Data in Brief 16 (2018) 109-113

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Primers and copper responsive promoter design and data of real-time RT-PCR assay in filamentous fungus *Trichoderma reesei*

Wei Wang *, Yumeng Chen, Dong-Zhi Wei

State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, China

ARTICLE INFO

Article history: Received 19 October 2017 Received in revised form 31 October 2017 Accepted 2 November 2017

Keywords: Trichoderma reesei Filamentous fungus Copper responsive promoter Quantitative real-time PCR Plasmid construction Gene expression

ABSTRACT

This data article contains data related to the research article entitled "Copper-mediated on-off control of gene expression in filamentous fungus *Trichoderma reesei*" (Wang et al., 2017) [1]. Four kinds of copper responsive promoters were designed. Quantitative PCR (qPCR) was performed to determine relative mRNA levels of red fluorescent protein gene (*rfp*) extracted from cells grown under different concentrations of CuSO₄. Three deletion vectors were constructed by using a copper-mediated self-excision cassette (Zhang et al., 2016) [2] to knock out *xyn1*, one of the two major specific endo- β -1,4-xylanases (Rauscher et al., 2006) [3], *xyr1*, the key transcriptional activator of cellulolytic and xylanolytic genes (Lichius et al., 2015) [4], and *ace3*, a factor essential for cellulase production (Häkkinen et al., 2014) [5]. This data article reports the primers, vector construction, and qPCR assay.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.mimet.2017.10.006

* Corresponding author.

https://doi.org/10.1016/j.dib.2017.11.018

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: wadexp@ecust.edu.cn (W. Wang).

Subject area	Biology
More specific sub- ject area	Molecular biology, vector construction, Quantitative real time PCR
Type of data	Table, figure
How data was acquired	Sequencing data were acquired through NCBI. In silico analysis of gene using online Real-time PCR (TaqMan) Primer Design (GenScript, China) and primer design software version 6.0 (Premier Biosoft, USA).
Data format	Raw, analyzed
Experimental factors	Gene sequences were retrieved from GenBank database; Plasmid were con- structed; rfp expression were analyzed by qRT-PCR
Experimental features	Four kinds of copper responsive promoters were designed. qRT-PCR was per- formed to determine relative red mRNA levels of rfp extracted from cells grown under different concentrations of CuSO ₄ . Three deletion cassettes were con- structed to knockout xyn1, xyr1, and ace3, respectively.
Data source location	Shanghai, China
Data accessibility	Data is provided with this article

Specifications Table

Value of the data

- The modified copper responsive promoter Ptcu1c from *T. reesei* was used for the copper-dependent on-off control of DNA transcription and protein expression.
- The relative levels of *rfp* transcripts increased ~500-fold in the absence or presence of copper.
- The copper-mediated self-excision cassette was more widely used than a xylose-mediated selfexcision cassette in some *T. reesei* disruptants for the screening of candidate regulators for cellulase and hemicellulase production.

1. Data

Four copper responsive promoters were designed. Quantitative real-time PCR (qRT-PCR) was performed to determine relative mRNA levels of *rfp* extracted from cells grown under different concentrations of CuSO₄. By using the copper-mediated self-excision cassette, three deletion plasmids were constructed to knockout *xyn1*, *xyr1*, and *ace3*.

2. Experimental design, materials and methods

2.1. Modified copper responsive promoters

Sequences of native P_{tcu1} (1715 bp) of *Trichoderma reesei* were downloaded from the genome sequence of *T. reesei* QM6a (http://genome.jgi-psf.org/Trire2/Trire2.home.html). Three truncated promoter forms, P_{tcu1a} (1249 bp), P_{tcu1b} (1085 bp), and P_{tcu1c} (535 bp), were randomly selected by us. The primers were designed using Primer Premier 6.0. The overlap sequences, "TTAATTAAGT-TAACTCTAGA" and "CACGTGATGACCCGACGTC" were added to the 5′ ends of forward and reverse primers, respectively. Four kinds of copper responsive promoters were cloned by primers (Table 1).

2.2. Expression levels of rfp in T. reesei transformants

About 100 mg of *T. reesei* mycelium was harvested, and grown under different concentrations of CuSO₄ for 36 h. Total RNA was extracted using a FastRNA Pro Red Kit (MPbio, Irvine, CA, USA),

Table 1	
Detailed information on copper responsive promoter primers.	

Name	Sequences (5'-3')	Relevant gene
Pcu1-f	TTAATTAAGTTAACTCTAGAGCGGAATCCTACATTCCCAGAT	Pcu1
Pcu1-r	GACGTCGGGTCATcacgtgGGCCATTGTCGTATCAACCAGGTCGTA	
Pcu1a-f	TTAATTAAGTTAACTCTAGAGCATTACAGACAGAGGCGTGAG	Pcu1a
Pcu1a-r	GACGTCGGGTCATcacgtgGGCCATTGTCGTATCAACCAGGTCGTA	
Pcu1b-f	TTAATTAAGTTAACTCTAGAAGGCTGACTAGAACCACAACTTG	Pcu1b
Pcu1b-r	GACGTCGGGTCATcacgtgGGCCATTGTCGTATCAACCAGGTCGTA	
Pcu1c-f	TTAATTAAGTTAACTCTAGAGCAGCCAGATAAGTTCAATACC	Pcu1c
Pcu1c-r	GACGTCGGGTCATcacgtgGGCCATTGTCGTATCAACCAGGTCGTA	

 Table 2

 Primers used in quantitative real-time PCR (gRT-PCR).

Name	Sequences (5'-3')	Relevant gene
q-sar1-f q-sar1-r q-rfp-f q-rfp-r	TGGATCGTCAACTGGTTCTACGA GCATGTGTAGCAACGTGGTCTTT GCTTCAAGGTGCGCATGGAG CGGTGTTGTGGGCCCTCGTAG	qRT-PCR

according to the manufacturer's instructions. Reverse transcription was performed with 1000 ng of total RNA, using the TransScript All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (Trans-Gen, Beijing, China), according to the manufacturer's instructions. For RT-qPCR, the TransStart TipTop Green qPCR SuperMix (TransGen) was used with 200 nM of forward and reverse primers (Table 2) and 1 μ L of 10-fold diluted cDNA in a final volume of 20 μ L. For gene transcription analysis, SYBR green assays, using primers with the reference gene *sar1*, were performed as described in the previous publication [6]. The primers of *rfp* were designed using GenScript Real-time PCR (TaqMan) Primer Design (https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool). Thermocycling was performed in an ABI StepOne Plus thermocycler (Applied Biosystems, Foster City, CA, USA).

Quantitative real-time PCR (qRT-PCR) was performed using Ptcu1c-rfp [1] to determine relative rfp mRNA levels extracted from cells grown under different concentrations of CuSO₄ (Fig. 1). The relative levels of rfp transcripts increased ~500-fold in the absence or presence of high levels of copper, indicating that the on-off control functions by affecting target RNA levels.

2.3. Deletion plasmid construction

The 500–1000 bp length of 5'-ends and 3'-ends of the sequences of *xyn1* [3], *xyr1* [4], and *ace3* [5] were PCR-amplified from *T. reesei* Qm9414 or RUT C30 genomic DNA using the appropriate primers (Table 3). The primers were designed using Primer Premier 6.0. The resulting fragments were sequentially fused to the *Pacl/Xbal* and *Swal* sites of LML4.0 [2] using the Seamless Cloning Kit (TransGen Biotech, Beijing, China) to generate the vectors Dxyn1, Dxyr1, and Dace3 (see Fig. 1 in Ref. [1]). All plasmids were confirmed via DNA sequencing.

Fig. 1. Expression levels of *rfp* in the absence and presence of high levels of copper. The mRNA level of an addition of 0.5 μ M copper was set as 2. Error bars indicate mean \pm SD (*n*=3 samples) from the same experiment.

Table 3Primers used in deletion plasmids construction.

Name	Sequences (5'-3')	Relevant gene
XYN15-F	GATTACGAATTCTTAATTAACCAGCATCTGTCTAGTTGTGGAGATATG	xyn1
XYN15-R	TTAAGTTAACTCTAGACCTTGAAGTCGATACTATGCAGTTGAG	
XYN13-F	ACTAGTGAGCTCATTTGTTCTGTTGATGTTGACTTGGAG	
XYN13-R	AGTGCCAAGCTTATTTGACTGAAGGCGATGTTCTCTG	
XYR15-F	GATTACGAATTCTTAATTAAACGAGTATCTCCGAAATTCCCTTTGG	xyr1
XYR15-R	TTAAGTTAACTCTAGAGCGCTGTGTGCGATGTGAAG	
XYR13-F	ACTAGTGAGCTCATTTGGAGGCCACTCAATCGTATGACG	
XYR13-R	AGTGCCAAGCTTATTTGAACCTCTTACTCACATTCACTTGACTTG	
ACE35-F	GATTACGAATTCTTAATTAATCTCTGTTGTCATTGCTCCTCCT	ace3
ACE35-R	TTAAGTTAACTCTAGAGGCTGGTCGCTCTTCTTCCT	
ACE33-F	ACTAGTGAGCTCATTTGCCATCATCGCAACCA	
ACE33-R	AGTGCCAAGCTTATTTCCATAGGTAGCCAGTTCGTATCC	

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. C010302-31500066) and the Fundamental Research Funds for the Central Universities (No. 222201714053).

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.11.018.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.11.018.

References

- W. Wang, Y. Chen, D. Wei, Copper-mediated on-off control of gene expression in filamentous fungus Trichoderma reesei, J. Microbiol. Methods 143 (2017) 63–65.
- [2] L. Zhang, X. Zhao, G. Zhang, J. Zhang, X. Wang, S. Zhang, W. Wang, D. Wei, Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: Iml 3.0 and OFN 1.0, Sci. Rep. 6 (2016) 20761.
- [3] R. Rauscher, E. Wurleitner, C. Wacenovsky, N. Aro, A.R. Stricker, S. Zeilinger, C.P. Kubicek, M. Penttila, R.L. Mach, Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina, Eukaryot. Cell 5 (2006) 447–456.
- [4] A. Lichius, F. Bidard, F. Buchholz, S. Le Crom, J. Martin, W. Schackwitz, T. Austerlitz, I.V. Grigoriev, S.E. Baker, A. Margeot, B. Seiboth, C.P. Kubicek, Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype, BMC Genom. 16 (2015) 326.
- [5] M. Häkkinen, M.J. Valkonen, A. Westerholm-Parvinen, N. Aro, M. Arvas, M. Vitikainen, M. Penttilä, M. Saloheimo, T. M. Pakula, Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential forcellulase production, Biotechnol. Biofuels 7 (2014) 14.
- [6] M.G. Steiger, R.L. Mach, A.R. Mach-Aigner, An accurate normalization strategy for RT-qPCR in Hypocrea jecorina (Trichoderma reesei), J. Biotechnol. 145 (2009) 30–37.