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ABSTRACT

Objective: This study aims to develop a convolutional neural network-based learning framework called domain

knowledge-infused convolutional neural network (DK-CNN) for retrieving clinically similar patient and to per-

sonalize the prediction of macrovascular complication using the retrieved patients.

Materials and Methods: We use the electronic health records of 169 434 patients with diabetes, hypertension,

and/or lipid disorder. Patients are partitioned into 7 subcohorts based on their comorbidities. DK-CNN integra-

tes both domain knowledge and disease trajectory of patients over multiple visits to retrieve similar patients.

We use normalized discounted cumulative gain (nDCG) and macrovascular complication prediction perform-

ance to evaluate the effectiveness of DK-CNN compared to state-of-the-art models. Ablation studies are con-

ducted to compare DK-CNN with reduced models that do not use domain knowledge as well as models that do

not consider short-term, medium-term, and long-term trajectory over multiple visits.

Results: Key findings from this study are: (1) DK-CNN is able to retrieve clinically similar patients and achieves

the highest nDCG values in all 7 subcohorts; (2) DK-CNN outperforms other state-of-the-art approaches in terms

of complication prediction performance in all 7 subcohorts; and (3) the ablation studies show that the full model

achieves the highest nDCG compared with other 2 reduced models.

Discussion and Conclusions: DK-CNN is a deep learning-based approach which incorporates domain knowl-

edge and patient trajectory data to retrieve clinically similar patients. It can be used to assist physicians who

may refer to the outcomes and past treatments of similar patients as a guide for choosing an effective treatment

for patients.
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INTRODUCTION

Diabetes, hypertension, and lipid disorder (DHL) are 3 of the most

prevalent noncommunicable diseases. The conditions are some of

the biggest threats to global health and their prevalence continue to

rise worldwide. Recent estimates suggest that about 9.3%, 31.1%,

and 39% of adults worldwide have DHL, respectively.1–3 Moreover,

poorly controlled DHL have been identified as major risk factors for

cardiovascular diseases, which are the leading cause of death in

DHL.4 Fortunately, therapeutic advances have provided more treat-

ment options for DHL and improved outcomes for many DHL
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patients.5–8 However, there are significant number of DHL patients

who fail to achieve their treatment targets and DHL-related morbid-

ity and mortality continue to grow even after intensive treatments.9–

11 Therefore, predicting adverse outcomes due to DHL-related com-

plications is critical for better long-term personalized treatment

management, and better health outcomes for the patients.

With the rapid adoption and growing volume of electronic

health records (EHRs), predictive modeling of disease progression

has received great attention from researchers. EHRs data contain a

sequence of patient visits, with each visit represented by several clin-

ical features. Previously, prediction of disease progression is often

made by a one-size-fit-all model.12 The one-size-fit-all model is a

global model which utilizes all available training data to make pre-

diction for each patient. The main benefit of this approach is that it

captures the overall statistics of the entire training data. However, it

may not be applicable to patients whose conditions differ from the

“average” patient population. Thus, it is important to build a more

personalized, patient-centered model for each individual patient to

make such prediction.

Recent studies show that personalized predictive models built

based on patient similarity have better performance compared to

global models.12–19 The general framework of these models com-

prises of 2 steps: (1) retrieve a cohort of patients who are similar to

a target patient and (2) use the cohort to provide a risk prediction

for the target patient. These steps mimic the thought process of med-

ical practitioners who rely on their past experiences on patients who

have similar conditions to evaluate their risks. Incorporating the

notion of patient similarity into predictive models requires an effec-

tive patient similarity measure, and studies have shown that incor-

porating domain knowledge can improve the model performance

substantially.20,21 We have earlier proposed a patient similarity

measure called D3K which is a traditional machine learning model

to retrieve clinically similar patients given an index patient based on

a single patient visit.22 This study goes beyond single visit profile

and takes into consideration the disease trajectory of a patient over

multiple visits. Our novelty includes utilizing deep neural networks

to learn effective patient representations for the retrieval of clinically

similar patients.

Convolutional neural network (CNN)-based architectures have

been proposed to learn patient representations for patient similar-

ity.18,23,24 Zhu et al24 proposed a CNN-based patient similarity

measure that used 1 filter size to extract information across sequen-

tial visits and generate patient vector representation, while Suo et

al18,23 employed multiple kernels with different sizes. The inputs to

the CNNs are International Classification of Diseases ninth revision

(ICD-9) codes indicating medical events which are too coarse-

grained for clinical decision. As such, this work aims to utilize more

detailed patient information such as laboratory test result values and

its level of severity, as well as the prescribed medication dosages to

learn a more effective patient representation. Our proposed CNN,

called domain knowledge-infused CNN (DK-CNN), has 3 kernels

to learn the short-term, medium-term, and long-term trajectory vec-

tors over multiple visits. These vector representations are then fur-

ther refined using D3K.22 In our previous study,22 we used the

standard normalized discounted cumulative gain (nDCG) to meas-

ure the quality of the retrieved similar patients. As mentioned above,

predicting adverse outcomes is also important for better long-term

personalized treatment management. Here, we also evaluate the

clinical impact of our proposed approach by using the retrieved sim-

ilar patients to personalize the prediction of macrovascular compli-

cation. Our evaluation shows a significant improvement in the

ability of the retrieved similar patients to predict macrovascular

complication.

MATERIALS AND METHODS

Patient cohort
This study used a real-world EHR dataset consisting of deidentified

patients with any 1 or more of the 3 DHL conditions who visited

primary care clinics in Singapore between 2014 and 2015. The data-

set contains various features regarding the patients’ demographics,

vital signs, laboratory test results including low-density lipoprotein

(LDL), high-density lipoprotein (HDL), triglyceride, and hemoglo-

bin A1c levels, prescribed medication, as well as any macrovascular

complication outcome over a 10-year longitudinal period from 2010

to 2019. Ethical board approval was obtained before the conduct of

this study (SingHealth Centralized Institutional Review Board Refer-

ence Number: 2019/2604).

In our study, diabetes refers to patients with type-2 diabetes,

while hypertension refers to primary hypertension. We use the ICD

9th or 10th revision codes or relevant medication prescriptions

recorded in their earliest visit to identify the patients for the study.

Patients with type 2 diabetes were defined by ICD codes 250.90,

250.40, 250.80, E11.9, E11.21, E11.22, E14.31, E14.73, and

E11.40, or if they were prescribed with insulin or other antidiabetic

medications. Patients with primary hypertension were defined by

ICD codes 401.1, 796.2, and I10, or if they were on any 1 or more

antihypertensive medications. Patients with lipid disorder were

defined by ICD codes 272.0 and E78.5, or if they were being treated

with any 1 or more lipid-lowering medications. Patients were

deemed to have DHL-related macrovascular complications if their

visit history contained any of the following codes: I249, I259, 4149,

I500, 4280, G459, I64, and 4349. In addition to the predefined set

of ICD codes, patients were deemed to suffer from macrovascular

complications if they had been prescribed any antiplatelet medica-

tions, including: aspirin, clopidogrel, dipyridamole, or ticagrelor.

We partition the study cohort into 7 subcohorts based on their

conditions and comorbidities. The prescribed medications are cate-

gorized into antidiabetic, antihypertensive, and lipid-lowering medi-

cations. Each category is then classified into different classes, as

described in Oei et al.22 For each medication, the total daily dose is

computed. The count of medications in each class is included to take

into consideration the drug hierarchy and the disease severity. In

addition, we also include the interval between visits and the interval

from the first visit as the input variables. This is because for patients

with the same DHL conditions, a longer interval from the first visit

suggests that they have a longer history of the chronic conditions,

which increases their likelihood of developing macrovascular com-

plications. The complete list of variables considered in this study can

be found in Supplementary Table S1.

Proposed approach
Basic notations

The EHR of a patient p in the dataset contains a sequence of visit

information. We denote the total number of visits for a patient p as

Np. A patient p can be viewed as a matrix X with dimension of d

�Np (Figure 1) where d is the number of variables in Supplementary

Table S1, and the ði; jÞth entry in the matrix is the value of the varia-

ble i for visit j. Zero padding is performed so that each patient has

the same number of visits Nvisit.
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Data discretization and normalization

In medicine, continuous variables are often better understood when

they are discretized into meaningful bins. For example, blood pres-

sure level can be divided into normal (<130/85 mmHg), elevated

(130/85–139/89 mmHg), grade I high blood pressure (140/90–159/

99 mmHg), grade II high blood pressure (160/100–179/109 mmHg),

and grade III high blood pressure (�180/110 mmHg). Following our

previous study,22 which incorporated domain knowledge into data

preprocessing, we discretize the variables into various bins based on

the prevailing clinical practice guidelines.25–27 More details can be

found in Oei et al.22

After data discretization, normalization is performed using the

following equation:

x0 ¼ x�minðxÞ
max xð Þ �minðxÞ (1)

where x is the original feature value and x0 is the normalized feature

value.

Domain knowledge-infused convolutional neural network

We apply 1D convolution along the visit dimension to extract the

sequential relations among visits. Different from previous stud-

ies18,23,24 where the convolution filter sizes were chosen randomly

through hyperparameter tuning, our proposed CNN employs 3 ker-

nel sizes corresponding to the short-term (6-months), medium-term

(1-year), and long-term (2-years) duration from the clinician’s per-

spective. This translates to the filter size of 8, 4, and 2, respectively,

with each kernel sizes comprises multiple kernels. We obtain the

short-term, medium-term, and long-term feature maps as shown in

Figure 2. Max pooling is performed on these feature maps to obtain

the vector representation for a patient.

Given 2 patients A and B and their vector representations PA and

PB, we define a matching score as follows:

matching PA; PBð Þ ¼ PA
T �M� PB; (2)

where PA
T is the transpose of PA, and the matrix M is learned using

the approach in Bordes et al28 such that the matching score is mini-

mized if the patients A and B have the same outcome, and maxi-

mized if they have a different outcome.

In addition to the matching score between the vector representa-

tions of patients A and B, we also compute the D3K score22 as fol-

lows:

D3K A; Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �VA � �VB ÞT WWT ð �VA � �VB Þ

q
; (3)

where �VA and �VB are the mean variable values across all the visits

of patients A and B respectively, and W is a transformation vector

that captures the importance of the variables in the patient similarity

computation. For each pair of patients A; Bð Þ in the training cohort,

we search for a W such that D3K A; Bð Þ is minimized if patient A

and B are deemed clinically similar, and D3K A; Bð Þ is maximized if

they are clinically dissimilar. The ground truth used to learn W is

based on the physicians’ judgment as described in Oei et al.22

The vector representations PA and PB are concatenated with the

matching score and the D3K score before passing to a fully con-

nected layer with sigmoid activation function to obtain the final out-

put by (see Figure 3). A higher value of by indicates a higher degree of

similarity between 2 patients. We set the ground truth y as 1 if 2

patients have the same risk of developing macrovascular complica-

tion and 0 otherwise. Binary cross-entropy loss is used for optimiza-

tion:

L by; yð Þ ¼ ylogðbyÞ þ �1� y
�

logð1� byÞ (4)

The model is trained end-to-end and all the network parameters

are updated simultaneously.

Experiments and evaluation
We implement the proposed DK-CNN in PyTorch.29 We randomly

select 10% of patients from each subcohort as test patients. The rest

of the patients are divided into 70% for training and 30% for vali-

dation. All the model parameters are optimized using Adam.30 A

dropout rate of 0.2 is applied on the penultimate layer to avoid over-

fitting. We compare DK-CNN with the following baseline

approaches:

• LastVisit-Euclidean: Euclidean distance on the last visit informa-

tion is calculated to measure the similarity between patient pairs.
• LastVisit-locally supervised metric learning (LSML)12: LSML is a

metric learning method to find an optimal weight vector that

maximizes local class discriminability. Here, we train LSML on

the last visit information with macrovascular complication as the

label.
• RV coefficient31: RV coefficient measures the distance of 2 set of

points that are represented as a matrix. Here, we use it to meas-

ure the similarity between patients where each patient is viewed

as a feature matrix (recall Figure 1).
• Zhu-CNN24: This CNN proposed by Zhu et al utilizes 1 filter

size. We implement 3 variants Zhu-CNN (short/medium/long)

indicating the size of the filter used.
• GRASP13: This is the state-of-the-art framework for outcome

prediction utilizing patient representation learned from a multi-

head self-attention model and its cohort patient representation.

For each test patient, the top-k similar patients are retrieved and

ranked by their similarity scores. We compare the complication out-

comes of the retrieved patients and the target test patients and use

nDCG to measure the effectiveness of the models:

Figure 1. Patient health record viewed as a feature matrix.
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nDCG@k ¼ 1

IDCG@k

Xk

i¼1

reli
log2i

(5)

where reli is 1 if the ith patient in the ranked list has the same or no

complication outcome as the test patient, otherwise, reli is 0; and

IDCG@k is the ideal discounted cumulative gain computed by sort-

ing the retrieved patients according to their outcome similarities to

the test patient to give the maximum possible discounted cumulative

gain.

Furthermore, we also evaluate the models in terms of how well

their set of retrieved patients can be used to predict macrovascular

complication. A test patient is predicted to have complication if the

majority of the retrieved patients has complication and is predicted

to have no complication if the majority does not have complication.

We use precision, recall, and F1 score as the metrics for this evalua-

tion:

Precision ¼ TP

TPþ FP
; (6)

Recall ¼ Tp

Tpþ Fn
; (7)

F1 score ¼ 2� Precision� Recall

Precisionþ Recall
; (8)

where TP is the true positive, FP is the false positive, and FN is the

false negative.

Moreover, we also conducted the following ablation studies:

• Reduced model—with D3K and without varying filter sizes,

which utilizes D3K, but uses only 1 fixed filter size instead of 3

filter sizes mentioned before.
• Reduced model—with varying filter sizes and without D3K,

which utilizes the 3 filter sizes mentioned above, but does not

include D3K.

All the experiments are repeated 3 times by randomly sampling

different sets of test patients, and the average nDCG, precision,

recall, and F1 score are recorded.

RESULTS

Cohort characteristics
There are 169 434 unique patients with DHL visited the clinics during

the stated period. The mean age of the patients was 64.64 6 12.03

years, and the ratio of males to females was 46.44%:53.56%. A total

of 48 745 patients (28.77%) in the study cohort developed macrovas-

cular complication. The most common comorbidity among the

patients is hypertension and lipid disorder, with 36.64% of the

patients having this combination of conditions. The second most

prevalent comorbidity is diabetes, hypertension, and lipid disorder,

with 31.10% of the patients having this combination.

As mentioned previously, we partition the study cohort into 7

subcohorts based on their conditions and comorbidities as shown in

Figure 2. Patient vector representation learning module.
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Figure 3. Proposed DK-CNN.

Figure 4. Derivation of the patient subcohorts (n denotes the number of patients and m denotes the number of patients with macrovascular complication).
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Table 1. Baseline patient characteristics in each subcohort

Subcohorts Comorbidities Number of patients Mean age Gender

Male Female

CD Diabetes only 2076 52.70 (613.89) 1141 935

CH Hypertension only 20 982 60.84 (613.29) 11 001 9981

CL Lipid disorder 22 918 50.81 (610.55) 14 333 8585

CDH Diabetes and hypertension 2670 63.28 (612.69) 1436 1234

CDL Diabetes and lipid disorder 6026 57.23 (611.01) 2959 3067

CHL Hypertension and lipid disorder 62 077 67.14 (611.23) 29 261 32 816

CDHL Diabetes, hypertension, and lipid disorder 52 685 67.11 (611.07) 25 319 27 366

Figure 5. nDCG values for the 7 subcohorts as we vary the number of similar patients.
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Figure 4. Table 1 shows the patient characteristics for each subco-

hort at the baseline visit (2014–2015).

Ranking quality of retrieved patients
Figure 5 shows the nDCG values measured from the top-k similar

patients retrieved by each approach. Our domain knowledge-

infused CNN achieves the highest nDCG values over other baseline

methods in all 7 subcohorts across different values of k, ranging

from 1 to 100. We observe that when k<10, the nDCG values fluc-

tuate. When k reaches 10, the nDCG values become more stable and

decrease gradually as k increases. Therefore, we choose k¼10 for

the subsequent experiments.

Complication prediction performance
Tables 2–4 present the complication prediction performance calcu-

lated from the top 10 similar patients retrieved by each model in

terms of precision, recall, and F1 score, respectively. Our proposed

method outperforms other state-of-the-art approaches in terms of

precision, recall, and F1 score for all the cohorts.

Ablation studies
Figure 6 shows the results of the ablation studies when k¼10.

Clearly, the full model outperforms the other 2 reduced models in

all 7 subcohorts. Another thing to note is that the reduced model

with D3K without varying filter sizes performs better than the

reduced model with varying filter sizes without D3K in all subco-

horts.

DISCUSSION

In this study, we propose a CNN-based patient similarity measure

which incorporates domain knowledge to retrieve clinically similar

patients to an index patient. Compared to our previous work,22 the

current approach takes into account the temporal trajectory of a

patient over multiple visits. Overall, the results show that integrating

domain knowledge together with patient’s temporal trajectory into

the similarity computation is beneficial. As can be seen from Figure 5

and Tables 2–4, our DK-CNN outperforms state-of-the-art methods

in terms of the quality of the retrieved similar patients and the com-

plication prediction performance. The results suggest that infusing

domain knowledge into the computation is advantageous for both

similar patient retrieval and complication prediction.

Regarding the patient ranking quality (Figure 5), it can be

observed that nDCG values generally decrease and then plateau or

slightly increase thereafter as the number of retrieved patients

increases. One possible explanation is that when k is small, all the

approaches tend to retrieve clinically similar patients who also have

the same complication outcome as the index patients, but as the

number of retrieved patients increases, more dissimilar patients are

retrieved, causing the decrease in the nDCG values. Another inter-

esting finding is that the nDCG values (Figure 5) of models that uses

only the last visit information (D3K, LastVisit-Euclidean, LastVisit-

LSML) do not outperform models that take into account patients’

multiple visits (RV, Zhu-CNN, GRASP, and DK-CNN). This obser-

vation indicates the importance of the temporal trajectory of

patients in the development of the complication, and therefore need

to be included in the similarity computation.

In terms of complication prediction performance (Tables 2–4),

DK-CNN also outperforms state-of-the-art methods. In general,

DK-CNN performs better in larger cohorts than smaller cohorts.

Again, models that only take into account the last visit information

do not perform well compared to models which consider patients’

multiple visits.

With respect to the ablation studies (Figure 6), it can be con-

cluded that the full model which includes both the convolutional fil-

ters and the domain knowledge-based similarity outperforms the 2

reduced models. This suggests the advantage of combining both

modules to improve the model performance. Moreover, it is worth

mentioning that the reduced model with D3K which is domain

knowledge-based module achieves higher nDCG than the reduced

model without D3K in all subcohorts. The results provide insight

about the importance of domain knowledge in similar patient

retrieval.

To the best of our knowledge, this is the first study that proposes

a CNN-based patient similarity measure incorporating domain

knowledge and shows its application on a cardiometabolic

syndrome-related dataset sourced from healthcare institutions in

Singapore. Compared to previous studies, which worked on datasets

with limited types of features and focused mainly on 1 medical con-

dition,12,19,23 our dataset consists of diverse types of features and

Table 2. Precision of complication prediction at k¼ 10

Models CD CH CL CDH CDL CHL CDHL

D3K 0.631 0.736 0.681 0.714 0.732 0.715 0.752

Euclidean 0.576 0.511 0.548 0.592 0.536 0.606 0.691

LSML 0.250 0.639 0.245 0.541 0.688 0.665 0.673

RV coef 0.725 0.683 0.799 0.768 0.781 0.857 0.814

Zhu (short) 0.513 0.699 0.828 0.520 0.687 0.923 0.835

Zhu (medium) 0.452 0.713 0.830 0.693 0.315 0.919 0.859

Zhu (long) 0.409 0.596 0.854 0.647 0.765 0.910 0.862

GRASP 0.708 0.680 0.781 0.736 0.718 0.901 0.847

DK-CNN 0.740 0.778 0.881 0.807 0.833 0.950 0.930

Table 3. Recall of complication prediction at k¼ 10

Models CD CH CL CDH CDL CHL CDHL

D3K 0.523 0.537 0.593 0.623 0.637 0.703 0.750

Euclidean 0.540 0.530 0.573 0.573 0.563 0.667 0.690

LSML 0.500 0.500 0.480 0.527 0.580 0.650 0.670

RV coef 0.560 0.577 0.710 0.637 0.700 0.853 0.807

Zhu (short) 0.510 0.600 0.810 0.520 0.640 0.907 0.820

Zhu (medium) 0.480 0.647 0.820 0.653 0.353 0.913 0.817

Zhu (long) 0.423 0.553 0.837 0.563 0.700 0.897 0.833

GRASP 0.610 0.680 0.780 0.730 0.710 0.897 0.847

DK-CNN 0.727 0.760 0.860 0.787 0.807 0.943 0.927

Table 4. F1 score of complication prediction at k¼ 10

Models CD CH CL CDH CDL CHL CDHL

D3K 0.572 0.621 0.634 0.666 0.681 0.709 0.751

Euclidean 0.557 0.520 0.560 0.582 0.549 0.635 0.690

LSML 0.333 0.561 0.324 0.534 0.629 0.658 0.671

RV coef 0.632 0.625 0.752 0.696 0.738 0.855 0.810

Zhu (short) 0.512 0.646 0.819 0.520 0.663 0.915 0.827

Zhu (medium) 0.466 0.678 0.825 0.673 0.333 0.916 0.837

Zhu (long) 0.416 0.574 0.845 0.602 0.731 0.903 0.847

GRASP 0.655 0.680 0.781 0.733 0.714 0.899 0.847

DK-CNN 0.733 0.769 0.870 0.797 0.820 0.947 0.928
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patients with different comorbidities. While our dataset contains

varying subcohort sizes among patients with different conditions,

this study has shown that it is still feasible to develop localized mod-

els for the various subcohorts.

Improving complication risk prediction has been identified as an

important factor to improve healthcare quality. DK-CNN resembles

clinical practice in complication risk prediction, since it computes

the risk based on a set of retrieved similar patients, which is similar

to how physicians determine patient risk of complication. Even

more, DK-CNN take into account domain knowledge insights

derived from physicians when performing similar patients retrieval.

In clinical practice, DK-CNN can serve as an assistance tool,

where physicians may refer to the outcomes and past treatments

of similar patients as guidance for choosing the most effective

treatment for index patients. Therefore, we believe that the pro-

posed approach may serve as a personalized clinical decision tool

for medical practitioners to improve the outcomes of index

patients. Apart from that, DK-CNN can be applied further to

retrieve similar patients from pools of case and control patients,

and therefore, may serve as an enhanced tool for case–control

cohort matching. Compared to the commonly used propensity

score matching approach, which performs patients matching based

only on 1 record,32 our DK-CNN is able to incorporate temporal

clinical data with multiple visits. This advantage may eliminate a

greater part of bias when estimating the relationship between risk

factors and outcomes.

Several limitations in our study should be acknowledged. First,

some medical comorbidities only have limited number of patient data

compared to others, such as CD (n¼2076) and CDH (n¼2760). Sec-

ond, we did not include cholesterol levels in our analysis, as it can be

derived from LDL, HDL, and triglycerides,33 and would introduce mul-

ticollinearity to the models, which is often detrimental to model per-

formance.34 Third, this study is only relevant to the scope of patients

with DHL medical conditions and at risk of developing DHL-related

complications. The approach and the performance may not generalize

well on other medical conditions. Future work will be to use DK-CNN

for further downstream applications, including as a quasiexperimental

method. Also, given the diversity and complexity of clinical data, data

captured in form of texts, images can provide additional insights to sim-

ilar patient retrieval. Expanding the scope and features may broaden

the applications of DK-CNN for other medical conditions.

CONCLUSION

Patient similarity analytics is essential for personalized clinical decision

support and various downstream healthcare application, such as out-

come prediction and risk stratification. In this study, we have proposed

a deep learning-based approach, which incorporates domain knowl-

edge, in which the temporal properties of patient data are preserved.

Experimental results show that our domain knowledge-infused CNN

outperforms state-of-the-art patient similarity metrics in both similar

patients retrieval and complication outcome prediction tasks.

Figure 6. Ablation study results comparing DK-CNN with the 2 reduced models.
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