smaller p-value

indicates a higher ranking. In this procedure, we obtained a

prioritized list of 960 genes whose gene symbols could be

recognized by ENDEAVOUR (Figure 1 and Table S1). Not

surprisingly, most of the training genes had the higher rank than

other candidate genes. Ten of the 11 training genes were among

the top 20 in the ranked gene list. The remaining training gene,

TAS1R2, ranked the 47th (Table S1). We examined the correlation

between gene ranking and the number of its source categories. As

expected, the top ranked genes tended to have more source

categories (Table 2).

Dense Module Search and Evaluation
We utilized dmGWAS to search for dense modules enriched

with highly ranked genes. With the default parameters, dmGWAS

generated a total of 469 modules (Figure 1). On average, the

module size (measured by gene number) was 10.3162.28 (mean 6

SD). As described in the Materials and Methods, the normalized

score ZN was used to assign significance of the 469 modules. To

select biologically meaningful modules, one straightforward way is

to transform ZN back to p-values by pZN
~1{W(ZN ). However,

all the 469 modules would be nominally significant (pZN
within a

range of 1.23610217–1.6061025) if the threshold were set as 0.05.

In addition, it is not appropriate to perform multiple testing

correction directly because dmGWAS introduces extensive over-

lap between modules. Thus, similar to the original study [33], we

selected the top 5% modules for downstream analysis. Although

this selection is somewhat arbitrary, we considered it appropriate

to focus on moderate interesting genes while not including too

many unrelated modules. Applying this criterion resulted in 23

modules (Figure 1). Those modules comprised of 53 non-

redundant genes, including five training genes (IL8, MMP2,

LTF, TNF, and INS). We mapped the 53 genes back to the whole

PPI network and extracted the edges between them to form a sub-

network, which was visualized by network software Cytoscape [54]

(Figure 3). The detailed gene information was provided in Table 3.

We termed these 53 genes dental caries genes (DCgenes) hereafter.

As shown in Table 3 and Figure 3, one training gene (IL8)

ranked the highest, followed by four other training genes (MMP2,

LTF, TNF, and INS). However, not all the DCgenes had a higher

gene ranking. Specifically, 31 genes ranked above the 100th while

22 genes were below the 100th. Of note, dmGWAS identified three

genes (CCR10, RHOU, and EFS) that ranked below the 700th. The

genes with lower ranking were selected by dmGWAS because they

had protein interactions with the training or highly ranked genes,

an advantage in the network-assisted approach. In addition, we

investigated the degrees of the DCgenes. Nearly half of them (25,

47.17%) had only one or two neighbors. There were 11 proteins

whose degrees $5. Among them, FYN had the highest degree, i.e.,

8. Interestingly, two C-C chemokine ligands (CCL2 and CCL7),

two MMPs (MMP3 and MMP9), and three TGF-b family

members (TGFB1, TGFBR1, and TGFBR2) had relatively high

degrees. Besides, three other proteins (CCR5, CD44, and PTK2B)

had degrees $5.

We further explored the functions of these DCgenes. Dental

caries has been known as an inflammatory disease for a long time

[55]. The oral environment contains bacteria that might stimulate

the host’s inflammatory response eliciting cytokines [56,57,58].

Two interleukin genes (IL8 and IL1B) have been shown to play

important roles in cytokine secretion in saliva and odontoblast

layer of human teeth [48,59]. The C-C chemokine ligand (CCL),

C-C chemokine receptor (CCR) and C-X-C chemokine ligand

(CXCL) gene family have been previously investigated and

reported to increase expression level of various cytokines in

carious pulp and/or odontoblast [59]. Our DCgenes list covered a

number of CCL, CCR and CXCL genes, including CCL2, CCL5,

CCL8, CCL3, CXCL1, CXCL5, CCL7, CCL4, CCR5, and CCR10.

Another interesting gene group in the merged sub-network

belonged to the MMP family. The MMPs have been well

acknowledged to be involved in the caries process by previous

studies [5,41,42]. We identified four genes belonging to the MMP

family: MMP2, MMP3, MMP1, and MMP9. Additionally, five

TGF-b family members (TGFB1, TGFBR2, TGFB2, TGFBR3, and

TGFBR1) comprised another interesting cluster, which has been

extensively studied previously [10,60,61,62].

Discussion

A wealth of genetic data for dental caries accumulated rapidly

over the past several years. In this study, we aimed to uncover the

molecular mechanisms and polygenic interactions underlying this

prevalent disease through systematic data integration and analyses.

We collected data from four major sources, including genetic

association studies, linkage scans, gene expression analyses, and

literature mining. Then, the relevant genes and the interplays

between them were searched based on a prioritized list of the

collected candidate genes. Our study provided not only a manually

Table 2. The top ranked genes have a higher probability of
belonging to multiple categories.

# source categories p-valuea

1 2 3

Full prioritized list 862 92 6 –

Top 50 genesb 30 18 2 1.7961027

Top 100 genes 67 29 4 1.0861028

Top 200 genes 154 40 6 4.3761026

ap-values computed by Fisher’s exact test.
bThe top 50 genes in the prioritized candidate gene list by ENDEAVOUR [13].
doi:10.1371/journal.pone.0076666.t002
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curated gene database for dental caries, but also a list of promising

genes and their interactions that deserve further biological

investigation.

There are a few existing biomedical databases that gather

information of susceptibility genes by text mining or literature

review for complex diseases, such as the HuGE Navigator [63]

and the Genetic Association Database (GAD) [64]. However,

without an extensive publication exploration or manual check,

such databases typically include broad knowledge and are usually

less informative or complete for each specific disease, especially for

not well-studied diseases like dental caries. For instance, when we

searched for dental caries information in the HuGE Navigator

(May 2013 version), we found only 58 relevant genes, all of which

were collected from genetic association studies. However, our

manual check of these genes suggested that some of them might be

included by errors. For instance, gene MMP14 was collected

because it was one of the genes investigated in an association study

[41]. However, we found the association signal of MMP14 from

study [41] was not significant after our manual check of the

original work. In addition, HuGE Navigator provides no

information of linkage scan or gene expression analysis. In

contrast, we integrated data across multiple categories and

manually checked all of them.

In addition to the data collection and integration, we

performed gene prioritization to assess the priorities of

candidate genes. Evidence has been shown that a single risk

factor, such as a susceptibility gene, may not entirely explain the

dental caries development [35]. So we attempted to explore its

physiopathogenic processes through searching for dense modules

enriched with prioritized candidate genes. The PPI network

assisted approaches have been successfully employed to inves-

tigate other complex diseases [30,31]. Of note, the dense

module search is sensitive to the reference network. In every

step of module expanding, dmGWAS examines all the

neighborhood nodes and recruits the nodes with the strongest

signal. Thus, the reliability of the connections between nodes is

crucial for module expansion. Additionally, the current knowl-

edge of human PPI network is far from complete. To ensure

the reliability of PPI data, we restricted our work on the

interactions with experimental evidence while excluding inter-

actions predicted by computational methods. By incorporating

PPI network, we selected some interesting genes with compar-

atively low ranking. For example, two genes PTK2B and RHOU

were suggested to be candidate loci previously, and they are

involved in pathways that have been implicated to dental caries

[44]. However, neither of them ranked high. PTK2B ranked

136th and RHOU nearly hit the bottom of the prioritized gene

list (Table 3). This result implies that an inference only based

on gene prioritization might miss disease signals, but network-

assisted approach could help to detect a set of genes whose

combined roles might involve in disease development.

Figure 3. The sub-network containing 53 DCgenes from the selected 23 modules (top 5% of all modules generated by dmGWAS).
Three gene clusters with plausible functions were included: cytokine network relevant genes (CCL2, CCL5, CCL8, CCL3, CXCL1, CXCL5, CCL7, CCL4, CCR5,
and CCR10), matrix metalloproteinases (MMPs) family genes (MMP2, MMP3, MMP1, and MMP9), and transforming growth factor-beta (TGF-b) family
genes (TGFB1, TGFBR2, TGFB2, TGFBR3, and TGFBR1), all of which have been previously implicated to play important roles in tooth development and
carious lesions.
doi:10.1371/journal.pone.0076666.g003
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Table 3. The 53 DCgenes residing in the top 23 dense modules.

Gene symbol Training gene Source ENDEAVOUR rank Degreea

IL8 Yes Expression, Literature 1 4

MMP2 Yes Association, Literature 3 3

LTF Yes Association, Literature 4 3

TNF Yes Literature 5 4

INS Yes Literature 6 1

CCL2 No Expression, Literature 7 5

CCL5 No Expression, Literature 11 4

CCL8 No Expression, Literature 12 2

CCL3 No Expression, Literature 13 3

LTA No Literature 14 2

CXCL1 No Expression, Literature 15 1

CXCL5 No Expression 16 1

CCL7 No Literature 19 5

IL1B No Expression 20 1

MMP3 No Association, Literature 25 5

FAS No Literature 26 2

SERPINE1 No Literature 27 2

TGFB1 No Expression, Literature 30 7

MMP1 No Expression 33 4

MMP9 No Expression, Literature 36 5

CD44 No Expression, Literature 42 6

CCL4 No Literature 45 3

ITGB2 No Expression 71 3

CD86 No Literature 80 2

SELE No Expression 82 2

ITGAX No Literature 85 1

LTBP2 No Linkage 89 1

CD80 No Literature 93 2

TRPV4 No Literature 95 1

CD14 No Association, Expression, Literature 97 3

CSF2RB No Expression 100 1

RELA No Literature 108 3

SELL No Literature 111 2

LYZ No Expression 116 2

TGFBR2 No Expression 122 5

CTSB No Expression 126 2

CTLA4 No Literature 127 3

TNFSF11 No Literature 132 2

PTK2B No Association, Literature 136 5

TNFRSF1B No Expression 155 3

FYN No Literature 176 8

TGFB2 No Expression 189 4

TGFBR3 No Expression 219 3

CCR5 No Literature 238 7

IKBKB No Literature 304 4

PLEK No Expression 319 1

PLAU No Expression 340 2

TGFBR1 No Expression 377 7

MUC7 No Literature 394 2
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The list of DCgenes (Table 3) identified within top dense

modules may warrant further investigation. Bacterial invasion

plays a crucial role in the development of dental caries [65]. It

is also well known that cytokines are important to maintain host

response to microbial infection [48,66]. Living cells of the host

secrete the molecules (such as chemokines, pro-inflammatory

cytokines, and anti-inflammatory cytokines) to keep a balanced

oral environment for tissue repair [67]. Various cytokines have

been investigated in previous studies [48,66]. Recently, Host

and colleagues [59] systematically measured cytokine gene

expression levels within human teeth that were under response

to caries and built fine-tuned cytokine and chemokine signaling

networks. It is worth noting that the vast majority of genes

measured by microarray in [59] are human inflammatory

cytokines and receptors. To avoid being overwhelmed with

cytokines genes, we did not include differentially expressed

genes reported in [59] in data collection. Interestingly, our

DCgenes list covered considerable relevant genes, including IL8,

IL1B, TNF, CCL2, CCL5, CCL8, CCL3, CXCL1, CXCL5, CCL7,

CCL4, CCR5, and CCR10 (Table 3 and Figure 3), and thereby

offered independent evidence to reinforce the link between

cytokine network and dental caries. All the relevant genes listed

above could be found in the networks built in [59] except

CCR10. CCR10 was incorporated in our merged sub-network

due to molecular interactions with CCL2 and CCL7 (Figure 3).

This result suggests that our work could provide new knowledge

about cytokine network induced by caries.

Compared to other plausible genetic risk factors of dental caries,

MMPs have raised much more attention for a long time. They have

been well documented to play various roles in the organization of

enamel and dentine organic matrix, suggesting their contributions

to the control and progression of carious lesions [68,69,70,71,72].

For instance, MMP2 was demonstrated to cleave amelogenin, the

major structural protein of human enamel, into several fragments of

differing molecular masses and therefore, play a curial role during

tooth development [72]. Another study [73] revealed different

expression patterns of MMP2 between caries and sound dentine. In

the light of importance of MMPs, a few association studies recently

have been conducted in order to investigate the impact of genetic

variants in MMPs [5,41,42]. For instance, the allele frequencies of

MMP2 and MMP13 were found to be different between caries-

affected and caries-free samples. The plausible biological functions

of MMPs for dental caries were also reflected in this study. Our

DCgenes list gleaned a cluster of MMP genes, including MMP2,

MMP3, MMP1, and MMP9 (Table 3 and Figure 3).

Another interesting gene group we identified is the TGF-b
family, which has been shown being involved in cellular

signaling during tooth development and repair for a long time

[61,62,74]. Previous studies implicated TGFB1, together with

MMPs, participate in organization of dentin organic matrix

remodeling [75,76]. Two important cooperators are MMP2 and

MMP9 [76], both of which were connected with TGFB1 in our

merged sub-network (Figure 3). In addition, differential expres-

sion patterns of TGF-b isoforms and receptors were detected in

odontoblasts and pulpal cells between human healthy and

carious teeth by independent studies [10,60,61], suggesting their

participation in tissue response to injury. The roles of the TGF-

b family were also supported by our network analysis. In

Table 3, we identified two TGF-b isoforms (TGFB1 and

TGFB2) and three TGF-b receptors (TGFBR1, TGFBR2, and

TGFBR3), all of which closely interacted with each other in the

merged PPI network (Figure 3).

One limitation in this study is the choice of training genes.

Although a good number of susceptibility genes have been reported

for dental caries, few of them have been rigorously replicated or

confirmed [43]. Our selection of training genes through BioGraph

was somewhat subjective, which may influence the prioritization of

candidate genes. Nonetheless, the 11 training genes were manually

scrutinized and supported by multiple lines of evidence. For

example, one training gene, MMP2, has been previously implicated

in cariogenesis by genetic association study [41], expression analysis

[73], and immunohistochemical experiment [72]. Compared to

other popular biological knowledgebases such as the HuGE

Navigator, which only collects genetic association information,

our training genes encompassed broader prior knowledge.

To evaluate the robustness of our findings, we randomly

selected a set of candidates from the 1214 candidate genes and

analyzed them with 11 training genes following the same

pipeline. We repeated this procedure a few times and found the

main gene clusters resided in top modules were still the cytokine

genes, MMPs family, and TGF-b family, supporting our

previous findings (data not shown). The approach we proposed

in this work can be expanded by integration of data from other

sources. For example, animal models have been frequently used

to study the candidate genes’ function and their potential

molecular mechanisms involved in human complex disease.

Gene expression experiments had been performed in mouse

caries model [77], and such data might be utilized in a cross-

species data integration model [78]. Alternatively, integrative

data analysis utilizing regulatory information, such as expression

quantitative trait loci (eQTL) [79], methylation quantitative trait

loci (mQTL) [80], microRNA and/or transcription factor

regulatory network [81], has been demonstrated effective in

many complex diseases.

To our knowledge, this is the first study that comprehensively

collected and curated evidence-based candidate genes for dental

caries. Through an integrative application of gene prioritization

and PPI network analysis, we identified 53 potential susceptibility

genes and their PPI interactions for this disease. Our results

confirmed and expanded current knowledge in dental caries

genetics, e.g., the interactions between MMPs and TGF-b family.

Thus, this study provided additional biological insights and better

Table 3. Cont.

Gene symbol Training gene Source ENDEAVOUR rank Degreea

UBD No Expression 398 1

CCR10 No Literature 756 3

RHOU No Association, Literature 871 1

EFS No Linkage, Literature 880 1

aThe degree of a node is the number of its neighbors in the sub-network.
doi:10.1371/journal.pone.0076666.t003
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understanding of the underlying pathological processes in dental

caries. The strategy on integrating gene prioritization and PPI

network analysis that we proposed in this study can be applied to

other complex diseases.

Supporting Information

Table S1 This table provides the ENDEAVOUR ranking
of 960 candidate genes and the source categories of each
gene.
(XLSX)
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