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Abstract

Alzheimer’s disease (AD) is a heterogeneous disease and exhibits diverse clinical presenta-

tions and disease progression. Some pathological and anatomical subtypes have been

proposed. However, these subtypes provide a limited mechanistic understanding for AD.

Leveraging gene expression data of 222 AD patients from The Religious Orders Study and

Memory and Aging Project (ROSMAP) Study, we identified two AD molecular subtypes

(synaptic type and inflammatory type) using consensus non-negative matrix factorization

(NMF). Synaptic type is characterized by disrupted synaptic vesicle priming and recycling

and synaptic plasticity. Inflammatory type is characterized by disrupted IL2, interferon alpha

and gamma pathways. The two AD molecular subtypes were validated using independent

data from Gene Expression Omnibus. We further demonstrated that the two molecular

subtypes are associated with APOE genotypes, with synaptic type more prevalent in AD

patients with E3E4 genotype and inflammatory type more prevalent in AD patients with

E3E3 genotype (p = 0.031). In addition, two molecular subtypes are differentially repre-

sented in male and female AD, with synaptic type more prevalent in male and inflammatory

type in female patients (p = 0.051). Identification of AD molecular subtypes has potential in

facilitating disease mechanism understanding, clinical trial design, drug discovery, and pre-

cision medicine for AD.

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease in elderly popula-

tion, characterized by pathological extracellular deposition of beta-amyloid (Aβ) peptides and

intracellular tau protein fibers in the brain [1]. AD is a heterogenous and multifactorial disease,

with diverse clinical presentations in different affected brain areas (left and right cerebral

hemispheres as well as anterior-posterior axis) [2–5], different phenotypes (dysexecutive,

amnesic and aphasic) [6, 7], and different rates of disease progression [8]. Recent studies sug-

gested that Aβ aggregates in different biochemical composition [9]. Defining subtypes of AD is
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important for disease mechanism understanding, clinical trial design, drug discovery, and per-

sonalized treatments.

Neuroimaging, beta amyloid and tau have been used for AD subtyping [9–13], however,

subtypes identified based on image analysis and beta amyloid offer limited mechanistic under-

standing into AD pathophysiology. High-throughput genomic data has greatly expanded our

understanding for disease mechanism of AD. Genome-wide association studies (GWAS) have

initially identified over 20 loci for late-onset AD [14, 15]. A recent approach called genome-

wide association-by-proxy (GWAX) using larger sample size has further expanded the suscep-

tibility loci of AD to 40 [16–18]. Several pathways or molecular networks involved in AD were

identified using gene expression data [19, 20]. In addition, advanced machine learning and

statistical methods have used genomic data to classify AD from normal and mild cognitive

impairment (MCI) or predicting MCI to AD conversion [21–24]. However, genomic data

have not been used for AD subtyping.

The Religious Orders Study and Memory and Aging Project (ROSMAP) is a longitudinal

clinical-pathologic cohort study of aging and AD [25]. Currently, around 2,500 individuals

were involved in this study and genomic data from 642 participants are available. In this study,

we leveraged these valuable data for AD molecular subtyping using non-negative matrix fac-

torization (NMF) clustering method. It has been shown that NMF-based classification is accu-

rate and robust for clustering of genomic data as compared to other methods [26]. NMF has

been used in cancer molecular subtyping [27, 28]. In this study, we applied NMF to identify

molecular subtypes of AD using gene expression data from ROSMAP and validated the AD

molecular subtype in independent datasets. We also investigated the association of AD molec-

ular subtype with patient demographic, clinical and APOE status variables.

Materials and methods

The overall methods were illustrated in Fig 1. The Religious Orders Study and Memory and

Aging Project (ROSMAP) was used as the discovery dataset. First, we applied consensus

matrix-based NMF into ROSMAP to identify AD molecular subtypes. Second, subtype analy-

sis was performed to identify signature genes and enriched pathways for each molecular sub-

type. Third, we validated these molecular subtypes in independent datasets (GEO). Finally, we

investigated the association of AD molecular subtype with available demographic and clinical

variables, and APOE genotype.

ROSMAP data

ROSMAP contains 222 participants with clinical consensus diagnosis of AD at time of death.

Raw gene expression data from frontal cortex and corresponding clinical data were down-

loaded from synapse.org (syn3219045). Raw count data were normalized and processed

according to commonly used procedure described in edgeR (version: 3.28.0) [29, 30]. Data

were first normalized by sequencing library size. Non-expressed genes, defined as count per

million less than 5 in 80% of samples, were then filtered out, resulting in 12281 genes. To

obtain a robust classifier and also reduce the number of genes for NMF-based clustering, we

experimented with the different cutoffs ranging from top 10% to 40% (1228 to 4912 genes)

based on their interquartile range (IQR) for clustering. While the obtained results were very

similar, we presented the clustering result using the top 20% cutoff (2456 genes).

Consensus NMF for AD molecular subtyping

Non-negative matrix factorization. Among different variants of NMF, we employed

divergence-based algorithm proposed by Lee and Seung [31] due to its simplicity and
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robustness [26, 31]. Briefly, given a gene expression matrix A of size n ×m (n genes and m
samples) and desired number of clusters k, the NMF decomposes A into two non-negative

matrices W (n × k) and H (k ×m) (Fig 2).

W and H matrix are computed using iterative method to minimize the following cost

function.

D ¼
X

ij

ðAijlog
Aij

ðWHÞij
� Aij þ WHijÞ

In each iteration, W and H are updated using following multiplicative updating rules,

Hau  Hau

P
iWiaAiu=ðWHÞiuP

kWka

Fig 1. Overview of the methods. NMF: non-negative matrix factorization.

https://doi.org/10.1371/journal.pone.0250278.g001
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Wia  Wia

P
uHauAiu=ðWHÞiuP

vWav

Cluster membership of each sample is assigned based on the row index of maximal number

in the column of H matrix.

Consensus-matrix based model selection. We used consensus matrix-base model selec-

tion strategy to select best number of clusters [26]. For a given number of clusters K, NMF

groups the samples into K clusters. A total of 40 NMF runs were employed to construct the

consensus matrix C (n × n). Each element of consensus matrix represents the probability that

two samples cluster together. Then, the cophenetic correlation coefficient ρk was computed as

the Pearson correlation of the distance matrix between samples induced by the consensus

matrix, i.e., I − C, and the distance matrix induced by the hierarchical clustering of I − C. ρk

measures how faithfully a dendrogram preserves the pairwise distances in the consensus

matrix and was calculated using the cophenet function in the scikit-learn library [32]. The best

clustering is based on the value of ρk.

Identification of molecular subtype-specific signatures

To identify molecular subtype-specific signatures, we first computed the silhouette for each

sample using following equation.

s ið Þ ¼
bðiÞ � aðiÞ

maxfaðiÞ; bðiÞg

Where a(i) and b(i) were computed as following,

a ið Þ ¼
1

jCij � 1

X

j3Ci;i6¼j

dði; jÞ

Fig 2. Non-negative matrix factorization procedure.

https://doi.org/10.1371/journal.pone.0250278.g002
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b ið Þ ¼ min
k6¼i

1

jCkj

X

j3Ck

dði; jÞ

a(i) is the mean distance of a sample to all other samples in the same cluster. It measures how

well a sample is assigned to its own cluster. The smaller the value is, the better the assignment

is. b(i) is the smallest mean distance of a sample to all samples in any other cluster. |Ci| is the

number of samples in its own cluster, |Ck| is the number of samples in any other cluster, and

d(i, j) is the distance of two samples computed with Euclidean distance.

The silhouette is a measure of how similar a sample is to its own cluster compared to other

clusters. After removing outlier samples with negative silhouette width from each subtype, we

applied statistical package edgeR (version: 3.28.0) to obtain pairwise differentially expressed

genes (DEGs) between molecular subtypes. To facilitate downstream analysis of molecular

subtypes, we used fold change of 1.5 and false discover rate (FDR) of 0.05 as cutoffs. We define

the gene signature of each subtype as DEGs that have the highest value in each molecular

subtype.

Pathway enrichment analysis

A Bioconductor package clusterProfiler (Version 3.14.3) [33] was used to perform pathway

enrichment analysis for each identified molecular subtype. ClusterProfile is a statistical pack-

age that integrates several ontologies, including Gene Ontology, Disease Ontology, and KEGG

pathway, to perform over-representation analysis and gene set enrichment analysis.

Validation of AD molecular subtype in independent datasets

Two independent datasets from Gene Expression Omnibus (GSE44770, GSE118553) were

used for validation of AD molecular subtypes. GSE44770 includes gene expression data from

frontal cortex of 230 subjects, 128 of which are late-onset Alzheimer´s disease (LOAD)

patients. GSE118553 includes gene expression data from frontal cortex of 112 subjects, includ-

ing 52 AD patients. We used normalized data from GSE44770 and GSE118553 to validate

molecular subtypes identified based on ROSMAP data.

Since ground truth of clusters in a dataset is unknown, there are no quantitative method to

formally validate clusters in an independent dataset. Therefore, visualization is suggested as a

valid approach [34]. A discovery by signature gene strategy proposed by other studies was

used for this validation [27, 28]. The basic idea of this strategy is that using the signature gene

from the discovery dataset to cluster a new dataset to see if the signature gene expression

shows similar patterns with the discovery dataset. It includes three steps. First, signature genes

were projected onto normalized independent dataset and consensus NMF clustering was used

to identify number of clusters. Second, molecular subtype identity was assigned using signa-

ture genes. Third, a heatmap of signature gene expression was then generated to visualize the

molecular subtype. In addition, we performed pathway enrichment analysis to further confirm

the molecular subtypes in independent datasets.

Correlation of AD molecular subtype with patient demographics,

clinicopathology, and APOE genotype

We examined the demographic distributions of AD molecular subtype, including age, sex,

race and education, and assessed the associations of AD molecular subtype with APOE geno-

type and clinical variables, including Braak stage, The Consortium to Establish a Registry for
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Alzheimer’s Disease (CERAD) diagnosis, and Mini-Mental State Examination (MMSE) score.

The Braak stage is a semiquantitative measure of severity of neurofibrillary tangle (NFT)

pathology [35, 36]. Braak stages I and II indicate NFTs confined mainly to the entorhinal

region of the brain. Braak stages III and IV indicate involvement of limbic regions such as the

hippocampus. Braak stages V and VI indicate moderate to severe neocortical involvement.

CERAD score is a semiquantitative measure of neurotic plaques [37]. Based on semiquantita-

tive estimates of neurotic plaque density, a neuropathologic diagnosis was made of no AD,

possible AD, probable AD, or definite AD. MMSE test is a 30-point questionnaire that is used

extensively in clinical and research settings to measure cognitive impairment.

For categorical variables, including Braak stage, CERAD, and APOE, Fisher’s exact test was

used to assess their associations with AD molecular subtype. For continuous variables, such as

MMSE and education, student’s t-test was used. All statistical analysis was performed using R

(version: 3.6.2). Significance level was defined as p value less than 0.05.

Ethics statement

This is a secondary research use for ROSMAP data and patient information is not identifi-

able. The IRB at Case Western Reserve University determined that the proposed activity

is not research involving human subjects and IRB review and approval is not required

(STUDY20190935). Therefore, patient consent is not applicable or not required.

Results

AD consists of two molecular subtypes

We used consensus NMF to cluster gene expression data of 222 AD patients from ROSMAP.

Compared with three and four clusters, consensus matrix from two clusters are more stable

(Fig 3A–3C). In addition, cophenetic correlation coefficient drops when we assign the data

into three subtypes (Fig 3D). These evidences indicate that patient data can be best represented

by two distinct subtypes. We obtained 403 differentially expressed genes between these two

molecular subtypes as signature genes using 197 core samples with positive silhouette score

(Fig 4A). We can see the distinct pattern of signature gene expression in these two subtypes

(Fig 4B).

We named the molecular subtypes according to signature genes up-regulated in each clus-

ter. For synaptic type, highly expressed genes are associated with synapse function, such as

SNAP25, RAB3A, VAMP1, SYNJ1, and STXBP1. A total of 37 pathways were significantly

enriched and 23 of 37 (62.2%) are related to synapse function (S1 Table). The top 10 enriched

pathways of this subtype are shown in Table 1. We can see that synaptic type is characterized

by dysfunction of synapse, including synaptic vesicle priming and recycling, and neurotrans-

mitter secretion (Table 1).

For inflammatory type, highly expressed genes are related to inflammatory pathways, such

as BST2, GBP4, IFI44L, IFITM2, IFITM3, IL4R, IRF, MT2A, PSMB9, and TXNIP. A total of 3

pathways were significantly enriched using the signature genes. This subtype is characterized

with dysfunction of inflammatory responses, including interferon alpha (IFN-α), interferon

gamma (INF-γ) and IL2 pathways (Table 2).

AD molecular subtypes were validated in independent datasets

We validated the two AD molecular subtypes using two independent datasets from GEO

(GSE44770, n = 128 and GSE118553, n = 40). Using consensus NMF, we identified clusters

based on these two independent datasets from GEO (Figs 5 and 6). Majority of samples have
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positive silhouette scores (Figs 5E and 6E), indicating that samples are well classified using sig-

nature genes we obtained from ROSMAP. We can see distinct patterns for signature gene

expression in these two clusters, indicating that these two clusters represent the same molecu-

lar subtypes from ROSMAP (Figs 5E and 6F).

To further validate the AD molecular subtypes in these two datasets, we performed pathway

enrichment for each cluster in each dataset. For GSE44770 dataset, a total of 30 pathways were

significantly enriched in first cluster (S2 Table). Seven of them exactly occur in enriched path-

ways of ROSMAP-based synaptic type AD and ten additional pathways are related to synaptic

function, indicating that this cluster is a synaptic type. Ten pathways were enriched in second

cluster and all three enriched pathways in ROSMAP-based inflammatory AD occur in this

cluster, indicating that this cluster is an inflammatory type. Similar results were obtained in

GSE118553 dataset. A total of ten pathways and two pathways were significantly enriched in

each cluster respectively (S3 Table). In the first cluster, four of ten pathways are overlapped

with the enriched pathways of ROSMAP-based synaptic type AD and five other pathways are

related to synaptic function. In the second cluster, two enriched pathways are overlapped with

the enriched pathways in ROSMAP-based inflammatory subtype.

Association analyses of AD molecular subtype with patient demographics,

clinicopathology, and APOE genotype

We investigated whether AD subtypes are associated with demographic and clinical variables

using the core samples from ROSMAP dataset (197 patients). The distributions of AD

Fig 3. NMF-based clustering of gene expression data from 222 AD patients in ROSMAP. (A-C) Consensus matrices

for 2, 3 and 4 clusters respectively. (D) Plot of cophenetic correlation coefficient against the number of clusters.

https://doi.org/10.1371/journal.pone.0250278.g003
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Fig 4. Signature genes in each molecular subtype. (A) Silhouette score for each sample (B) Heatmap for signature

gene expression in each molecular subtype. Gene expression is represented as normalized value.

https://doi.org/10.1371/journal.pone.0250278.g004
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molecular subtype in demographic variables, including age, race and education, show no sig-

nificant difference (Table 3). Interestingly, we noticed that synaptic type AD is more prevalent

than inflammatory type in male patients (p = 0.051). Several measurements for AD severity

are available in ROSMAP, including AD Braak stage, CREAD score and MMSE score. We

didn’t see significant associations of AD molecular subtype with these variables (Table 3). This

result suggests that AD molecular subtype might be not related to AD severity, but caution

should be taken when explaining this result due to small sample size. ROSMAP also includes

APOE genotype, the most important genetic risk factor for late-onset AD. A significant associ-

ation of AD molecular subtype with APOE was observed (p = 0.031). We can see that synaptic

type AD is more prevalent in patients with E3E4 genotype and inflammatory type AD is more

prevalent in patients with E3E3 genotype (Table 3).

We then examined whether these associations can also be observed in the two validation

datasets. Although we didn’t see a significant association of sex with molecular subtype, we

observed that the synaptic type is more prevalent in male patients than in females in both data-

sets. In the GSE44770, 37 of 60 (61.7%) are synaptic type in male patients, while it is 33 of 66

(50.0%) in female patients. In the GSE118553, the prevalence of synaptic type in male and

female patients are 10 of 14 (71.4%) and 17 of 25 (68.0%) respectively. Due to the lack of

APOE genotype in these two datasets, we were unable to investigate the association of APOE

with molecular subtype (Table 4).

Discussion

In this study, we applied non-negative matrix factorization combined with consensus matrix-

based cluster selection and identified two molecular subtypes based on gene expression data of

AD. Synaptic type is characterized by dysfunction of synaptic pathways. Substantial loss of

neurons and synapses is a hallmark in late stage AD. Recent studies also show synaptic dys-

function was observed in mild cognitive impairment patients [38–40], suggesting that synaptic

dysfunction is a fundamental mechanism of AD. On the other hand, inflammatory type is

Table 1. Top 10 enriched pathways in the synaptic type of AD.

PATHWAY P value (adjusted) Fold enriched
Synaptic vesicle cycle 4.1E-04 5.63

Vesicle-mediated transport in synapse 4.1E-04 5.36

Synaptic vesicle priming 1.4E-03 21.32

Synaptic vesicle recycling 1.4E-03 8.98

Calcium ion regulated exocytosis 1.4E-03 5.81

Synaptic vesicle endocytosis 3.0E-03 9.33

Presynaptic endocytosis 3.0E-03 9.33

Neurotransmitter secretion 3.3E-03 5.03

Signal release from synapse 3.2E-03 5.03

Signal release 1.1E-02 2.92

https://doi.org/10.1371/journal.pone.0250278.t001

Table 2. Enriched pathways in the inflammatory type of AD.

PATHWAY P value (adjusted) Fold enriched
Interferon alpha response 4.3E-05 7.83

Interferon gamma response 1.4E-03 4.22

IL2-Stat5 signaling 2.1E-02 3.37

https://doi.org/10.1371/journal.pone.0250278.t002
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Fig 5. Molecular subtype validation in GEO dataset (GSE44770). (A-C) Consensus matrices for 2, 3 and 4 clusters

respectively. (D) Plot of cophenetic correlation coefficient against the number of clusters. (E) Silhouette distance for

each sample. (F) Heatmap for signature gene expression.

https://doi.org/10.1371/journal.pone.0250278.g005
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Fig 6. Molecular subtype validation in GEO dataset (GSE118553). (A-C) Consensus matrices for 2, 3 and 4 clusters

respectively. (D) Plot of cophenetic correlation coefficient against the number of clusters. (E) Silhouette distance for each

sample. (F) Heatmap for signature gene expression.

https://doi.org/10.1371/journal.pone.0250278.g006
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enriched with over-activation of IL-2, IFN-α, and IFN-γ pathways. The central role of inflam-

mation in AD development is recently established [41–43]. A sustained inflammatory

response, mediated by over-activation of microglia and other immune cells, has been demon-

strated to exacerbate both amyloid and tau pathology [42]. Roy ER et al reported that IFN-α
response drives neuroinflammation and grossly upregulated in AD [44]. A recent study links

IL-2 pathway to amyloid pathology of AD [45]. All these evidences demonstrated that inflam-

mation represents another mechanism of AD. Therefore, the two AD molecular subtypes we

identified reflect inherent molecular mechanism of AD. Interestingly, two studies reported

that microglia are involved in synaptic pruning and plays a role in pathological remodeling of

neuronal circuits [46, 47], indicating that two molecular processes may be related.

GWAS has identified more than 40 genes/loci as the genetic risk factors of AD, which

greatly expands our mechanistic understanding of the etiology of AD. While some of these

Table 3. Association of AD molecular subtype with demographic, clinical variables and APOE genotype in the ROSMAP dataset.

Synaptic type (Num. of Patients) Inflammatory type (Num. of Patients) p a

Age

< 65 0 0 1.0

65–80 5 4

> 80 101 87

Sex

Female 65 68 0.051

Male 41 23

Race

White 104 90 1.0

Black 2 1

Education 16.70 16.21 0.98

Braak stage

I 4 2 0.88

II 4 2

III 20 17

IV 35 29

V 41 37

VI 2 4

CREAD score

Definite 48 50 0.47

Probable 44 28

Possible 5 5

No AD 9 8

MMSE 13.84 12.23 0.19

APOE

E2E2 0 1 0.031

E2E3 12 9

E2E4 5 2

E3E3 46 55

E3E4 43 22

E4E4 0 2

a For categorical variables, including Braak stage, CREAD score and APOE, p value was computed using Fisher’s exact test. For continuous variables, including

Education and MMSE, the p value was computed using student’s t-test.

https://doi.org/10.1371/journal.pone.0250278.t003
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genes/loci have been mapped to Aβ pathology, including amyloid precursor protein (APP)

metabolism, Aβ aggregation, clearance, toxicity, and Tau pathology, a large amount of these

genes is related to non-Aβ and -Tau pathways [48]. Lambert et al suggested that a common

mechanism, i.e., focal adhesion pathway, may link Aβ and tau pathology and ultimately lead to

synapse dysfunction. A shift from Aβ-centered hypothesis to synapse-centered hypothesis has

emerged [48, 49]. Here, we used gene expression data to define two molecular subtypes of AD

and enriched pathways high-lighten synapse dysfunction, which supports this synapse-cen-

tered hypothesis. Furthermore, our study implies two mechanisms for synaptic dysfunction.

One is the aberrant synaptic pathways themselves, such as synaptic vesicle endocytosis and

exocytosis. Another is the indirect mechanism through immune system dysfunction, which

may affect Aβ clearance and synaptic pruning.

Using available patient clinical information, we evaluated their associations with molecular

subtypes. We didn’t find significant correlation of molecular subtype with severity of cognitive

impairment. However, we were unable to control potential confounders due to very limited

information available in the dataset. We show that AD molecular subtype is significantly asso-

ciated with APOE genotype. APOE has three alleles, including E2, E3 and E4. APOE4 is the

main genetic determinant for late-onset AD and individual with APOE4 significantly increases

the risk of AD [50, 51]. While some studies show APOE4 promotes AD by interaction with

Aβ, especially it hinders Aβ clearance [52], other studies link APOE4 with synaptic function,

such as synapse recycling [53]. In this study, we observed that synaptic type of AD is more

common in patients with E3E4 genotype. Although APOE is not in the list of signature genes,

it may regulate synaptic function by interacting with downstream molecules including APOE

receptor in the brain. This observation further supports synaptic mechanism of APOE4 in AD

development.

We observed that inflammatory type of AD is more prevalent in women. On the other

hand, synaptic type of AD is more prevalent in men. Sex differences in both synaptic plasticity

and inflammatory response have been observed [54, 55]. Females often have strong both

innate and adaptive immune responses [55]. This results in faster clearance of pathogens in

females than males, but also contributes to increased susceptibility to inflammatory diseases in

females, such as systemic lupus erythematosus and multiple sclerosis [56]. Since inflammation

plays a central role in AD development, females are more likely to develop inflammatory type

Table 4. Association of AD molecular subtype with age and sex in the two validation datasets.

Synaptic type (Num. of Patients) Inflammatory type (Num. of Patients) p

GSE44770 Age

< 65 6 4 0.963

65–80 30 23

> 80 34 29

Sex

Female 33 33 0.212

Male 37 23

GSE118553 Age

< 65 0 1 0.495

65–80 9 4

> 80 18 7

Sex

Female 17 8 1

Male 10 4

https://doi.org/10.1371/journal.pone.0250278.t004
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AD than males. Sex difference in dendrite spine density (DSD) in the hippocampus has been

observed in animal models decades ago, which is regulated by steroid hormones and environ-

mental stress. The female rats have double of DSD than males and DSD experienced dramatic

changes during the estrous cycle [57, 58]. This structural change in the hippocampus was also

observed in human women during the menstrual cycle [59]. Many animal studies showed that

increased spine density is associated with memory enhancement [60]. Compared to females,

males have lower DSD in the hippocampus. Besides, no periodic fluctuation of hormone in

males may lead to less synapse plasticity of hippocampal neurons due to lack of “practicing”.

We hypothesize that lower DSD and possibly less synapse plasticity may make males more vul-

nerable to hippocampus damage, which may explain why synaptic type AD is more common

in males.

Identification of AD molecular subtype has an implication for better design in clinical trials.

Currently, clinical trials for AD are based on different cognitive groups from mild, moderate,

and severe AD. However, most of this symptom-based clinical trials for AD fails, reflecting a

lack of mechanistic understanding of AD. A recent clinical trial about a monoclonal antibody

solanezumab failed the phase III trials for mild to moderate AD [61], but later it was found

that it has benefits for a subgroup of patients with mild symptoms [62], supporting that patient

subgrouping is important. Molecular subtyping of AD patients provides an attracting strategy

for patient stratification in clinical trials. We prospect that including molecular subtype in clin-

ical trial may contribute to discover personalized treatments for AD.

One limitation of this study is that molecular subtyping is based on gene expression data

from post-mortem brain tissue, which limits its clinical usage. Nevertheless, identified molecu-

lar subtypes will help to understand the mechanism of AD. In the future, developing a practical

molecular subtyping system for AD is demanded. Proteomic data from cerebrospinal fluid

and genotype data from blood could be useful for such purpose.

Conclusions

In this study, we reported the first gene expression-based molecular subtyping of AD. Using

consensus NMF, we identified two robust molecular subtypes-synaptic type and inflammatory

type-that represent two fundamental mechanisms of AD. These molecular subtypes are associ-

ated with APOE genotype and exhibit sex difference in distribution. Identification of molecu-

lar subtypes may have an implication in better clinical trial design and personalized medicine

for AD.
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