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Abstract

Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have
rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a
plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to
comparative assessments of these assemblers’ quality and accuracy. No commonly accepted and standardized method for
comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly
capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in
assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage,
contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC
transparently captures the trade-offs between contigs’ quality against their sizes. For this purpose, most of the publicly
available major sequence assemblers – both for low-coverage long (Sanger) and high-coverage short (Illumina) reads
technologies – are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia,
Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-
lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations,
computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising
approaches for developing ‘‘next-generation’’ assemblers, and biotechnologists will formulate more meaningful design
desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed
and is available through the AMOS open-source consortium.
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Introduction

Since the completion of the Herculean task of the Human

Genome project (HGP) in 2003, the genomics community has

witnessed a deluge of sequencing projects: They range from

metagenomes, microbiomes, and genomes to transcriptomes;

often, they focus on a multitude of organisms, populations and

ecologies. In addition, the subsequent advent of high-throughput

Gen-1, Gen-2 and Gen-3 of sequencing technologies – with their

promise to considerably reduce the genome sequencing cost – now

appear poised to usher in a personal genomics revolution [1–3]. In

this context, the accuracy of the resulting reference genome

sequences and their suitability for biomedical applications play a

decisive role, as they additionally depend upon many parameters

of the sequencing platforms: read lengths, base-calling errors,

homo-polymer errors, etc. These parameters continue to change

at a faster-and-faster pace, as the platform chemistry and

engineering continue to evolve.

However, in the ensuing euphoria, what seems to have been left

neglected is a constructive and critical retrospection, namely: (1) to

appraise the strengths and weaknesses of the schemes, protocols

and algorithms that now comprise a typical ‘‘sequencing pipeline’’;

(2) to scrutinize the accuracy and usefulness of the assembled

sequences by any standard pipeline; and (3) to build technolog-

ically agnostic assembly algorithms that would easily adapt to the

current fast evolving biotechnologies. Historically, all these

sequence assemblers – each representing many man-years of

effort – appear to require complete and costly overhaul, with each

introduction of a new short-read or long-range technology.

This paper addresses these issues by presenting a diverse set of

empirical studies, where, to ensure statistical significance of the

results, a large number of sequence assemblers are evaluated in

terms of assembly accuracy and performance: assemblers include

those developed both for Sanger and next-generation (Gen-1)

technologies, and evaluation is performed using both traditional

metrics and new metrics. Specifically the paper is organized as

follows: first, the study is motivated by a discussion of current state-

of-the-art sequence assemblers, their underlying assembly para-

digms and relations to various metrics; next standard assembly

comparison and validation techniques are critically examined –

especially in light of various anomalies they produce – highlighting

the need for better quality assessment; then the experimental

protocol is explained together with the benchmarks used in this

study; assembly results and quality analysis are then presented

using standard paired and unpaired, low- and high-coverage, long

and short reads from previously collected real and simulated data;
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and finally a discussion of the presented results concludes the

paper.

Motivation: State-of-the-art Sequence Assemblers
In the most general setting, the DNA sequence assembly problem, as

commonly referred, addresses the reconstruction of a DNA sequence

from a collection of randomly sampled fragments. This process is

further complicated by the presence of haplotypic ambiguities,

sequencing errors and repetitive sections. Most assemblers are based

on an intuitively obvious assumption: if two sequence reads (two

strings on a four-letter alphabet, produced by the sequencing

machine) share a common overlapping substring of letters, then it

is because they are likely to have originated from the same

chromosomal regions in the genome. The basic assumption, can be

made more precise, by additionally taking into account the facts that

the sequence reads could come from either Watson or Crick strand,

and that if two strings are part of a mate-pair then the estimated

distance between the reads imposes an additional constraint, not to be

violated. Once such overlaps structures among the sequence reads are

determined, the assembler places the reads in a lay-out and combines

the reads together to create a consensus sequence–not unlike how one

solves a complex jigsaw puzzle. Based on the underlying search

strategies, most of the state-of-the-art assemblers belong practically to

two major categories: greedy and graph-based.

Greedy. Computational biologists first formalized the shotgun

sequence assembly problem in terms of an approximation to finding

the shortest common superstring (SCS) of a set of sequences [4].

Because of its assumed computational intractability (NP-

completeness), a large number of the available approaches for

genome sequence assembly resorted to greedy methods. Greedy

algorithms typically construct the solution incrementally using the

following basic steps: (i) pick the highest scoring overlap; (ii) merge

the two overlapping fragments and add the resulting new sequence

to the pool of sequences; (iii) repeat until no more merges can be

carried out. In addition, after each merge operation, the region of

the overlay is heuristically corrected in some reasonable manner

(whenever possible). Regions that fail to yield to these error-

correction heuristics are relinquished as irrecoverable and shown as

gaps. Mate-pairs information is used judiciously during the merging

process to further validate the connection between the two

sequences. At the end of this process a single solution (consisting

of the set of assembled contigs) is generated as output. Well known

assemblers in this category include: TIGR [5], PHRAP [6], CAP3

[7], PCAP [8] and Phusion [9].

Graph-based. Graph-based algorithms start by preprocessing

the sequence-reads to determine the pair-wise overlap information

and represent these binary relationships as (unweighted) edges in a

string-graph. The problem of finding a consistent lay-out can then

be formulated in terms of searching a collection of paths in the

graph satisfying certain specific properties. Paths, computed thus,

correspond to contigs (contiguous sequences of the genome,

consistently interpreting disjoint subsets of sequence reads).

Contingent upon how the overlap relation is represented in these

graphs, two dominant assembly paradigms have emerged: overlap-

layout-consensus (OLC) and sequencing-by-hybridization (SBH). In the

OLC approach, the underlying graph (overlap graph) comprises

nodes representing reads and edges representing overlaps. Ideally,

the goal of the algorithm is to determine a simple path traversing all

the nodes – that is, a Hamiltonian path. For a general graph, this

problem is known to lead to an NP-hard optimization problem

[10] though polynomial-time solutions exist for certain specialized

graphs (e.g., interval graphs, etc.) [11]. A popular heuristic strategy

is typically employed as follows: (i) remove ‘‘contained’’ and

‘‘transitivity’’ edges; (ii) collapse ‘‘unique connector’’ overlaps

(chordal subgraph with no conflicting edges) to compute the

contigs; (iii) use mate-pairs to connect and order the contigs. Hence,

the set of contigs, as computed thus, corresponds to the set of

nonintersecting simple paths in the reduced graph. Well known

assemblers in this category include: CELERA [12], CABOG [13],

ARACHNE [14], Minimus [15] and Edena [16]. In the SBH

(Sequencing by Hybridization) approach, the underlying graph

encodes overlaps by nodes and the reads containing a specific

overlap by edges incident to the corresponding node (for that

overlap). This dual representation may be described in terms of the

following steps: (i) partition the reads into a collection of overlapping

n-mers (an n-mer is a substring of length n); (ii) build a de Bruijn

graph in which each edge is an n-mer from this collection and the

source and destination nodes are respectively the (n{1)-prefix and

(n{1)-suffix of the corresponding n-mer. In this new graph, instead

of a Hamiltonian path, one may seek to find an Eulerian path,

containing every edge exactly once; thus computed genome

sequence would then provide a consistent explanation for every

consecutive n-mers on any sequence read. More importantly, such a

graph is linear in the size of the input and allows the computation of

an Eulerian path to be carried out in linear time. Because of the

succinct representation it generates, this approach has motivated

many new algorithms for assembling short reads, which typically

come with very high coverage. However, in practice, these

algorithms do not directly compute Eulerian paths since many

complications arise. First, sequencing errors in the read data

introduce many spurious (false-positive) edges which mislead the

algorithm. Second, for any reasonable choice of n, the size of the

graph is dramatically bigger than the one in the overlap-layout-

consensus strategy. Third, a de Bruijn graph may not have a unique

Eulerian path, and an assembler must find a particular Eulerian

path subject to certain extraneous constraints; thus, it must solve a

somewhat general problem, namely the Eulerian-superpath problem:

given an Eulerian graph and a sequence of paths, find an Eulerian

path in the Eulerian graph that contains all these paths as sub-paths.

It is known that finding the shortest Eulerian superpath is,

unfortunately, also an NP-hard problem [10]. In practice, a

heuristic method is used to compute such a superpath by applying a

series of transformations to the original Eulerian graph. Prominent

examples of the SBH approach include: Euler [17], Velvet [18],

ABySS [19] and SOAPdenovo [20].

Seed-and-Extend. A new variation of greedy assemblers

(specifically designed for short reads and based on a contig

extension heuristic scheme) works with an efficient prefix-tree

data-structure. In this framework a contig is elongated at either of

its ends so long as there exist reads with a prefix of minimal length,

provided that it perfectly matches an end of the contig. Example of

assemblers belonging to this new category are: SHARCGS [21],

SSAKE [22], QSRA [23] and Taipan [24].

Branch-and-Bound. In contrast to traditional graph based

assemblers, a new sequence assembly method (i.e., B&B-based

SUTTA [25]) has been more recently developed. It employs

combinatorial optimization techniques typically used for other

well-known NP-hard problems (satisfiability problem, traveling

salesman problem, etc.). At a high level, SUTTA’s framework

views the assembly problem simply as that of constrained

optimization: it relies on a rather simple and easily verifiable

definition of feasible solutions as ‘‘consistent layouts. ’’ It generates

potentially all possible consistent layouts, organizing them as paths

in a ‘‘double-tree’’ structure, rooted at a randomly selected ‘‘seed’’

read. A path is progressively evaluated in terms of an optimality

criteria, encoded by a set of score functions based on the set of

overlaps along the lay-out. This strategy enables the algorithm to

concurrently assemble and check the validity of the lay-outs (with
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respect to various long-range information) through well-chosen

constraint-related penalty functions. Complexity and scalability

problems are addressed by pruning most of the implausible lay-

outs, using a branch-and-bound scheme. Ambiguities, resulting from

repeats or haplotypic dissimilarities, may occasionally delay

immediate pruning, forcing the algorithm to lookahead, but in

practice, do not exact a high price in computational complexity of

the algorithm.

Finally, all the techniques described earlier need to separately

incorporate mate-pairs information as they play an important role

in resolving repeats as well as in generating longer contigs, thus

dramatically reducing the cost of the assembly-finishing. Note that

although mate-pairs are typically expensive and slow to obtain,

prone to statistical errors and frequently incapable of spanning

longer repeat regions, historically, they have played an important

role in the assembly of large genomes as other cheaper and more

informative mapping techniques have not been widely available.

In addition, they have become essential to many emerging

sequencing technologies (454, Illumina-Solexa, etc.), which can

generate very high coverage short reads data (from 30 bp up to

500 bp).

Table 1 presents a nearly exhaustive list of the major state-of-

the-art sequence assemblers organized by assembly paradigms. It

also contains the sequencing platform(s) that each assembler is

capable of handling.

The need for Quality Assessment
Though validation and performance evaluation of an assembler

are very important tasks, no commonly accepted and standardized

method for this purpose exists currently. The genome validation

process appears to have remained a largely manual and expensive

process, with most of the genomes simply accepted as draft

assemblies. For instance, the initial ‘‘draft’’ sequence of the human

genome [26] has been revised several times, since its first

publication, each revision eliminating various classes of errors

through successive algorithmic advances; nevertheless, genome

sequencing continues to be viewed as an inexact craft and

inadequate in controlling the number of errors, which in the draft

genomes are estimated to be up to hundred or even thousands

[27]. The errors in such draft assemblies fall into several

categories: collapsed repeats, rearrangements, inversions, etc.,

with their incidents, varying from genome to genome.

It should be noted that the most popular metrics for evaluating

an assembly (e.g., contig size and N50), emphasize only size,

poorly capturing the contig quality as they do not contain all the

information needed to judge the correctness of the assembly. For

example N50 is defined as the largest number L such that the

combined length of all contigs of length §L is at least 50% of the

total length of all contigs. In these scenarios, an assembler that

sacrifices assembly quality in exchange for contig sizes, appears to

outperform others, despite generating consensus sequences replete

with rearrangement errors. For example, in the extreme case, an

assembly consisting of one large contig of roughly the size of the

genome is useless if mis-assembled. On the other extreme, an

assembly consisting of many short contigs covering only the inter-

repeat regions of the genome could have very high accuracy

although contigs might be too short to be used, for example, for

gene-annotation efforts. Similarly, just a simple count of the

number of mis-assembled contigs obtained by alignments to the

reference genome (if available), a metric typically used to compare

short-read assemblies, is not satisfying either, because it does not

take into account the various structural properties of the contigs

and of the reads contained in it. For example one single mis-

assembled contig could represent the longest contig in the set and

it could include multiple types of errors (mate-pair orientation,

depth of coverage, polymorphism, etc) which should be weighted

differently. Although the evaluation of the tradeoff between contig

length and errors is an important problem, there is very little in the

literature discussing this topic or applying it to evaluate the

assembly quality of different assemblers. Responding to this need

we have developed a new metric, Feature-Response curve (FRC),

which captures the trade-offs between quality and contig size more

accurately (see section Materials and Methods). The FRC shares

many similarities with classical ROC (receiver-operating charac-

teristic) curves, commonly employed to compare the performance

of statistical inference procedures. Analogous to ROC, FRC

emphasizes how well an assembler exploits the relation between

incorrectly-assembled contigs (false positives, contributing to

‘‘features’’) against gaps in assembly (false negatives, contributing

to fraction of genome-coverage or ‘‘response’’), when all other

parameters (read-length, sequencing error, depth, etc.) are held

constant. An example of FRC appears briefly in a recent paper

that focuses on SUTTA’s implementation and application to short

reads [25]. However the current paper focuses on the FRC-based

comparisons of a wider class of technologies and algorithms.

Finally, although SUTTA was developed by us, as the authors of

this comparison paper, we have strived as best as possible to adopt

a style of full impartiality to avoid any bias in the discussions of the

comparison results.

Through an empirical comparative analysis of the outputs of

several assemblers, this paper is able to highlight various anomalies

in assemblies produced under different strategies and approaches.

The analyses are performed under both standard metrics as well as

new metrics (FRC). In addition, visual inspection of the

consistency of the assembled contigs is enabled by several graphic

representations of the alignment against the reference genome,

e.g., through dot plots.

Experimental protocol and Benchmarking
Before discussing the results, we present the benchmark and

assemblers that we have selected for comparison and explain the

design of the experimental protocol adopted here.

Benchmark selection
In evaluating the assembly quality of different assemblers,

several criteria were used in choosing bench-mark data sets,

assembly-pipelines and comparison metrics: e.g., statistical signif-

icance, ease of reproducibility, accessibility in public domain etc.

For example, by avoiding expensive studies with large sized

genome-assembly and specialized (but not widely available)

technologies, we wished to ensure that the reported results could

be widely reproduced, revalidated and extended – even by

moderate-sized biology laboratories or small teams of computer

scientists. To the extent possible, we have favored the use of real

data over synthetic data.

Consequently, we have not included large genomes (e.g., whole

haplotypic human genomes) or single-molecule technologies

(PacBiosciences or Optical Mapping), but ensured that all possible

genome structures are modeled in the data (from available data or

through simulation) as are the variations in coverage, read lengths

and error rates. The only long range information included has

come from mate-pairs. Note, however, that our analysis is

completely general, as is the software used in this study, and can

be used for broader studies in the future.

For these reasons, following datasets were selected (see Table 2):

1. Sanger reads data, although now considered archaic, remain

an important benchmark for the future. For instance, various
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technologies, promised by PacBiosciences, Life Technologies,

and others, seek to match and exceed the read-lengths and

accuracy of Sanger (hopefully, also inexpensively). Also Sanger-

approach remains a statistically reliable source of data and

implementations, since there continue to exist an active

community of Sanger sequencers, a large amount of data

and a variety of algorithmic frameworks dealing with Sanger

data. As a result, they provide much more reliable statistics in

the context of comparing all different algorithmic frameworks

(e.g., greedy, OLC and SBH). Such richness is not yet available

from the current short-read assemblers, which have primarily

focused on SBH (and de Bruijn graph representation).

2. Most recent Illumina machines can now generate reads of

about 100 bps or more, however, our focus on 36 bps Illumina

reads is based on the fact the these datasets have been

extensively analyzed by previously published short read

assemblers. Since longer reads can only make the assembly

process easier, these datasets still represent some of the hardest

instances of the sequence assembly problem. We have also

discovered that longer reads (*100 bps) from recent Illumina

machines have higher error rates towards the ends of the reads,

thus, limiting the apparent advantage of longer sequences.

3. By focusing on low-coverage long reads and short reads with

high coverage, we wished to stress-test all assemblers against

the most extreme instances of the sequence assembly problem,

especially, where assembly quality is of essence.

Long reads
Starting with the pioneering DNA sequencing work of Frederick

Sanger in 1975, every large-scale sequencing project has been

organized around reads generated using the Sanger chemistry

[28]. This technology could be typically characterized by reads of

length up to 1000 bps and average coverage of 10|. Additional

mate-pair constraints are typically available in the form of

estimated distance between a pair of reads.

The first data set of Sanger reads consists of three bacterial

genomes: Brucella suis [29], Wolbachia sp. [30] and Staphylococcus

epidermidis RP62A [31]. These bacteria have been sequenced and

fully finished at TIGR, and all the sequencing reads generated for

these projects are publicly available at two sites: the NCBI Trace

Archive, and the CBCB website (www.cbcb.umd.edu/research/

benchmark.shtml). Also included in the benchmark are sequence

data from the human genome. Specifically, we selected a region of

3 Mb from human Chromosome Y’s p11.2 region. These euchro-

matin regions of Y Chromosome are assumed to be particularly

challenging for shotgun assembly as it is full of pathologically

complex patterning of genome structures at multiple scales and

Table 1. List of sequence assemblers.

Name Read Type Algorithm Reference

SUTTA long & short B&B (Narzisi and Mishra [25], 2010)

ARACHNE long OLC (Batzoglou et al. [14], 2002)

CABOG long & short OLC (Miller et al. [13], 2008)

Celera long OLC (Myers et al. [12], 2000)

Edena short OLC (Hernandez et al. [16], 2008)

Minimus (AMOS) long OLC (Sommer et al. [15], 2007)

Newbler long OLC 454/Roche

CAP3 long Greedy (Huang and Madan [7], 1999)

PCAP long Greedy (Huang et al. [8], 2003)

Phrap long Greedy (Green [6], 1996)

Phusion long Greedy (Mullikin and Ning [9], 2003)

TIGR long Greedy (Sutton et al. [5], 1995)

ABySS short SBH (Simpson et al. [19], 2009)

ALLPATHS short SBH (Butler et al. [46,47], 2008/2011)

Euler long SBH (Pevzner et al. [17], 2001)

Euler-SR short SBH (Chaisson and Pevzner [35], 2008)

Ray long & short SBH (Boisvert et al. [48], 2010)

SOAPdenovo short SBH (Li et al. [20], 2010)

Velvet long & short SBH (Zerbino and Birney [18,49], 2008/2009)

PE-Assembler short Seed-and-Extend (Ariyaratne and Sung [50], 2011)

QSRA short Seed-and-Extend (Bryant et al. [23], 2009)

SHARCGS short Seed-and-Extend (Dohm et al. [21], 2007)

SHORTY short Seed-and-Extend (Hossain et al. [51], 2009)

SSAKE short Seed-and-Extend (Warren et al. [22], 2007)

Taipan short Seed-and-Extend (Schmidt et al. [24], 2009)

VCAKE short Seed-and-Extend (Jeck et al. [52], 2007)

Reads are defined as ‘‘long’’ if produced by Sanger technology and ‘‘short’’ if produced by Illumina technology . Note that Velvet was designed for micro-reads (e.g.
Illumina) but long reads can be given in input as additional data to resolve repeats in a greedy fashion.
doi:10.1371/journal.pone.0019175.t001
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resolutions – usually described as fractal-like motifs within motifs

(repeats, duplications, indels, head-to-head copies, etc.). For this

region of the Y Chromosome we generated simulated shotgun

reads as described in Table 2. We created two mate-pair libraries

of size (m~2,500,s~166) and (m~10,000,s~1,300) respectively;

90% of the reads have mates (45% from the first library and 45%

from the second library), the rest of the reads are unmated; finally,

we introduced errors in each read at a rate of 1%.

Short reads
More recent advances in sequencing technology have produced

a new class of massively parallel next-generation sequencing

Table 3. Long reads comparison (without mate-pairs).

Genome Assembler # contigs
# big contigs
(§10 kbp) Max (kbp)

Mean big contigs
(kbp) N50 (kbp)

Big contigs
coverage (%)

Brucella Euler 280 118 82 22 19 78:4

suis Minimus 203 101 89 30 32 93:1

PCAP 88 62 198 53 80 100:7

PHRAP 54 23 434 126 199 103:2

SUTTA 73 53 268 62 79 99:2

TIGR 108 67 182 48 57 98:8

Staphylococcus Euler 192 75 78 29 32 85:6

epidermidis Minimus 425 86 119 10 19 80:7

PCAP 109 36 179 72 114 100:1

PHRAP 86 22 357 123 183 103:9

SUTTA 65 31 249 83 116 99:3

TIGR 94 38 230 68 100 99:8

Wolbachia sp. Euler 604 0 6 0 1 0

Minimus 1545 37 16 13 2 40:7

PCAP 1241 41 64 23 3 77:2

PHRAP 2253 55 64 22 1:8 98:5

SUTTA 1089 39 87 26 6 80:8

TIGR 1080 46 46 20 5 73:6

Human Euler 60 27 403 107 266 96:7

Chromosome Y Minimus 850 104 48 18 11 63:1

PCAP 140 38 239 77 112 98:2

PHRAP 4 4 1869 764 1869 101:9

SUTTA 15 10 1020 301 712 100:5

TIGR 1103 108 51 10 8 63:7

Long reads assembly comparison without mate-pair information (clone sizes and forward-reverse constraints). First and second columns report the genome and
assembler name; columns 3 to 7 report the contig size statistics, specifically: number of contigs, number of contigs with size §10kbp, max contig size, mean contig size,
and N50 size (N50 is the largest number L such that the combined length of all contigs of length §L is at least 50% of the total length of all contigs). Finally column 8
reports the coverage achieved by the large contigs (§10kbp). Coverage is computed by double-counting overlapping regions of the contigs, when aligned to the
genome.
doi:10.1371/journal.pone.0019175.t003

Table 2. Benchmark data.

Genome Length (bp) Num. of reads Avg. read length (bp) Std. (bp) Coverage

Brucella suus 3,315,173 36,276 895:8 44:1 9:8

Wolbachia sp. 1,267,782 26,817 981:9 50:6 20:7

Staphylococcus epidermidis 2,616,530 60,761 900:2 46:2 19:9

Chromosome Y� 3,000,000 37,530 800 88 10

Staphylococcus aureus 2,820,462 3,857,879 35 0 47:8

Helicobacter acinonychis 1,553,927 12,288,791 36 0 284:6

Escherichia coli 4,639,675 20,816,448 36 0 161:5

First and second columns report the genome name and length; columns 3 to 6 report the statistics of the shotgun projects: number of reads, average and standard
deviation of the read length and genome coverage (�region [35,000,001–38,000,000]).
doi:10.1371/journal.pone.0019175.t002
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platforms such as: Illumina, Inc. Genome Analyzer, Applied

Biosystems SOLiD System, and 454 Life Sciences (Roche) GS

FLX. Although they have orders of magnitude higher throughput

per single run (up to 200| coverage) than older Sanger

technology, the reads produced by these machines are typically

shorter (35–500 bps). As a result they have introduced a succession

of new computational challenges, for instance, the need to

assemble millions of reads even for bacterial genomes.

For the short reads technology, we used three different data sets,

which have been extensively analyzed by previously published

short read assemblers. The first data set consists of 3.86 million 35-

bp unmated reads from the Staphylococcus aureus strain MW2 [32].

The set of reads for this genome are freely available from the

Edena assembler website (www.genomic.ch/edena.php). The

second dataset consists of 12.3 million 36-bp unmated reads for

a raw coverage of 284|. This second dataset is for the Helicobacter

acinonychis strain Sheeba genome [33], which was presented in the

SHARCGS [21] paper and is available for download at

sharcgs.molgen.mpg.de. The third data set instead is made up of

20.8 million paired-end 36 bp Illumina reads from a 200 bp insert

Escherichia coli strain K12 MG1655 [34] library (NCBI Short Read

Archive, accession no. SRX000429).

Assemblers
The following assemblers have been selected for comparison of

long read pipelines: ARACHNE [14], CABOG [13], Euler [17],

Minimus [15], PCAP [8], Phrap [6], SUTTA [25], and TIGR [5].

Similarly, the following assemblers were selected for comparison of

short read pipelines: ABySS [19], Edena [16], Euler-SR [35],

SOAPdenovo [20], SSAKE [22], SUTTA [25], Taipan [24], and

Velvet [18]. Note that, although the most recent release of

CABOG supports short reads from Illumina technology, it cannot

be run on reads shorter than 64 bp.

This list is meant to be representative (see [36] for a survey), as it

includes assemblers satisfying the following two criteria: (i) they

have been used in large sequencing projects with some success, (ii)

together they represent all the generally accepted assembly

paradigms (e.g., greedy, OLC, SBH and B&B; see the discussion

in the introduction) and (iii) the source code or binaries for these

assemblers are publicly available on-line, thus enabling one to

download and run each of them on the benchmark genomes. In

order to interpret the variability in assembler performance under

different scenarios, both paired and unpaired data were analyzed

separately. All the long-read assemblers were run with their default

parameters, while parameters for the short-read assemblers were

optimized according to recent studies [25] (see Table S1).

Results

In order to analyze the assembly quality of many different

assemblers and to understand the inconsistency of many

traditional metrics, it was decided to collect a significant volume

of comparative performance statistics using a large benchmark of

both bacterial and human genome data. For all the genomes used

in this study, the finished sequences are available, thus enabling

direct validation of the assemblies.

Long reads results
Analysis without mate-pair constraints. Table 3 presents

the contig size analysis while excluding mate-pair data (thus,

ignoring clone sizes and forward-reverse constraints). Since not all

next-generation sequencing technologies are likely to produce

mate-pair data, it is informative to calibrate to what extent an

assembler’s performance is determined by such auxiliary

information. Note that ARACHNE had to be omitted from this

comparison (and the associated Table 3), since its use of mate-pairs

is tightly integrated into its assembly process and cannot be

decoupled from it. Similarly CABOG does not support data that is

totally lacking in paired ends.

A caveat with the preceding analysis needs to be addressed: if,

one wishing to select an assembler of the highest quality, were to

base one’s judgement solely on the standard and popular metrics

(as in this Table 3), the result would be somewhat uncanny and

unsatisfying. For instance, Pharp would appear to be a particularly

good choice, since it seems to typically produce an almost

complete genome coverage with fewer contigs, but each of sizable

lengths (as confirmed by the N50 values). More specifically, except

for Wolbachia, the N50 value of Phrap is the highest, yielding a

respectable genome coverage by the big contigs (w10 kbp).

Unfortunately, a closer scrutiny of the Phrap-generated assembly

(e.g., the dot plots of the contigs’ alignment) reveals that Phrap’s

apparent superiority is without much substance – Phrap’s

weaknesses, as evidenced by its mis-assemblies within long contigs

(see alignments in Document S1), are not captured by the N50-like

performance parameters. Phrap’s greedy strategy cannot always

Figure 1. Feature-Response curve comparison for S. epidermi-
dis. For this comparison no mate-pairs information was used in the
assembly.
doi:10.1371/journal.pone.0019175.g001

Figure 2. Feature-Response curve comparison for Chromosome
Y (3 Mbp of p11.2 region). For this comparison no mate-pairs
information was used in the assembly.
doi:10.1371/journal.pone.0019175.g002
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handle long-range genome structures and when a repeat boundary

is found it can be fooled by false positive overlaps. In contrast

TIGR, PCAP and SUTTA have similar performance in terms of

N50; however, SUTTA produces a smaller number of big contigs

(w10 kbp) compared to TIGR and PCAP, and higher genome

coverage (except for the S. epidermidis, where they have similar

coverage). All the assemblers encounter various difficulties in

assembling the Wolbachia sp. dataset into long contigs, which is

probably due to a higher error rate in the reads. These difficulties

are conspicuously noticeable for Euler assembler; in fact, its big

contigs coverage comes very close to zero. Minimus instead uses a

very conservative approach where, if a repeat boundary is

encountered, it stops extending the contig. Such strategy reduces

the possible mis-assembly errors, but pays a considerable price in

contig size.

The results for the 3 Mb region of Chromosome Y (from p11.2, a

euchromatin region) instead paint a somewhat different picture.

TIGR’s and PCAP’s performances are now inferior, with lower

coverage and higher number of contigs generated. In particular

PCAP performance was obtained by reducing the stringency in

overlap detection to tolerate more overlaps (using parameter -d

500), this parameter setting was necessary in order to generate

reasonably long contigs. Phrap still has the best performances in

terms of contig size and N50, followed by SUTTA, but now its

alignment results do not show mis-assembled contigs (see dot plots

in Document S1). Also, surprisingly Euler now improves the

genome coverage for simulated assembly. Note that for Chromosome

Y simulated reads were generated using fairly realistic error

distributions, but still raise questions about the simulation’s fidelity

(e.g., ability to capture the non uniform coverage pattern, potential

cloning bias, etc., that would be inevitable in any real large scale

genomic project). Various simplifying assumptions used by the

simulators may explain why simulated data appear somewhat

easier to assemble.

Since the contig size analysis gives only an incomplete and often

misleading view of the real performance of the assemblers, a more

principled and informative approach needs to be devised. As

described earlier, with this in mind, a new metric, called ‘‘Feature-

Response curve’’ (FRC), is proposed and evaluated to see how well

it can check the quality of the contigs and validate the assembly

output. Figures 1 and 2 show the Feature-Response curve

comparison for the S. epidermidis and Chromosome Y (p11.2 region)

genomes when mate-pairs are not used in the assembly. The x-axis

is the maximum number w of errors/features allowed in the

contigs and the y-axis reports the approximate genome coverage

achieved by all the contigs (sorted in decreasing order by size) such

that the sum of their features is ƒw (see Methods for more details).

Note that the definition of coverage used in this plot is not the

Table 4. Long reads comparison (with mate-pairs).

Genome Assembler # contigs
# big contigs
(§10 kbp) Max (kbp)

Mean big
contigs (kbp) N50 (kbp)

Big contigs
coverage (%)

Brucella ARACHNE 33 28 463 119 161 101:2

suis CABOG 30 19 775 175 268 101:5

Euler 258 118 82 22 20 80:1

PCAP 81 34 416 98 131 100:5

SUTTA 72 58 269 56 74 99:2

TIGR 69 43 361 77 112 99:9

Staphylococcus ARACHNE 27 17 565 156 294 101:7

epidermidis CABOG 41 8 655 330 483 103:1

Euler 131 60 123 38 49 89:1

PCAP 103 27 362 98 153 101:5

SUTTA 89 63 244 48 63 97:6

TIGR 51 12 545 220 389 101:1

Wolbachia sp. ARACHNE 100 41 71 26 27 84:7

CABOG 1035 26 181 47 26 178:7

Euler 604 0 6 0 1 0

PCAP 1263 54 42 18 3 79:1

SUTTA 1132 46 104 22 6 86:7

TIGR 1131 29 136 40 6 91:8

Human ARACHNE 5 4 1869 763 1869 101:7

Chromosome Y CABOG 5 4 1851 756 1851 100:9

Euler 37 21 585 139 268 97:9

PCAP 135 33 239 89 130 98:9

SUTTA 17 8 1020 377 737 100:7

TIGR 1030 116 48 18 10 72:6

Long reads assembly comparison using mate-pair information. First and second columns report the genome and assembler name; columns 3 to 7 report the contig size
statistics, specifically: number of contigs, number of contigs with size §10kbp, max contig size, mean contig size, and N50 size (N50 is the largest number L such that
the combined length of all contigs of length §L is at least 50% of the total length of all contigs). Finally column 8 reports the coverage achieved by the large contigs
(§10kbp). Coverage is computed by double-counting overlapping regions of the contigs, when aligned to the genome.
doi:10.1371/journal.pone.0019175.t004
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conventional one since we double-count overlapping regions of

contigs, when aligned to the genome. We decided to employ such

a definition because it highlights assemblies that over-estimate the

genome size (coverage greater than 100%). Based on this analysis,

SUTTA seems to be performing better than all the other

assemblers in terms of assembly quality, however it is important

to mention that the current version of the FRC includes several

types of assembly errors with a uniform weighting, chosen

arbitrarily. For example, a mis-join is generally considered the

most severe type of mis-assembly, but this is not currently captured

by the FRC. In fact SUTTA clearly creates mis-joined contigs in

the absence of paired reads (see dot plots in Document S1),

however this problem is alleviated by the addition of paired reads

as shown next in the analysis with mate-pair constraints. Finally

note that Euler and Minimus go to extreme lengths to avoid mis-

joins in the absence of paired reads.

Analysis with mate-pair constraints. Table 4 presents the

results with mate-pairs data, restricting the analysis only to

assemblers (ARACHNE, CABOG, Euler, PCAP, SUTTA and

TIGR) that use mate-pair constraints effectively during the

assembly process. Obviously, the use of mate-pair-constraints

improves the performance and quality of all four assemblers;

however, they do so to varying degrees. For example TIGR’s N50

values are now typically twice as large as those without mate-pairs.

In contrast, Euler’s results only improve marginally with mate-pair

constraints, and it is still unable to produce contigs larger than

10 kbp for the Wolbachia sp. genome. Note that Euler shows weaker

performance in comparison to the results reported on its home-page

(http://nbcr.sdsc.edu/euler/benchmarking/bact.html) for the

bacterial genomes. Although the exact explanation of this

discrepancy is not obvious, it could be due to an additional

screening (preprocessing) of the reads that removes low quality

regions (note that, here, the analysis of all assemblers assumes no

preprocessing.). ARACHNE and CABOG exhibit the highest N50

values for all datasets.

As earlier, while the contig size analysis indicates all of the

following assemblers, ARACHNE, CABOG, PCAP and TIGR

producing better performance, a cursory inspection of the Feature-

Response curve points to a different conclusion. Figures 3 and 4

show the Feature-Response curve comparison for S. epidermidis and

Chromosome Y (p11.2 region) genomes when mate-pairs are used in

the assembly (note: because Euler assembly output could not be

converted into an AMOS bank for validation, it is excluded from

this plot). An intuitive understanding of the different assembly

quality can be gleaned from Figure 5 which shows the dot plots of

comparison of assemblies produced by the various assemblers,

aligned to the completed S. epidermidis genome. The dot plot

alignments were generated using the MUMmer package [37]

(http://mummer.sourceforge.net/). Assemblies generated by CA-

BOG, Euler, PCAP and SUTTA are seen to match quite well with

the reference sequence, as suggested by the fraction of matches

lying along the main diagonal. Note that since S. epidermidis has a

circular genome, the small contigs aligned at the bottom right or

top left are not mis-assembled. TIGR instead shows many large

assembly errors, mostly due to chimeric joining of segments from

two distinct non-adjacent regions of the genome. Further, note

that two perfect dot plot alignments can still have different quality

when analyzed with the FRC. An example is given by comparing

the contigs generated by ARACHNE and SUTTA for the 3 Mb

segment of Chromosome Y’s p11.2. Despite the dot plots showing

high alignment quality for both, the FRC scores them very

differently (see FRCs in Document S1). Document S1 contains the

dot plots for the other genomes and the associated FRCs.

To further analyze the relative strengths and weaknesses of each

assembler, Figure 6 shows separate FRCs for each feature type when

assembling the S. epidermidis genome using mate-pairs. By inspecting

these plots it is clear that each assembler behaves differently according

to each feature types. For example CABOG outperforms the other

assemblers when mate-pair constraints are considered. TIGR and

SUTTA outperform the other assemblers in the number of correlated

polymorphism in the read alignments. While the FRC that analyzes

the depth of coverage, shows ARACHNE, CABOG and PCAP to be

winners in the comparison. Moving to the FRC that analyzes the k-

mer frequencies, which can be used to detect the presence of mis-

assemblies due to repeats, SUTTA and TIGR outperform

ARACHNE and PCAP, while CABOG performs somewhere in

between. The breakpoint-FRC examines the presence of multiple

reads that share a common breakpoint, which often indicate assembly

problems. PCAP and ARACHNE seem to suffer more from this

problems, while the other assemblers are not affected (the FRCs

reduces to a single point). Finally the mis-assembly FRC is computed

using the mis-assembly feature which is obtained applying a feature

combiner to collect a diverse set of evidence for a mis-assembly and

output regions with multiple mis-assembly features present at the

Figure 3. Feature-Response curve comparison for S. epidermi-
dis. For this comparison mate-pairs information was used in the
assembly.
doi:10.1371/journal.pone.0019175.g003

Figure 4. Feature-Response curve comparison for Chromosome
Y (3 Mbp of p11.2 region). For this comparison mate-pairs
information was used in the assembly.
doi:10.1371/journal.pone.0019175.g004
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same region (see [38] for more details). CABOG in this case returns to

a superior rank over the other assemblers.

Short reads results
In case of short reads, interpretations of the contigs data, e.g.,

ones based purely on contig sizes and N50, etc. are complicated by

the following facts: (1) for short-reads, the required threshold ratio
K

L
is only slightly less than 1, where K is the required minimum

overlap length and L is the length of the reads; therefore the

effective coverage is significantly small, thus making all the

statistics rather non-robust and highly sensitive to choice of the

parameters; (2) there is no consensus definition of correctness of a

contig – the required similarity varying from 98% down to 90%

and the allowed end-trimming of each contigs being idiosyncratic;

and (3) many algorithms have specific error-correction routines

that are embedded in a pre-processing or post-processing steps and

Figure 5. Dot plots of the assemblies for Staphylococcus epidermidis. Assemblies generated by ARACHNE, CABOG, Euler, PCAP, SUTTA and
TIGR. The horizontal lines indicate the boundary between assembled contigs represented on the y axis. Note that number of single dots are an
artifact of the sensitivity of the MUMmer alignment tool; they can be reduced or removed using a larger value for the minimum cluster length
parameter –mincluster (default 65).
doi:10.1371/journal.pone.0019175.g005
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that cull or correct bad reads and contigs in a highly technology-

specific manner.

Analysis without mate-pair constraints. Returning to an

analysis based on contig size, in Table 5, we show a comparison of

the assembly results for the S. aureus and H. acinonychis genomes.

The values reported for all the assemblers, are based on the tables

presented in the recent SUTTA paper [25]. Only contigs of size

§100 are used in the statistics. Without mate-pair information, as

in here, it is inevitable that all assembly approaches (especially, if

they are not conservative enough) could produce some mis-

assemblies. As described earlier, what constitutes a correct contig is

defined idiosyncratically (align along the whole length with at least

98% base similarity [16]), making it very sensitive to small errors

which typically occur in short distal regions of the contigs. For

example, contigs ending in gaps accumulate errors, as coverage

gets lower towards the ends. To overcome such errors some

assemblers perform a few correction steps. For example, Edena

exercises an option to trim a few bases from these ends until a

minimum coverage is reached; Euler-SR performs a preprocessing

error correction step where errors in reads are corrected based on

k-mer coverage analysis. From the Table 5 it is clear that SSAKE

has the worst performance in terms of contig size and quality,

while the rest of the assemblers have relatively small errors and

they all achieve high genome coverage (§97%).

Analysis with mate-pair constraints. Table 6 shows the

assembly comparison using mate-pair information on the read set

for the E. coli genome. The comparison is based on the results from

Table 2 in [25]. In accordance with this analysis, statistics are

computed only for contigs whose length is greater than 100 bps. A

contig is defined to be correct if it aligns to the reference genome

Figure 6. Feature-Response curve comparison by feature type for S. epidermidis using mate-pairs.
doi:10.1371/journal.pone.0019175.g006
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with fewer than five consecutive base mismatches at the termini

and has at least 95% base similarity. By inspecting the column

with the number of errors, one might conclude that lower is the

number of errors better is the overall assembly quality. As

explained earlier, a simple count of the number of total mis-

assembled contigs is not informative enough. For example ABySS

and SOAPdenovo have the highest N50 values and low number of

mis-assembled contigs, however such mis-assembled contigs are on

average longer than those from other assemblers like SUTTA and

Edena. This is evident in the table from the analysis of the mean

length of the mis-assembled contigs. This analysis also shows that

Edena and SUTTA behave more conservatively than Velvet,

ABySS and SOAPdenovo, as they trade contig length in favor of

shorter correctly assembled contigs. Interestingly Taipan’s number

of errors for E .coli increases compared to the results in Table 5.

Instead SOAPdenovo’s performance improves for E.coli thanks to

the availability of mate-pair information.

Note that the N50 statistic does not give any information about

the reason why the contigs are mis-assembled: the contigs could

contain an error due to accumulated errors close to the contigs’

ends or it could contain rearrangements due to repeated

sequences. Of course the two error types have very different

contributions and roles in terms of quality. In this context the FRC

analysis can give a deeper understanding of the assembly quality,

as shown in Figure 7 where the contigs produced by SUTTA and

Velvet are compared. Although SUTTA has a higher number of

mis-assembled contigs (see Table 6), the FRC presents a different

scenario. By inspecting the feature information of the contigs

produced by SUTTA and Velvet, it is seen that SUTTA’s contigs

have lower number of unsatisfied mate-pair constraints, which

leads to fewer large mis-assembly errors. This result is primarily

due to SUTTA’s optimization scheme, which allows it to

concurrently optimize both overlap and mate-pair scores while

searching for the best layout. Unfortunately we were unable to

generate FRCs for each short-read assembler because their output

could not be converted into an AMOS bank for validation. The

ones that could be analyzed with FRC include SUTTA and

Velvet.

Discussion

A recent article, entitled ÒRevolution PostponedÓ in Scientific

American [39] described, ‘‘The Human Genome Project has

failed so far to produce the medical miracles that scientists

promised. Biologists are now divided over what, if anything, went

wrong…’’. And yet, the excitement over the rapid improvements

in biochemistry (pyrosequencing, sequencing by synthesis, etc.)

and sensing (zeroth-order waveguides, nanopores, etc.) has now

pervaded the field, as newer and newer sequencing platforms have

started mass-migration into laboratories. Thus, biologists stand at

a cross-road, pondering over the question of how to tackle the

challenges of large-scale genomics with the high-throughput next-

gen sequencing platforms. One may ask: Do biologists possess

correct reference sequence(s)? If not, how should they be

improved? How important are haplotypes? Does it suffice to

impute the haplotype-phasing from population? How much

information is captured by the known genetic variants (e.g., SNPs

and CNVs)? How does one find the de novo mutations and their

effects on various complex traits? Can exon-sequencing be

sufficiently informative?

Central to all these challenges is the one problem we have

addressed in this paper: namely, how correct are the existing

sequence assemblers for making reference genome sequences?

How good are the assumptions they are built upon? Unfortunately

we have discovered that the quality and performance of the

existing assemblers vary dramatically. In addition standard metrics

Table 5. Short reads comparison (without mate-pairs).

Genome Assembler # correct # mis-assembled N50 (kbp) Mean (kbp) Max (kbp) Coverage (%)

S. aureus ABySS 928 6 7:8 2:9 32:7 98

(strain MW2) Edena (strict) 1124 0 5:9 2:4 25:7 98

Edena (nonstrict) 740 16 9:0 3:7 51:8 97

EULER-SR 669 33 10:1 4:0 37:9 99

SOAPdenovo 867 25 8:1 3:1 30:8 97

SSAKE 2073 378 2:0 1:1 9:7 99

SUTTA 998 11 6:0 2:6 22:8 97

Taipan 692 16 11:1 3:9 44:6 98

Velvet 945 5 7:4 2:8 32:7 97

H. acininychis ABySS 270 8 13:9 5:4 54:7 98

(strain Sheeba) Edena (strict) 336 0 10:1 4:5 36:9 98

Edena (nonstrict) 302 1 13:2 4:9 35:0 97

EULER-SR 730 21 4:3 2:1 18:8 98

SOAPdenovo 479 21 7:3 3:3 29:8 98

SSAKE 675 156 3:2 1:8 14:6 99

SUTTA 313 9 9:6 4:5 41:3 98

Taipan 271 0 13:3 5:6 48:6 98

Velvet 278 2 12:8 5:4 49:5 98

Short reads assembly comparison without mate-pair information. First and second columns report the genome and assembler name; columns 3 to 7 report the contig
size statistics, specifically: number of contigs, number of contigs with size §10kbp, max contig size, mean contig size, and N50 size (N50 is the largest number L such
that the combined length of all contigs of length §L is at least 50% of the total length of all contigs). Finally column 8 reports the coverage achieved by all the contigs.
doi:10.1371/journal.pone.0019175.t005
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used to compare assemblers for the last ten years emphasize contig

size while poorly capturing the assembly quality. For these reasons

we have developed a new metric, Feature-Response curve (FRC),

to compare assembles that more satisfactory captures the trade-off

between contigs’ size and quality. This metric shares many

similarities with the receiver operating characteristic curve widely

used in medicine, radiology, machine learning and other areas for

many decades. Also the FRC does not require any reference

sequence (except an estimate of the genome size) to be used for

validation, thus making it a very useful tool in de novo sequencing

projects. Furthermore the inspection of separate FRCs for each

feature type enables to scrutinize the relative strengths and

weaknesses of each assembler. The current formulation of the

FRC is exceedingly simple and yet natural. Thus, we hope that

starting from here more sophisticated versions of the FRC will be

developed in the future. For example, the features could be

weighted by contig length (density function); additional features

may be included; features may be combined or transformed (e.g.,

eigen-features); the response, instead of coverage, could be another

assembly quality metric of choice; etc. It must be emphasized that

the features should not be interpreted directly as errors, since, as

reported by the developers of amosvalidate [38], the method used to

compute each feature may contain some false-positives. These

false-positives frequently correspond to irresolvable inconsistencies

in the assembly – and not mis-assembly errors or incorrect

consensus sequence. Consequently, the results could appear

pessimistic for any one assembler, but are unlikely to be skewed

in a comparative study, such as the one here. The utility of

Feature-Response curve is thus not diminished by the nature of the

simple features, and it should be used in combination with other

metrics and alignments to the reference genome (if available). Note

further that since the reported sensitivity of amosvalidate is §92%,

almost all the mis-assemblies are captured by one or more features,

pointing to possible sources of errors in a particular assembler.

Note that although our aim has been to test and compare as

many de novo sequence assemblers and covering known assembly

paradigms as exhaustively as possible, in a fast evolving field such

as this, this goal has not been completely met – some of the

assemblers listed in Table 1 were only released very recently, not

early enough to be included in the statistical comparison. It is

hoped that the community of researchers interested in sequence

assembly algorithms will close this gap using the FRC software,

now available as part of the AMOS open-source consortium. No

doubt, our team will also publish incremental updates on our

website as we complete further statistical analysis.

Returning to our earlier concerns and mirroring quandaries of

computational biologists, biotechnologists also need to reflect on

related issues: Given the unavoidable computational complexity

burden of assembly, how best to design the sequencing platforms?

There are multiple parameters that characterize a sequencing

platform: read-length, base-call-errors, homopolymer-length,

throughput, cost, latency, augmentation with mate-pairs, scaffold-

ing, long-range information, etc. And not all can be addressed

equally well in all the platforms. For the time being, low-resolution

map technology (e.g., optical restriction maps) for very long

immobile molecules points to the most profitable avenue. If one

were to speculate what the next step should be, as was done by

Schwartz and Waterman [2], one may ‘‘project that over the next

two years, reference genomes will be constructed using new

algorithms combining long-range physical maps with voluminous

Gen-2/3 datasets. In this regard, the Optical Mapping System

constructs genome-wide ordered restriction maps from individual

(*500 kbp) genomic DNA molecules. ’’ [25,40–45] Among all the

assemblers examined here, SUTTA appears to be best suited for

such a strategy.

Figure 7. Feature-Response curve comparison for E. coli. For this
comparison mate-pairs information was used in the assembly.
doi:10.1371/journal.pone.0019175.g007

Table 6. Short reads comparison (with mate-pairs).

Genome Assembler # correct
# mis-assembled
(mean kbp) N50 (kbp) Mean (kbp) Max (kbp) Coverage (%)

E. coli ABySS 114 10 (49:5) 87:4 37:3 210:7 99

(K12 MG1655) Edena 674 6 (13:2) 16:4 6:6 67:1 99

EULER-SR 190 26 (37:8) 57:4 21:1 174:0 99

SOAPdenovo 200 9 (71:8) 76:6 21:7 173:9 98

SSAKE 407 66 (15:3) 31:2 9:6 105:9 98

SUTTA 423 7 (18:8) 22:7 10:2 84:5 98

Taipan 742 62 (5:2) 12:2 5:6 56:5 97

Velvet 275 9 (52:9) 54:3 15:9 166:0 98

Short reads assembly comparison using mate-pair information. First and second columns report the genome and assembler name; columns 3 to 7 report the contig size
statistics, specifically: number of contigs, number of contigs with size §10kbp, max contig size, mean contig size, and N50 size (N50 is the largest number L such that
the combined length of all contigs of length §L is at least 50% of the total length of all contigs). Finally column 8 reports the coverage achieved by all the contigs.
doi:10.1371/journal.pone.0019175.t006

Comparing De Novo Genome Assembly

PLoS ONE | www.plosone.org 12 April 2011 | Volume 6 | Issue 4 | e19175



Materials and Methods

Feature-Response Curve
Inspired by the standard receiver operating characteristic

(ROC) curve, the Feature-Response curve characterizes the

sensitivity (coverage) of the sequence assembler as a function of

its discrimination threshold (number of features). The AMOS

package provides an automated assembly validation pipeline called

amosvalidate [38] that analyzes the output of an assembler using a

variety of assembly quality metrics (or features). Examples of

features include: (M ) mate-pair orientations and separations, (K )

repeat content by k-mer analysis, (C) depth-of-coverage, (P)

correlated polymorphism in the read alignments, and (B) read

alignment breakpoints to identify structurally suspicious regions of

the assembly. After running amosvalidate on the output of the

assembler, each contig is assigned a number of features that

correspond to doubtful regions of the sequence. For example in the

case of mate-pairs checking (M ) the tool flags regions where

multiple matepairs are mis-oriented or the insert coverage is low.

Given any such set of features, the response (quality) of the

assembler output is then analyzed as a function of the maximum

number of possible errors (features) allowed in the contigs. More

specifically, for a fixed feature threshold w, the contigs are sorted

by size and, starting from the longest, only those contigs are tallied,

if their sum of features is ƒw. For this set of contigs, the

corresponding approximate genome coverage is computed,

leading to a single point of the Feature-Response curve. Figure 8

shows the algorithm pseudo-code for the FRC computation.

Note that no reference sequence is used to compute the FRC

curve, which makes the FRC a useful tool in de novo sequencing

project where a reference genome is not available to validate and

guide the assembly process. In a scenario where the size of the

genome is not available any reasonably good estimate of the

reference genome size is adequate for the purpose of computing

the FRC, since the genome size is simply used as a normalizing

denominator across all the assemblers to compare the contigs

quality. For instance, in the case of re-sequencing, a good estimate

for the genome size can be obtained from genomes of the related

species. In the case of the de novo sequencing projects the genome

size can be judged from estimate of coverage (usually modeled as a

dispersed Poisson) from a subsample of contigs (with some care for

eliminating the outliers coming from repeats or difficult to

sequence regions). The procedure described in Figure 8 can be

applied to generate FRCs for each feature separately as shown in

Figure 6. Finally note that the definition of coverage computed by

the FRC is only an approximation of the standard one because the

contigs are not aligned to the genome, however it has the property

of identifying assemblies where the genome length has been over

estimated.

Implementation details
The Feature-Response curve has been developed as part of the

AMOS assembly framework (A Modular Open-Source assembler,

http://amos.sourceforge.net), a tool developed by a consortium of

institutions and research centers associated with the University of

Maryland. In order to facilitate the interaction of many isolated

components, AMOS provides a central data repository of various

genomic objects (reads, inserts, maps, overlaps, contigs, scaffolds,

etc.) to be easily collected and indexed. In addition, the framework

already provides several algorithms to perform some of the

standard steps in the assembly pipeline (e.g., Trimming,

Overlapping, Error Correction, Scaffolding, Validation). Follow-

ing the AMOS philosophy, the FRC is implemented as a pipeline

that consists of two steps: 1) invocation to the amosvalidate tool to

compute the features for the set of contigs; 2) invocation to the

FRC module that implements the algorithm illustrated in Figure 8.

Supporting Information

Document S1 Complete experimental results. This doc-

ument contains the full set of results on on the dat sets used in the

paper, specifically: (1) separate Feature-Response curves for each

Figure 8. Algorithm pseudo-code for computing the Feature-Response curve.
doi:10.1371/journal.pone.0019175.g008
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feature type, (2) dot plots of the assembled contigs aligned to the

reference genome.

(PDF)

Table S1 Parameter setting used for each assembler.

(PDF)
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