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Postoperative ileus (POI) is a well-known complication following gut

manipulation or surgical trauma, leading to an impaired gut motility and

prolonged postoperative recovery time. Few current therapeutic strategies

can prevent POI, and this disorder remains to be a major clinical challenge

for patients undergoing surgery. Comprehensive understanding of cellular and

molecular mechanisms related to the pathogenesis of POI stimulates the

discovery of more promising targets for treatment. POI is closely associated

with a series of inflammatory events within the bowel wall, and as key

components of inflammatory mechanisms, different types of immune cells,

including macrophages, dendritic cells, and T lymphocytes, play significant

roles during the development of POI. A variety of immune cells are recruited

into the manipulation sites after surgery, contributing to early inflammatory

events or impaired gut motility. Our review intends to summarize the specific

relationship between different immune cells and POI, mainly focusing on the

relevant mechanisms underlying this disorder.
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Introduction

Postoperative ileus (POI), characterized by a transient cessation of

gastrointestinal (GI) function, is a common complication following general

surgery or gut manipulation (Behm and Stollman, 2003; Hedrick et al., 2018;

Thomas, 2019). This clinical dilemma has been a considerable burden on both

inpatients and medical resources because of prolonged hospitalization time and

increased expenses (Ramirez et al., 2013; Bragg et al., 2015; Wolthuis et al., 2016).

Figure 1 presents us the imaging features of a patient with severe POI. Intraoperative

intestinal manipulation directly led to the generation of POI, which subsequently

resulted in poor prognosis.
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Currently, POI is considered to bemainly related to sympathetic

neural reflexes, activation of gut opioid receptors and inflammatory

reaction, which eventually lead to symptoms such as vomiting,

abdominal distension, and delay of defecation in patients (Vather

et al., 2013; Vather et al., 2014; Wattchow et al., 2021). Recent

evidence suggested that different types of immune cells play a vital

role in the genesis of POI (Wattchow et al., 2021), and studies based

on it are trying to find a novel potential target for treatment

(Mazzotta et al., 2020). However, the relationship between

immune cells and POI lacks further investigation and systemic

summary. This review intends to provide a general understanding of

themechanisms under POI. It draws together information on effects

of various immune cells on paralytic ileus, covering monocytes,

macrophages, neutrophils, dendritic cells, mast cells, and T

lymphocytes. Other important contributors are also briefly

summarized in our review, with emphasis on molecular and

cellular mechanisms.

Mechanisms under postoperative
ileus

Several studies have focused on the pathophysiological process of

POI in the past few years. Neurogenic as well as inflammatory

mechanisms are considered to be mainly involved in the

pathogenesis processes of this disorder (Wehner et al., 2012). It is

now widely accepted that a neurogenic component plays a significant

role in the early phase of postoperative impairment of gut motility

(Lubbers et al., 2010). Activation of sympathetic pathways in response

to surgical trauma or gut manipulation is verified to mediate a

widespread inhibition of GI function, mostly through suppression

of enteric neural reflex pathways (Stakenborg et al., 2017a).

The second phase of ileus is related to an immunological and

inflammatory response that consequently leads to a prolonged

duration of POI (Venara et al., 2016). Previous evidence in both

animal models and humans showed increased leukocyte infiltration

after intestinal handling, which begins 3–4 h after surgery and lasts

for several days (Kalff et al., 1999; Kalff et al., 2003). This suggests

that although early neurogenic mechanism triggers an acute

reduction in gut motor activity, the following sustained gut

inflammation eventually leads to delayed postoperative

dysmotility in the late phase of POI. In addition, another critical

factor involved in POI is the use of analgesics, primarily of opioids

after surgery. These pain-relieving drugs are able to bind to μ-opioid

receptors in the GI tract, adding to the potential possibilities of POI.

Current approaches to prevent or treat ileus include non-

pharmacological interventions and pharmacological treatments

(Wattchow et al., 2021), most of which have poor therapeutic

effects and lacks reliable clinical evidence (Delaney et al., 2010;

Sammut et al., 2021). Hence, new strategies that target the intimate

mechanisms of POI are required to complement current clinical

practice and solve existing medical dilemmas (Buscail and Deraison,

2022). Recent studies have focused on the intestinal inflammation

during POI, and as key components of inflammatory response, the

populations of immune cells including monocytes, macrophages,

neutrophils, dendritic cells, mast cells, and T lymphocytes, are

proved to be closely linked to the onset of POI. Figure 2 briefly

illustrates that different types of immune cells play crucial roles

during POI. It is generally accepted that intestinal handling triggers

the activation of resident immune cells like macrophages and

neutrophils, subsequently leading to the recruitment of more

immune cells. On the one hand, activation of immune cells can

interact with enteric nervous system (ENS) and transmit stimulation

to the spinal cord and in turn increase sympathetic output, which

further inhibitsmyenteric neurons.Meanwhile, they trigger a serious

of inflammatory events, subsequently aggravating GI dysfunction.

Next, we will mainly summarize and discuss the specific roles of

different immune cells in POI and relevant mechanisms implicated

in the pathogenesis of this disorder.

Immune cells in postoperative ileus

Monocytes and macrophages

Macrophages in the GI tract constitute the major population

of macrophages in the body (Mowat and Agace, 2014; Wang

FIGURE 1
Gut manipulation in the abdominal surgery leads to
postoperative ileus. (A) CT imaging features of a patient with small
bowel diverticulum (red circles); (B) photos of intestinal
manipulation during endoscopic surgery of this patient; and
(C) postoperative imaging suggested that this patient had severe
ileus.
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et al., 2019). Compared with conventional macrophages,

intestinal macrophages have particular features in terms of

phenotypic characterization, inflammatory response, and

cytokine generation (Yip et al., 2021). It is acknowledged that

intestinal macrophages are essential in mediating intestinal

immunity and maintaining GI homeostasis (Bain and Mowat,

2014; Bain and Schridde, 2018; Muller et al., 2020). For paralytic

ileus, research studies based on reliable animal models suggested

that intestinal macrophages, primarily muscularis macrophages,

play key roles in the inhibition of gut motility (De Schepper et al.,

2018). These resident macrophages in the muscularis layer are

activated after gut manipulation or surgical trauma, promoting

the development of POI through a series of inflammatory cascade

events (Grainger et al., 2017; Mazzotta et al., 2020). TNFα
(Matsumoto et al., 2018), IL6 (Wehner et al., 2005), MCP-1

(Türler et al., 2002), CXCL1 (Docsa et al., 2020), and other

proinflammatory cytokines or chemokines released from

muscularis macrophages contribute to the recruitment of

circulating leukocytes and suppress GI function by influencing

intestinal muscles and nerves (Wehner et al., 2007; De Schepper

et al., 2018). The production of transcription factors such as

STAT3 (De Jonge et al., 2005) and p38-MAPK (Wehner et al.,

2009) are also upregulated in macrophages during inflammation

and are proved to be associated with POI. Moreover, muscularis

macrophages induce the formation of active substances like NO,

which inhibit smooth muscle via the activation of guanylyl

cyclase (Shah et al., 2004; Francis et al., 2010). In addition,

activation of macrophages results in the release of

prostaglandin E2 by transient receptor potential vanilloid 4

(TRPV4) channels, which further triggers intestinal

contraction (Luo et al., 2018). Taken together, muscularis

macrophages take part in various inflammatory events that

lead to POI, and relevant channels and pathways could be

potential targets for treatment.

In contrast to resident muscularis macrophages, the infiltrated

macrophages could play protective roles in POI. Farro et al.

demonstrated that a population of macrophages, which was

exogenously migrated and monocyte-derived, could resolve

inflammation and restore intestinal motility in POI, suggesting

the functional heterogeneity of different cellular origins (Farro

et al., 2017). In addition, Pohl et al. pointed out the different roles

of macrophages between small and large intestine. They found that

progression of POI in small intestine relied on the iNOS produced by

both Ly6C macrophages and Ly6C monocytes, while in colon only

the latter secreted iNOS, which indicated a potential role of the

intestinal microbiota (Pohl et al., 2017).

FIGURE 2
Different types of immune cells play key roles in the pathophysiologic process of POI. Surgical trauma or gutmanipulation triggers the activation
of different types of immune cells. In the initial stage, activated cells like mast cells and enteric glial cells can interact with enteric neurons and
subsequently transmit stimulation to our brain. Meanwhile, further activation and recruitment of different immune cells such us monocytes,
macrophages, neutrophils, dendritic cells, mast cells, and T lymphocytes lead to a series of gut inflammatory cascade events, accompanied by
production of varied inflammatory cytokines, activation of transcription factors, and release of other active substances, all of which eventually lead to
the generation and aggravation of POI.
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Enteric neurons are key players in macrophage-mediated

inflammatory response during POI. Vagus nerve stimulation

after induction of ileus has been reported to reduce the

expression of inflammation-related cytokines (Stakenborg

et al., 2017b). This effect depends on α7 nicotinic receptors

(α7nAChR) on macrophages, leading to the regression of

inflammation and amelioration of POI (Matteoli et al., 2014).

In this context, many therapeutic modalities that utilize parallel

mechanisms are widely studied (Cipriani et al., 2016; Yang N. N.

et al., 2021). Similar to vagus nerve stimulation, the 5-HT4

receptor (5HT4R) agonist accelerates the release of acetyl

choline, which subsequently activates α7nAChR on muscularis

macrophages and eventually reduces the duration of POI after GI

surgery (Tsuchida et al., 2011; Stakenborg et al., 2019).

Considering that this effect has been confirmed in clinical

trials (Gong et al., 2016), 5HT4R agonist can act as an

effective therapeutic alternative for patients with ileus. It

should be noted that not all macrophages express α7nAChR,
and Stakenborg et al. proved that α7nAChR expression was

restricted to M2-like pathogenic phenotype. Through

culturing macrophages with myenteric ganglia, they

discovered that enteric neurons contributed to the induction

of α7nAChR and the install of M2 phenotype (Stakenborg et al.,

2019). Therefore, further studies are required to clarify the

relevant phenomena and mechanisms.

Except for a population of resident macrophages, which can

sustain their numbers by cell division instead of recruiting

monocytes (Mischopoulou et al., 2022), most intestinal

macrophages rely on the continuous replenishment of

monocytes that extravasate into GI tissue in a CCR2-

dependent way (Bain et al., 2013; Bain et al., 2014), and this

is also the case during POI. These CCR2-dependent monocyte-

derived macrophages help restore GI function after gut

manipulation (Farro et al., 2017). CCR2 knock-out mice have

fewer monocyte-derived macrophages in muscularis layer due to

damaged monocyte migration, which further leads to increased

neutrophil-mediated immunopathology. Farro et al. observed

that Ccr2−/− mice show persistent muscular dysfunction and

delayed GI transit recovery compared with WT mice upon

intestinal handling (Farro et al., 2017), suggesting that

targeting circulating monocytes and enhancing macrophage

physiological repair functions could be possible strategies for

reversing the symptoms of POI.

It should be specifically pointed out that IL10, mainly

secreted from monocyte-derived macrophages during POI,

plays an important role in the disease. Previous studies have

shown that IL10 promotes polarization of macrophages and acts

as a macrophage deactivator in the gut inflammation,

contributing to faster recovery from ileus (Kontoyiannis et al.,

2001; Stoffels et al., 2009; Makita et al., 2015). However, recent

evidence suggests that IL10 leads to migration of other immune

cells (also see the section on neutrophils below), which induces

further inflammation (Stein et al., 2018). Indeed, Stein et al.

pointed out that IL10 secreted by monocyte-derived

macrophages aggravated POI, instead of relieving this sort of

disorder (Stein et al., 2018).

In conclusion, the current evidence has shown that

macrophages activation is crucial in the pathogenesis of POI,

and that focusing on underlying molecular and cellular

mechanisms may be of great use for clinical treatment.

However, further studies are needed so that the observations

in animal models can translate into practical therapeutic options.

Neutrophils

Neutrophils are an indispensable component of innate

immune system and act as the first kind of immune cells

accumulating in large numbers at sites of inflammation (Sadik

et al., 2011; Amulic et al., 2012). Neutrophils are able to release

massive amounts of reactive oxygen species (ROS), produce

other toxic molecules, and induce neutrophil extracellular

traps during their course of reaction (Chen et al., 2021). In

addition to their essential functions throughout the body,

neutrophils play unique roles in intestinal homeostasis

(Fournier and Parkos, 2012) and result in various pathological

changes of gut disease such as inflammatory bowel disease (Zhou

et al., 2018; Dinallo et al., 2019), colorectal cancer (Yang et al.,

2020), and intestinal ischemia-reperfusion injury (Wang et al.,

2018). Recent studies have shown that neutrophils are strongly

associated with POI. Increased neutrophil infiltration can be

observed in intestinal manipulation-induced models of POI,

causing the induction of inflammatory mediators (Tsuchida

et al., 2011; Maehara et al., 2015). Neutrophils are associated

with the recruitment and activation of immune cells in the gut via

producing cytokines such as CXCL8, IL17, and IL10 (Ferretti

et al., 2003; Mantovani et al., 2011). Meanwhile, cytokines and

chemokines produced by other immune cells also regulate

neutrophil infiltration during intestinal inflammation

(Kucharzik et al., 2005).

As highlighted above, IL10 secreted from monocyte-

derived macrophages aggravates POI. Recent evidence has

proved that IL10 influences neutrophil migration to

traumatized sites by regulating the expression of neutrophil

chemokines (Stein et al., 2018). Of note, IL-10 deficiency

reduces the neutrophil extravasation into the bowel wall,

and consequently ameliorates paralytic ileus. This suggests

that neutrophils have direct correlation with inflammatory

response and other pathological processes in POI.

Interestingly, Farro et al. demonstrated that knockout of

CCR2 could increase neutrophil-mediated

immunopathology and prolong the clinical outcome of POI

(Farro et al., 2017). These findings indicate the close

relationship between neutrophils and macrophages in POI.

They may have complex associations in intestinal

inflammation rather than a single synergistic effect.
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Janus kinase 1 (JAK1) plays an important role during

inflammation and is regarded as a candidate signal pathway

involved in regulating inflammatory reactions in intestinal

paralysis. Sun et al. found marked activation of JAK1 after gut

manipulation, accompanied by increased myeloperoxidase-

stained neutrophils (Sun et al., 2019). JAK1 inhibition lowered

the infiltration of neutrophils and expression of proinflammatory

mediators. In addition, mitogen-activated protein kinase-

activated protein kinase 2 (MK2), a downstream molecule of

p38, plays an essential role in inflammation (Gorska et al., 2007).

In POI, MK2 activation is upregulated, and MK2 inhibitor

significantly reduces the number of neutrophils as well as the

expression of proinflammatory gene (Liu et al., 2013). Moreover,

the selective inhibition of p38 mitogen-activated protein kinase

(MAPK) pathway leads to reduction of neutrophil infiltration

after gut manipulation (Wehner et al., 2009). Taken together,

signal pathways activated during POI are related to neutrophil-

mediated inflammation, and from a therapeutic point of view,

targeting relevant pathways may have enormous potentialities to

prevent POI via reducing neutrophil infiltration.

Dendritic cells

Dendritic cells (DCs) are professional antigen-presenting

cells that efficiently sample the environment for foreign

antigens and present them to immune system (Chang et al.,

2014; Schiavi et al., 2015). In the intestine, dendritic cells are

widely distributed within the lamina propria, and they are one of

the immune cells central to the initiation of protective

proinflammatory as well as tolerogenic immune response,

which are pivotal in the maintenance of intestinal homeostasis

(Persson et al., 2010; Persson et al., 2013; Worbs et al., 2017). For

a long time, studies have focused on the relationship between

DCs and intestinal diseases including inflammatory bowel

disease and intestinal neoplasms (Bernardo et al., 2018; Yang

Z. J. et al., 2021). Considering the inflammatory reaction and

immune response in POI, it could be logically inferred that DCs

play an irreplaceable role in the pathogenesis and development of

this disease.

In fact, the intestinal DCs were observed to be activated in the

mouse model of POI, with their numbers increased by 30-fold

compared with sham-operated groups, which directly

demonstrated the connection between ileus and this kind of

immune cells (Engel et al., 2010). DCs secrete a great deal of

costimulatory molecules like interleukin-12 (IL12) after surgical

trauma, leading to partial activation of TH1-memory cells and

thus stimulate intestinal macrophages to have more profound

impacts on POI (Engel et al., 2010; Koscielny and Kalff, 2011).

CCR7, expressed on activated DCs and T cells, is significantly

upregulated after gut manipulation, and CCR7−/− mice show

improved intestinal muscle function in the case of surgical

trauma (Koscielny et al., 2011). In addition, Pohl et al. (Pohl

et al., 2017) found that CD103+CD11b+ DCs, a subset of

intestinal DCs, triggered the disorder of gut motility, and that

lacking such cells consequently reduced the inducible nitric oxide

synthase produced by monocytes and macrophages, resulting in

the amelioration of POI. As a result, human immune system

plays a key role in POI, and as an important component of the

immune system, dendritic cells are widely involved in the

development of this disorder. Studies on various

subpopulations of intestinal DCs provide us more possibilities

to clearly understand their roles in POI, allowing them become a

novel potential target for POI treatment.

Mast cells

Previous evidence suggested that mast cells (MCs) are

responsible for innate and adaptive immunity, neurogenic

inflammation, impaired tissue function, and intestinal barrier

dysfunction (Wouters et al., 2016; Traina, 2021), all of which

are concerned with POI. The activation of MCs has been

proved to be related to POI in both rodent models and clinical

setting (De Winter et al., 2012; Berdún et al., 2015). IgE bound

to the specific receptor on MCs, which triggered a series of

biochemical events. Subsequently, MCs release preformed

granule compounds such as cytokines, proteases, and

histamine, followed by a proinflammatory response (Galli

et al., 2020). MCs have bidirectional communication with

nerve endings, making them able to regulate intestinal

motility and organ pain (De Winter et al., 2012). In the

initial phase, such interactions can be influenced by active

substances secreted from MCs, which causes neurogenic

inflammation and increased sensitivity. These effects on

neurons eventually promote the disturbances of gut

motility (Buscail and Deraison, 2022). Previous

experiments on mouse models showed that gut

manipulation led to mast cell degranulation and this

process contributed to the development of leukocyte

infiltration, implicating that MCs played a key role in the

inflammatory cascade during POI (De Jonge et al., 2004).

Moreover, release of mouse mast cell protease-1 (mMCP-1) in

the peritoneal fluid was significantly increased after gut

manipulation (Peters et al., 2015), further indicating that

MCs are key players in POI. Snoek et al. used KitW/W−v and

KitW-sh/W−sh mice that carry different spontaneous mutations

in the gene for ckit and genetically lack MCs to demonstrate

that absence of MCs can reduce the manipulation-induced

inflammatory infiltrate and ameliorate GI transit (Snoek et al.,

2012). Furthermore, the inflammatory response to intestinal

handling in mast cell-deficient mice could be restored through

mast cell reconstitution. In addition, evidence has shown that

MCs evoke bacterial translocation to mesenteric lymph nodes

and are responsible for epithelial barrier dysfunction after

intestinal surgery, all of which are proved to be associated with
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an increased inflammatory response and delayed GI

emptying, suggesting another role of MCs in the

pathogenesis of POI (Snoek et al., 2012).

The relationship betweenMCs and POI has been also verified

in clinic as well. A clinical pilot study demonstrated that the

handling of intestine triggered mast cell activation and prolonged

ileus in patients undergoing gynecological surgery (The et al.,

2008). By quantifying mast cell activation and inflammation, the

data showed that conventional abdominal hysterectomy resulted

in the release of tryptase as well as an increased level of IL6 and

IL8, whereas such phenomenon did not occur during minimal

invasive surgery. On the other hand, intestinal manipulation-

induced mast cell activation upregulated the expression of

intercellular adhesion molecule-1 (ICAM-1) that is strongly

associated with leucocyte recruitment (The et al., 2008).

Hence, faster recovery after minimal invasive surgery may be

partly owing to this, and more importantly, targeting MCs as a

therapeutic approach for POI has reliable clinical proof of

concept (De Giorgio and Barbara, 2008).

Mast cell stabilizers like ketotifen can reduce the release of

mast cell mediators and weaken inflammation after abdominal

surgery, subsequently leading to an improvement of gastric

emptying (The et al., 2009; Rychter et al., 2015). In addition,

evidence showed that early enteral nutrition ameliorated POI

by stabilizing MCs with a cationic channel protein TRPA1

(Sun et al., 2020). Moreover, Kimura et al. found a new zinc

chelator, IPZ-010, and they proved IPZ-010 caused an

inhibition of inflammatory response in activated bone

marrow-derived MCs, which promotes recovery of GI

function after surgery (Kimura et al., 2020). Although some

studies based on mouse models questioned the involvement of

MCs in POI and opposed mast cell inhibitors as a therapeutic

strategy for POI (Gomez-Pinilla et al., 2014), MCs are still

regarded as key players in POI development considering the

variation of species and current clinical evidence, and the

prudent use of mast cell stabilizers could open up new

perspectives for POI treatment. In addition, given the

numerous differences between mucosal MCs and connective

tissue MCs (Reber et al., 2015), investigations on the

heterogeneity of mast cell subtypes may be valuable in POI.

T lymphocytes

Adaptive immune system is crucial to the development of

experimental POI, and as an essential cellular counterpart in

this immune response, T lymphocyte is closely linked to the

pathological process of this disorder. T lymphocytes are

widely known to exist in human blood and lymphoid

tissue, resident in the gut at the same time (Ma et al.,

2019). They have long been observed interacting with gut

microbiota to regulate intestinal homeostasis (De Oliveira

et al., 2017; Caruso et al., 2020). So far, studies on T

lymphocytes, especially helper T cells, have given us a

deeper insight into the molecular and cellular mechanisms

involved in POI.

Gut manipulation retarded the transit of orally

administered fluorescent dextran in mice, while

CD4 knockout mice eliminated such delay and lightened

the local inflammatory response, implicating that CD4+ T

helper cells are critical factors involved in POI (Engel et al.,

2010). Nevertheless, this effect may be related to the type of T

helper effector cells. As a subtype of CD4+ T cells, TH1 cells

can be induced mainly by IL-12, and subsequently secrete a

variety of cytokines, thereby mediating the cellular immune

response and participating in the inflammatory response.

Koscielny et al. identified that surgical trauma and local

inflammation trigger the release of IL-12, leading to

production of large numbers of interferon-γ (IFN-γ) by

activated TH1-memory cells, which consequently enhances

the inflammatory process underlying POI and causes GI

hypomotility by promoting intestinal macrophages to

secrete NO (Koscielny and Kalff, 2011). These findings

present us a close connection between T-helper type 1 cell-

mediated adaptive immune response and macrophage-

mediated innate immune system during POI, assisting us to

discover a fire-new way to reduce the duration of POI.

In addition, activated TH1 cells at surgical trauma sites can

migrate to unmanipulated intestinal segments through the

bloodstream, subsequently disseminating ileus over the entire

intestinal tract (Engel et al., 2010). Immunosuppressive

FTY720 or inhibition of IL-12 can block the TH1 cell exit

to the portal vein blood and thus prevent POI. These findings

provided further evidence that TH1 cells are major

participants in POI and play irreplaceable roles in its

progression.

Despite the well-known role of TH1 cells in POI, TH2 cells

may have an ignorant effect on the disease progression. In fact,

recent studies have proved that POI is related to an increase in

both TH2 cytokines and TH2 cells, accompanied by an

increased number of mast cells as well as upregulated IgE

and histamine plasma levels. This TH2 response could be

linked to the ROS-mediated activation of NF-κB and

p38 MAPK signaling pathways (Lin et al., 2021). In

summary, T lymphocyte-mediated immune response has

been identified to be a crucial target in the pathological

process of POI, but the characteristics of such immune

response are not completely understood. Hence, further

research is needed to help develop the comprehension of

POI to a brand-new phase.

Other important contributors

An emerging cellular target in the field of

neurogastroenterology and GI disorders is the enteric glial
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cell that constitutes a crucial part of the enteric nervous

system and maintains intestinal homeostasis through

interactions with resident immune cells and other cell types

(Sharkey, 2015; Yoo and Mazmanian, 2017). Enteric glial cells

play a pivotal role in normal gut motility, and disruption of the

balance maintained by this cell population consequently leads

to motility disorders and GI diseases (Gulbransen and

Christofi, 2018; Seguella and Gulbransen, 2021). Notably,

studies have revealed that both finger manipulation and

high pneumoperitoneum pressure during intestinal surgery

cause abnormal mechanical forces on the gut and its

mesentery, activating enteric glial cells and converting them

to a pathogenic state referred to as a reactive glial phenotype

that directly contributes to POI (Mazzotta et al., 2020).

Recently, Schneider et al. found that surgical trauma

triggers ATP release which further induces a reactive glia

phenotype known as “gliosis” (Schneider et al., 2021). The

induction of enteric gliosis through ATP depends on the p38-

MAPK signaling pathway, and this process subsequently leads

to intestinal inflammation and impaired gut motility in POI.

Furthermore, P2X2, a relevant ATP receptor, is demonstrated

to be linked to ATP-induced enteric gliosis and inflammation.

Therefore, blocking enteric glial P2X2 receptors could be a

potential therapy in ameliorating POI.

Interstitial cells of Cajal (ICC) are proved to be another

contributor to the genesis of POI. Known as intestinal

pacemaker cells, ICCs play a significant role in regulating

GI motility (Sanders et al., 2014). Kaji et al. demonstrated that

the production and propagation of pacemaker potentials via

ICCs were disrupted through a nitric oxide pathway, further

resulting in GI dysmotility after intestinal manipulation (Kaji

et al., 2018). This pathological change will be ameliorated as

the intestinal inflammation subsides. Hence, it is reasonable to

infer that nitric oxide synthase inhibitor may have therapeutic

potentials for POI by suppressing the disruption of ICC

networks. Moreover, studies have shown that acupuncture

protects ICCs in rat models of POI, leading to amelioration of

GI function (Deng et al., 2017; Deng et al., 2019). Of note,

intestinal mesothelial cells in the abdominal cavity are also

involved in the development of POI as the inflammatory

response mediated by them is a significant mechanism in

many clinical conditions including gut dysmotility (Mihara

et al., 2017). Relevant anti-inflammatory pathways regulated

by α7nAChR expressed on intestinal mesothelial cells may

have a therapeutic potential through connectivity with enteric

nerves. In addition, other intestinal components like

microbiome contribute to POI as well, making POI a

complex pathological process.

Conclusion and future perspectives

POI is an unsolved clinical problem that demands further

investigation to find a novel therapy. Recent studies have focused

on the immunological and inflammatory response during POI, and

comprehensive understanding of relevant cellular mechanisms

provides a promising target for POI treatment. As key

components of this process, populations of different immune

cells are closely related to POI development. Strategies that target

macrophages or MCs are already proven to be effective in clinical

setting, but they still need further evidence. Our review provides a

comprehensive understanding of different types of immune cells in

the development of POI, with emphasis on molecular and cellular

mechanisms. Although most of their roles have been elucidated in

previous studies, the complex interactions between these players are

still poorly understood. More promising and effective therapies are

likely to evolve from a deep comprehension of relevant mechanisms

underlying POI.
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