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SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19
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ABSTRACT
Diabetes mellitus (DM) is one of the most common underlying diseases that may aggravates COVID-19. In the present
study, we explored islet function, the presence of SARS-CoV-2 and pathological changes in the pancreas of patients with
COVID-19. Oral glucose tolerance tests (OGTTs) and the C-peptide release test demonstrated a decrease in glucose-
stimulated C-peptide secretory capacity and an increase in HbA1c levels in patients with COVID-19. The prediabetic
conditions appeared to be more significant in the severe group than in the moderate group. SARS-CoV-2 receptors
(ACE2, CD147, TMPRSS2 and neuropilin-1) were expressed in pancreatic tissue. In addition to SARS-CoV-2 virus spike
protein and virus RNA, coronavirus-like particles were present in the autophagolysosomes of pancreatic acinar cells of
a patient with COVID-19. Furthermore, the expression and distribution of various proteins in pancreatic islets of
patients with COVID-19 were altered. These data suggest that SARS-CoV-2 in the pancreas may directly or indirectly
impair islet function.
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Introduction

The outbreak of coronavirus disease 2019 (COVID-
19) has raised tremendous challenges. The severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) shares similarities with the SARS coronavirus
[1]. SARS-CoV was reported to infect multiple organs
in humans [2]. Similarly, SARS-CoV-2 was detected in
the lung, pharynx, heart, liver, brain, and kidney of
infected patients [3].

Diabetes mellitus (DM) is a chronic disease
affecting millions of people. Concerns have been
raised those diabetic patients may be at high risk
for COVID-19 [4,5]. ACE2, the putative receptor
for SARS-CoV-2, is rarely detected in pancreatic

endocrine cells [6,7], leading to the hypothesis
that SARS-CoV-2 is unlikely to directly infect pan-
creatic β cells in vivo in an ACE-2-dependent man-
ner. In contrast, in vitro studies have provided
evidence that human pancreatic α and β cells are
susceptible to SARS-CoV-2 infection [8], implying
that SARS-CoV-2 may directly target the pancreas
and impair islet function. Moreover, contradictory
data have shown that the SARS-CoV-2 receptors
ACE2 and TMPRSS2 are expressed in pancreatic
islets [9]. Although SARS-CoV-2 has been postu-
lated to promote the occurrence of DM [10], the
direct evidence linking SARS-CoV-2 with DM is
still inadequate.
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Hyperglycemia is commonly observed in patients
with SARS [11]. Limited retrospective studies [12,13]
have shown that elevation of blood glucose levels
might also occur in patients with COVID-19. It is
speculated that the systemic inflammatory response
may contribute to the onset of DM [14,15]. SARS-
CoV-2 has been detected in respiratory system[16]
and kidney [3] specimens. However, the existence of
SARS-CoV-2 in the pancreas and the islet function
of patients with COVID-19 have not been well docu-
mented. To explore the effects of SARS-CoV-2 infec-
tion on islet function, an oral glucose tolerance test
(OGTT) and C-peptide release test were performed
in SARS-CoV-2-infected patients without a history
of diabetes or impaired glucose tolerance. Autopsy
specimens from the pancreas of patients with
COVID-19 were also analyzed with immunohisto-
chemistry (IHC), fluorescence in situ hybridization
(FISH), and transmission electron microscopy
(TEM). We found that islet function was compro-
mised in patients with COVID-19 and that SARS-
CoV-2 was present in the pancreas, suggesting that
SARS-CoV-2 may directly target the pancreas and
contribute to the initiation of DM.

Materials and methods

Study design and participants

We recruited patients with COVID-19 fromMarch 1st
to April 12th, 2020, at Wuhan No. 1. Hospital and
Wuhan Jinyintan Hospital, Wuhan China. All the
patients were confirmed to have SARS-CoV-2 infec-
tion with a real-time reverse transcriptase-polymerase
chain reaction (RT–PCR) test. The exclusion criteria
of this study included (1) a history of diabetes, predia-
betes, or taking medicine to control blood sugar before
COVID-19; (2) cancer; (3) pancreatic diseases (acute
pancreatitis, chronic pancreatitis or pancreatic injury);
(4) autoimmune disease; (5) immunodeficiency; (6)
glucocorticoid treatment within 6 months before
admission; and (7) pregnancy or breastfeeding. None
of the patients received glucocorticoid treatment
during hospitalization. All patients were provided
with enough carbohydrate intake for a balanced diet,
and none were prescribed parenteral nutrition or
nasal feeding.

Study approval

The study was approved by the ethics committee of the
First Affiliated Hospital of Nanjing Medical Univer-
sity, Wuhan No. 1 Hospital, Wuhan Jinyintan Hospi-
tal and Tongji Medical College of Huazhong
University of Science and Technology (2020-SR-134,
KY-2020-15.01 and KY-2020-52.01). Written
informed consent was obtained from all patients.

Clinical procedures

Epidemiological, demographic, and baseline charac-
teristics and laboratory results were obtained from
patients’ medical records. Inflammatory factors,
including C-reactive protein (CRP) and IL-6, were
routinely measured. The 75-g OGTT was performed.
Briefly, after at least 8 h of fasting, the patients donated
blood to measure fasting plasma glucose and glycosy-
lated hemoglobin A1c (HbA1c) levels. Water-free glu-
cose powder (75 g) was dissolved in 200 ml of drinking
water and was consumed in 5 min. The timer was set
as 0 min when the patient drank the first sip. Then,
blood samples were collected at 30-, 60-, 120-, and
180-min post-glucose consumption. Plasma glucose
and C-peptide were measured to determine glucose
tolerance and the secretory capacity of pancreatic
islets. According to the glucose metabolism levels
announced by the World Health Organization
(WHO) in 1999 [17], subjects with fasting blood glu-
cose (FBG) < 6.1 mmol/L and 2-h blood glucose
(2hBG) < 7.8 mmol/L were grouped into normal glu-
cose tolerance; those with FBG≥ 7.0 mmol/L and
2hBG ≥11.1 mmol/L were in the diabetes group; and
those with blood levels not fitting in the above two
groups were in the prediabetes group.

Opal immunofluorescence staining in
pancreatic samples

Autopsy samples were collected from four patients
with COVID-10, and opal multiplex immunofluores-
cence staining was processed as described previously
[18,19]. Briefly, formalin-fixed paraffin-embedded
(FFPE) pancreatic tissue samples were cut into 3-
μm-thick serial sections and further stained for simul-
taneous detection and quantitation of ACE2
(Ab108252, 1:200, Opal 570 channel, pseudo-yellow),
NKX6.1a (CST#54551S, 1:100, Opal 520 channel,
pseudo-green), CD147 (Ab10830, 1:500, Opal 690
channel, pseudo-magenta), neuropilin-1 (ab81321,
1:100, Opal 620 channel, pseudo-red), TMPRSS2
(Abcolonal, A9126, 1:400, Opal 780 channel, pseudo-
white) and nucleus (DAPI, pseudo-blue) by using an
Opal Polaris 7 Color Automation IHC Detection Kit
(Akoya Biosciences, Menlo Park, CA). The slides
were observed and imaged by a Vectra Polaris auto-
mated quantitative pathology imaging system. The
images were sequentially spectrally unmixed by
Akoya phenoptics inForm software (inform 2.4.8).

Immunohistochemistry (IHC) of pancreatic
samples

Autopsy samples were collected from four patients
with COVID-19 and processed as described previously
[16]. Briefly, FFPE pancreatic tissue samples were cut
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into 3-μm-thick serial sections. Following antigen
retrieval in EDTA (pH: 9.0), the sections were incu-
bated overnight at 4 °C with primary antibodies
against SARS-CoV-2 spike (1:200, GTX632604, Gene-
tex), ACE2 (1:200, GB11267, Servicebio), CD147
(1:200, GB11390-1, Servicebio), PDX1 (1:200, 20989-
1-ap, Proteintech), PPAR (1:200, BS-4590R, BIOSS),
CD36 (1:200, 18836-1-ap, Proteintech), GLUT2
(1:200, bs-051r, BIOSS), IRS1 (1:200, AF6273,
Affinity), or IRS2 (1:200, bs-0173r, BIOSS). After
extensive washing, the sections were further stained
with the corresponding secondary antibodies and
visualized using the Dako REAL™ EnVision™ Detec-
tion System. Dilutants without primary antibodies
were used as negative controls.

Fluorescence in situ hybridization (FISH) of
pancreatic samples

Pancreatic samples obtained from autopsy were fixed
with 4% PFA in diethyl pyrocarbonate (DEPC) for 8
h. After dehydration, the fixed tissue sample was cut
into 3-μm-thick serial sections. Following digestion
in proteinase K (20 μg/ml) at 37 °C for 20 min, the sec-
tions were incubated with 6 ng/μl SARS-CoV-2 probe
(5’-CY3-CCGUC UGCGG UAUGU GGAAA
GGUUA UGG-3’) at 37 °C overnight. After washing,
the FISH preparations were counterstained with
DAPI and observed by confocal microscopy with
appropriate fluorescence filter sets (Nikon, Japan).

Transmission electron microscopy (TEM)

TEM was utilized to detect changes in the ultrastruc-
ture and structure of the SARS-CoV-2 virus particles
[16]. Briefly, fresh pancreatic tissues (approximately
1 mm×1 mm×1 mm in size) were fixed in 3% buffered
glutaraldehyde in 0.1 M phosphoric buffer (pH: 7.4)
for 2∼4 h and 1% (w/v) osmic acid for 2 h, dehydrated
with gradient alcohol, and embedded in Epon 812
(SPI, PA, USA). After polymerization of the resin at
60 °C for 48 h, ultrathin sections were cut at 70-nm
thickness with an ultramicrotome using a diamond
knife, stained with 5% uranyl acetate and lead citrate,
and observed under a Hitachi HT7700 transmission
electron microscope.

Statistical analysis

All data, as appropriate, are expressed as the mean ±
standard deviation or percentages. The mean and per-
centages between groups were compared using
ANOVA and the chi-square test in SPSS (version
22.0). The calculation formulas for evaluating insulin
resistance are listed as follows: C-peptide index = fast-
ing C-peptide (mmol/L)/fasting blood glucose (mmol/

L)*100[20]; 20/(fasting C-peptide (nmol/L) fasting
glucose (mmol/L))[21].

Results

Islet function was compromised in patients with
covid-19

A total of 42 patients with COVID-19, 21 males and 21
females, were recruited from two medical centers in
Wuhan for the study (Table 1). The patients ranged
from 23 to 93 years old. Of the 42 patients, the classifi-
cation of COVID-19 disease severity from the Clinical
Criteria of the WHO [22] was as follows: 1 was mild,
22 were moderate, 18 were severe, and 1 was critical.
We divided the patients into two groups based on
their disease severity: the 23 mild and moderate
patients were named the moderate group, while the
19 severe and critical patients were named the severe
group (Table 2). To explore whether SARS-CoV-2
infection impaired systemic glucose tolerance and
islet function, we performed OGTT tests and C-pep-
tide secretion tests on patients with COVID-19. The
patients in the severe group were older than the
patients in the moderate group (65.79 ± 14.73 vs.
52.78 ± 15.37, p = 0.008), reflecting that age was a
risk factor for the disease severity of COVID-19. A
higher body mass index (BMI) is a common risk factor
for type 2 diabetes mellitus (T2DM) [23], and it was
comparable between the two groups (21.70 ± 2.67 vs.
23.22 ± 3.84, p = 0.202).

The HbA1c level was significantly higher in the
severe group than in the moderate group (6.1 ± 1.6
vs. 5.1 ± 0.4, p = 0.001). In the OGTT test, the average
fasting blood glucose (FBG) concentration in the
severe group was slightly higher than that in the mod-
erate group (5.4 ± 1.0 vs. 4.9 ± 0.5, p = 0.238), but was
not statistically significant. Similar results were found
for the blood glucose concentrations 30-, 60-, 120-,
and 180-min post-glucose consumption. Accordingly,
14 patients (60.9%) in the moderate group had normal
glucose tolerance (NGT), 9 showed characteristics of
prediabetes, and 1 was newly diagnosed with DM. In
contrast, 3 patients were diagnosed with new-onset
diabetes, 5 patients suffered from prediabetes, and 10
patients in the severe group had NGT (Figure 1A).
The chi-square test did not show a significant differ-
ence in the composition ratio between the mild-mod-
erate and severe-critical groups according to glucose
tolerance levels. Collectively, 18 of the 42 patients
with COVID-19 (18/42 = 42.86%) developed predia-
betes or diabetes. The peak time of blood glucose or
C-peptide concentration indicated that the patients
in the severe group seemed to respond slower than
those in the moderate group (Figure 1B and C),
although the difference did not reach statistical signifi-
cance. To our surprise, the level of C-peptide was very
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low in 1 patient (patient #41) diagnosed with new-
onset diabetes. The second patient (patient #28) with
newly diagnosed diabetes had impaired insulin
secretion and failed to lower glucose levels to a normal
range (Figure 1D), indicating an insulin resistance.
These data suggest that SARS-CoV-2 might promote
the development of diabetes.

Similar to blood glucose, C-peptide is a surrogate
marker for pancreatic islet function, reflecting insulin
secretion. As shown in Table 2, the average baseline
level of C-peptide (0 min) was slightly higher in the
severe group than in the moderate group, indicating
a higher fasting insulin concentration, an indicator
of systemic insulin resistance. Insulin is a rapid-acting

Table 1. Clinical characteristics and laboratory findings in patients with COVID-19.
Wuhan No.1 Jinyintan Total Reference range

Gender(M/F) 11/6 10/15 21/21
Age (years old) 68.6 ± 12.7 52.28 ± 15.57 58.66 ± 16.48
Underlying diseases
hypertension 0 2 2
hyperuricemia 0 1 1
No potential comorbidities 17 22 39
Disease Severity
mild disease 0 1 1
moderate disease 1 21 22
severe disease 15 3 18
critical disease 1 0 1
Hospitalization days1

<30 days 2 0 2
30∼60 days 14 12 27
>60 days 1 13 13
Blood routine
Leukocyte (×109/L) 7.01 ± 0.58 5.49 ± 0.32 6.13 ± 0.32 3.50-9.50
Neutrophils (×109/L) 4.43 ± 0.63 3.05 ± 0.23 3.63 ± 0.31 1.80-6.30
Lymphocytes (×109/L) 1.58 ± 0.21 1.85 ± 0.12 1.74 ± 0.11 1.10-3.20
Blood chemistry
TBIL (μmol/L) ND 10.9 ± 3.5 NA 1.71-21
Albumin (g/L) 36.06 ± 8.11 39.8 ± 3.71 38.46 ± 5.87 40–55
Globulin (g/L) 28.00 ± 6.16 27.08 ± 2.55 27.44 ± 4.28 20–40
ALT (IU/L) 28.7 ± 3.6 29.4 ± 4.3 29.1 ± 2.9 7–45
AST (IU/L) 24.3 ± 2.0 27.3 ± 2.5 26.1 ± 1.7 13–35
Creatinine (μmol/L) 70.4 ± 5.6 60.3 ± 4.1 64.5 ± 3.4 44–97
BUN (mmol/L) 5.7 ± 0.9 4.5 ± 0.2 5.0 ± 0.4 1.8-7.3
Inflammation parameters
CRP (mg/L) 17.38 ± 24.92 1.58 ± 2.03 7.75 ± 17.21 ≤5
IL-6 (pg/ml) 9.50 ± 10.67 6.74 ± 2.53 7.66 ± 6.46 ≤5
Treatment
antiviral2 17 0
antibiotics3 16 1
1The infection history for patients in Jingyintan Hospital cohort study was over 30 days.
2Patients were treated with Arbidol, Oseltamivir, Kaletra, or Hydroxychloroquine.
3Patients were treated with Meropenem, Moxifloxacin, Tegafycline or Azithromycin.
Abbreviation: NLR, neutrophil-to-lymphocyte ratio; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea
nitrogen; CRP, C-reactive protein; IL-6, interleukin-6; ND, not done; NA, not available

Table 2. Results of the oral glucose tolerance test in patients with COVID-19.
Moderate group (n = 23) Severe group (n = 19) P value Reference range

Age (years) 52.78 ± 15.37 65.79 ± 14.73 0.008
BMI (kg/m2) 23.22 ± 3.84 21.70 ± 2.67 0.202
Glucose (mmol/L)
0 min 4.95 ± 0.50 5.39 ± 1.02 0.238 3.9-6.1
30 min 8.80 ± 2.09 9.40 ± 2.09 0.433 6.1-9.4
60 min 9.09 ± 2.22 9.92 ± 2.92 0.463 6.7-9.4
120 min 7.63 ± 1.96 8.97 ± 4.38 0.595 3.9-7.8
180 min 5.68 ± 1.70 7.82 ± 5.41 0.390 3.9-6.1
C-peptide (ng/ml)
0 min 1.97 ± 0.95 2.37 ± 1.01 0.060 0.30-0.61
30 min 7.76 ± 4.52 6.45 ± 3.07 0.536 1.5-6.1
60 min 8.65 ± 3.34 9.30 ± 5.69 0.791 1.5-6.1
120 min 9.71 ± 3.77 9.75 ± 6.38 0.640
180 min 7.72 ± 3.83 7.32 ± 4.71 0.471 0.30-0.61
HbA1c (%) 5.15 ± 0.37 6.12 ± 1.60 0.001 4∼6%
Glu_AUC 1375.24 ± 272.38 1582.18 ± 588.38 0.587
Cp_AUC 1543.73 ± 547.45 1451.97 ± 822.95 0.411
CPI 1.32 E-4 ± 6.98 E-5 1.51 E-4 ± 7.09 E-5 0.153
20/(FCp*FBG) 7.45 ± 2.94 6.19 ± 4.07 0.063
Cpmax/FCp 6.14 ± 1.79 4.78 ± 1.63 0.014

Abbreviations: HbA1c, hemoglobin A1c; Glu_AUC, area under the curve of glucose in the OGTT; Cp_AUC, area under the curve of C-peptide in the OGTT;
Cp, C-peptide; CPI, C-peptide index; FCp, fasting C-peptide; FBG, fasting blood glucose; Cpmax, the maximum value of C-peptide during the OGTT.
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hormone with a short half-life of approximately 4–6
min. Moreover, C-peptide measurements will be sig-
nificantly influenced by sample hemolysis, which
means that the repeatability and accuracy may vary
in different labs. Alternatively, C-peptide is simul-
taneously released with insulin, remaining stable for
24 hours in separated serum and plasma samples,
thus becoming a more reliable marker for indicating
insulin secretion capacity. Two indices based on
serum C-peptide contents were applied in the current
study, including the C-peptide index (CPI) and the 20/
(fasting C-peptide*fasting blood glucose) ratio (20/
FCp*FBP), which are indicators for beta-cell function
and insulin sensitivity, respectively. Moreover, it has
even been proven that 20/FCp*FBP performs better
than the widely used index HOMA-IR, especially in
those with mild insulin resistance [21]. As shown in
Table 2, 20/FCP*FBP showed a reduction tendency
in the severe group (7.45 ± 2.94 vs. 6.19 ± 4.07, p =
0.063), while CPI was comparable between the two
groups. Moreover, the maximum levels of C-peptide
during the OGTT/FCp (Cpmax/FCp) was significantly
decreased in patients with severe COVID-19 (6.14 ±
1.79 vs. 4.78 ± 1.63, p = 0.014). Collectively, these

data suggested that SARS-CoV-2 infection may impair
islet functions, especially in patients with severe
COVID-19.

SARS-CoV-2 virus was detected in the pancreas
of patients with covid-19

ACE2 [24], CD147 [25], neuropilin-1 [26] and
TMPRSS2 [27] are receptors for SARS-CoV-2. To
explore the possibility that SARS-CoV-2 may infect
pancreatic cells directly, we first examined the
expression of SARS-CoV-2 receptors in pancreatic
autopsy samples. As shown in Figure 2, ACE2,
CD147 and TMPRSS2 were widely expressed on the
cell membrane in the pancreas. NKX6.1a, as a critical
regulator of pancreatic β cells [28], was clearly
detected only in islets. In contrast, neuropilin-1 was
weakly expressed in islets. The expression of SARS-
CoV-2 receptors in pancreatic tissues and islets
suggested that islets may be susceptible to SARS-
CoV-2 infection.

To further compare the difference between non-
COVID-19 and COVID-19 autopsy samples, we per-
formed immunohistochemical analysis in patients

Figure 1. Distribution of normal glucose tolerance, prediabetes and diabetes after COVID-19. (A) Distribution of patients with
COVID-19 into normal glucose tolerance (NGT), prediabetes or diabetes mellitus (DM) groups. During the OGTT, the peak time
distributions of blood glucose (B) and C-peptide (C) in the mild-moderate group and the severe-critical group were analyzed.
(D) OGTT results of 2 representative patients with COVID-19 and new-onset diabetes. In patient #29, C-peptide (black curve,
right axis, ng/ml) was released in response to the elevation of blood glucose levels (red curve, left axis, mmol/L). In patient
#42, the blood glucose level was increased, but the C-peptide level was very low throughout the entire test.
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with COVID-19, and the expression of ACE2 and
CD147 seemed to be higher in the endocrine gland
(islet). SARS-CoV-2 spike proteins were widely dis-
tributed in the parenchyma of the pancreas of patients
with COVID-19 but not in the non-COVID-19 con-
trol samples. To further confirm this observation, we
performed fluorescence in situ hybridization (FISH)
analyses using a nucleic acid probe specific for
SARS-CoV-2 RNA. We detected positive fluorescent
signals in the cytoplasm of pancreatic cells of the
patients with COVID-19 but not in the non-
COVID-19 controls (Figure 3).

With the aid of transmission electron microscopy, we
directly observed cell damage and virus-like particles in
the pancreas (Figure 4). The overall structure of acinar
epithelial cells was significantly edema and disintegrated,
a large area of cell membrane was damaged and dis-
solved, intracytoplasmic organelles were swollen, vacuo-
lated and transformed nuclei were irregularly shaped
with local pits, euchromatin dissolved heterochromatin
edge set, nucleoli were large, and the nuclear membrane
was clear. The mitochondria were obviously swollen,
most of them were enlarged, and the stromal lysis
ridge disappeared. The coarse endoplasmic reticulum
was abundant, and some parts of the ER were obviously
expanded and degranulated. There were fewer secretory
granules, the uniform density of cell connection disap-
peared, and the cell gap was significantly widened.More-
over, a small number of circular structures could be seen
in the autophagolysosomes, which were suspected to be
virus-like particles. Collectively, these data suggest that
SARS-CoV-2 may directly infect islet cells.

Altered expression patterns of islet function-
related molecules in the pancreas of patients
with covid-19

Many molecules are involved in islet function and the
pathogenesis of diabetes, including CD36, glucose
transporters (GLUT) 2, insulin receptor substrate
(IRS) 1, IRS2, pancreatic and duodenal homeobox 1

(PDX1), and peroxisome proliferator activated recep-
tor gamma (PPARG) [29–33]. In the COVID-19
patient without SARS-CoV-2 virus expression in the
pancreas (SARS-CoV-2 negative), CD36, GLUT2,
IRS2, and PDX1 were widely distributed in the pan-
creatic, serous acini, duct (exocrine gland) and islet
(endocrine gland). PPARG was mainly expressed in
the islet, while IRS1 was barely detected. In the patient
with SARS-CoV-2 virus expression in the pancreas
(SARS-CoV-2 positive), CD36, GLUT2, IRS1, IRS2,
PDX1, and PPARG were mainly detected in the islet.
CD36, IRS1, and PDX1 were also weakly expressed
in the exocrine gland. Of note, CD36 was abnormally
expressed in the small vasculature of pancreatic inter-
stitial tissue of SARS-CoV-2-infected patients
accompanied by SARS-CoV-2 virus in the pancreas.
In summary, the expression patterns of CD36,
GLUT2, IRS1, IRS2, PDX1, and PPARG in the pan-
creas were altered upon SARS-CoV-2 infection
(Figure 5), implying that islet function may be com-
promised in patients with COVID-19.

Discussion

Themortality rate of COVID-19 is estimated to be 1-4%,
which is significantly lower than that of SARS (∼9%)
[34] and MERS (∼35%) [35]. However, COVID-19
may become more fatal for patients with diabetes and
other underlying diseases, e.g. hypertension and chronic
obstructive pulmonary disease (COPD). The COVID-19
case fatality rate accompanied by diabetes was 7% [36].
The increasedmortality rate may be caused by the preva-
lence of diabetes in elderly patients or the interactions
between SARS-CoV-2 and diabetes. In this pilot study,
SARS-CoV-2 was found in the pancreas, and islet func-
tion was impaired in patients with COVID-19,
suggesting that SARS-CoV-2 infection may promote
the occurrence of DM.

SARS-CoV-2 virus particles have been found in the
lungs [16], kidney [37,38], brain [39], and feces [40]. A
cohort autopsy study identified SARS-CoV-2 in multiple

Figure 2. Opal immunofluorescence staining of SARS-CoV-2 receptors in pancreatic samples. The SARS-CoV-2 receptors ACE2
(pseudo-yellow), CD147 (pseudo-magenta), neuropilin-1 (pseudo-red), and TMPRSS2 (pseudo-white) and the pancreatic β cell
maker NKX6.1a (pseudo-green) were detected in the pancreatic samples. Scale bar, 50 μm.
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organs, including the pancreas [41]. In the present study,
we detected SARS-CoV-2 receptors (ACE2 and CD147),
spike protein, viral nucleic acids, and intact coronavirus-
like particles in the pancreas of patients with COVID-19.
Our observation strengthened the previous finding that
pancreatic cells in organoid culture were permissive to
SARS-CoV-2 infection [8]. Moreover, SARS-CoV-2
virus particles were mainly present in the autophagolyso-
somes of infected acinar cells, indicating that autophagy

may be involved in SARS-CoV-2 infection of the pan-
creas. Indeed, SARS-CoV-2 infection may cause the
accumulation of autophagosomes [42]. The mechanisms
and potential roles of autophagy in SARS-CoV-2 infec-
tion of the pancreas need further investigation.

As a scavenger receptor for free fatty acids, CD36 is
widely expressed on β cells and α cells in pancreatic
islets and contributes to insulin resistance and diabetes
[29]. GLUT2 is required for glucose-stimulated insulin

Figure 3. SARS-CoV-2 in the pancreas of COVID-19 patients. (A-B) SARS-CoV-2 receptors ACE2 and CD147 were diffusely expressed
in the pancreas. In the non-COVID-19 control patient, ACE2 expression was higher in the exocrine gland, and CD147 was evenly
expressed. In patients with COVID-19, ACE2 and CD147 expression was much higher in the endocrine gland. (C) SARS-CoV-2 spike
antibody staining showed diffuse positive signals (brown) in the sample from the patient with COVID-19 but not in the non-
COVID-19 control. (D) The SARS-CoV-2 nucleic acid probe showed positive staining (red particles) in the cytoplasm of pancreatic
cells of a patient with COVID-19 but not in that of the non-COVID-19 control.
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secretion in pancreatic islet β cells [30, 43]. IRS1 and
IRS2 mediate the growth and function of pancreatic
islet β cells [31]. IRS2 is especially crucial in insulin
sensitivity and is responsible for initiating the pro-
gression of T2DM [44]. Similarly, PDX1 regulates
pancreatic development and pancreatic islet β cell
function [45]. PPARG plays diverse roles in the patho-
genesis of diabetes, regulating adipogenesis, lipid

metabolism, insulin sensitivity, and inflammation
[33]. We found that SARS-CoV-2 infection in the pan-
creas enriched the expression of CD36, GLUT2, IRS2,
and PDX1 in the pancreatic islets, which were widely
distributed in the SARS-CoV-2-negative pancreas.
IRS1 was found to be expressed in the pancreatic islets
of the SARS-CoV-2-positive pancreas but was barely
detectable in the SARS-CoV-2-negative pancreas.

Figure 4. Transmission electron microscopic examination of pancreatic samples. Black solid triangles (▴) indicate cell membrane
rupture. Red solid triangles (▴) indicate virus-like particles in the autophagolysosome (ASS). M, mitochondria; N, nucleus; Nu,
nucleoli; RER, rough endoplasmic reticulum; SG, secretory granules.
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Moreover, CD36 was abnormally expressed in the
small vasculature of pancreatic interstitial tissue of
SARS-CoV-2-infected patients accompanied by
SARS-CoV-2 expression in the pancreas, which
might damage endothelial cells. All of these molecules
are closely associated with pancreatic islet β cell func-
tion, implying that SARS-CoV-2 infection may
directly or indirectly alter pancreatic islet function.

To evaluate the islet function in patients with
COVID-19, we performed OGTT and C-peptide release
tests. C-peptide is usually released simultaneously with
the secretion of insulin. C-peptide levels are normally
rather low in patients with type 1 diabetes mellitus
(T1DM), and its secretion is slow in reaction to acute
glucose stimulation in patients with T2DM. Patient
#42 in our study had low C-peptide levels not only at
baseline but also after OGTT, which were similar to
the phenotypes of subjects with T1DM [46]. On the
other hand, patient #29 developed insulin resistance,
which is the hallmark of T2DM. However, we were
unable to subtype these two patients into either T1DM
or T2DM without other clinical indices, such as islet
autoantibodies, and responses to insulin treatment.
HbA1c provides a reliable measure of chronic glycemia

in patients from the previous 2–3 months of treatment
and is largely influenced by glucose levels during the
last month of treatment. In our study, most of the
patients were hospitalized for approximately 1 month.
Thus, HbA1c was regarded as a good indicator of overall
glucose metabolism during COVID-19 infection. The
level of HbA1c was increased, especially in patients
with severe or critical COVID-19, and was in line with
the observation that the blood glucose level was higher
in patients with severe or critical COVID-19. Although
HbA1c is routinely detected in diabetic patients [47],
some other conditions may also lead to elevated
HbA1c in the absence of long-term increase in blood
glucose levels [48]. In line with our observations, a case
report described the occurrence of DM following
SARS-CoV-2 infection [49]. Emerging evidence sup-
ports that SARS-CoV-2 may induce hyperglycemia
[50] and new-onset insulin resistance [51]. More studies
are needed to better understand the roles and mechan-
isms of SARS-CoV-2 infection and COVID-19 in the
initiation and progression of diabetes.

Our study has some limitations. 1) In the Wuhan
outbreak of SARS-CoV-2, most hospitals received
only COVID-19 patients. Therefore, COVID-19

Figure 5. The expression of islet function-related molecules was altered in patients with COVID-19. Immunochemical staining
using antibodies against (A) CD36, (B) GLUT2, (C) IRS1, (D) IRS2, (E) PDX1 and (F) PPARG. In the patient with COVID-19 but without
SARS-CoV-2 virus in the pancreas (SARS-CoV-2 negative), CD36, GLUT2, IRS2 and PDX1 were widely distributed in the pancreatic
serous acinus, the duct (exocrine gland) and the islet (endocrine gland); PPARG was mainly in the islet; and IRS1 was barely
detected. In the patient with COVID-19 accompanied by SARS-CoV-2 virus in the pancreas (SARS-CoV-2 positive), CD36, GLUT2,
IRS1, IRS2, PDX1 and PPARG were mainly detected in the islets. CD36 was also present in the small vasculature of pancreatic inter-
stitial tissue.
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patients alone were recruited in the study, and non-
COVID-19 controls were lacking in the OGTT. 2)
Absence of evidence is not evidence of absence. The
islet conditions in recovered COVID-19 patients
were clear, which may limit the effects of SARS-
CoV-2 infection on the pancreas. 3) We followed up
with 6 patients for up to 2 years. Considering that
abnormal glycemia reverts to normal in recovered
COVID-19 patients [52], it is unexpected that five sur-
vivors still had impaired glucose tolerance. More
patients should be followed up for a longer time. 4)
Due to the limited number of autopsies, we could
not convincingly correlate virus proteins and inflam-
mation markers in pancreatic tissue with disease
severity and prognosis.

In this pilot study, OGTT and C-peptide release
tests demonstrated that pancreatic islet function was
impaired in patients with COVID-19, especially
patients with severe or critical disease. SARS-CoV-2
virus particles were detected in the pancreas of
patients with COVID-19, accompanied by altered
expression of CD36 and other molecules potentially
contributing to the pathogenesis of diabetes. Collec-
tively, our data suggested that SARS-CoV-2 was pre-
sent in the pancreas and that islet function was
compromised in patients with COVID-19. The con-
troversial relationship between the occurrence of dia-
betes in patients with COVID-19 and SARS-CoV-2
infection [53] warrants further study.
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