
ORIGINAL 
ARTICLE 

 Veterinary Research Forum. 2022; 13 (3) 417 – 422 

doi: 10.30466/vrf.2021.140211.3111 

  

  Journal Homepage: vrf.iranjournals.ir   

  

Intraperitoneal injection of buprenorphine on anxiety-like behavior and 
alteration in expression of Gfap and Nrf2 in methamphetamine treated rats 

Akram Kholghi1, Homeira Hatami1*, Nazli Khajehnasiri2, Reihaneh Sadeghian3*  

1 Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; 2 Department of Biological Sciences, Faculty of Basic Sciences, 
Higher Education Institute of Rab-Rashid, Tabriz, Iran; 3 Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical 

Sciences, Shahrekord, Iran. 

 
 Article Info  Abstract  

 Article history: 
 
 Received: 07 December 2020 
 Accepted: 13 September 2021 
 Available online: 15 September 2022 

 The effects of buprenorphine (BUP) on anxiety-like behavior and the expression of the glial 
fibrillary acidic protein (Gfap) and nuclear factor erythroid 2–related factor 2 (Nrf2) in 
methamphetamine (METH)-treated rats were investigated in this study. Twenty-eight male 
Wistar rats were randomly divided into four groups including control (saline), METH (10.00 mg 
kg-1), BUP (10.00 mg kg-1), and BUP+METH groups and treated for five days. On the final day of 
treatment, gene expression levels and anxiety were evaluated using elevated plus-maze (EPM). 
According to the results, five days of METH injection reduced open arm exploration in the EPM. 
In contrast, the open arm entries and the time spent in the open arms were increased in the 
BUP+METH group compared to the METH group. The expression levels of Gfap and Nrf2 were 
lower in METH-treated rats compared to controls, whereas Gfap and Nrf2 expression levels 
were higher in the METH+BUP-treated rats compared to the METH-treated rats, however, it 
was similar to the controls. These findings suggested that co-administration of BUP+METH 
could decrease anxiety-like behavior through increasing the activity of the antioxidant 
protection system and might have therapeutic potential for preventing anxiety in METH users.  
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Introduction 
 

According to the latest data, about 40.00% of meth-
amphetamine (METH) users suffer from anxiety disorders.1,2 
The therapeutic approaches aiming at preventing anxiety 
following METH dependence have focused on the neuro-
biological mechanisms of this disorder using combination of 
behavioral, electrophysiological and molecular techniques.3,4 

Several studies indicated the effectiveness of 
buprenorphine (BUP) in the treatment of anxiety, other 
behavioral disorders, opioid abuse and even in anxiety-
refractory cases.5 Several studies examined the associations 
between psychostimulants and opioid receptor agonists.6 
Treatment with BUP reduced psychostimulant self-
administration-induced in rhesus monkeys7 by modulating 
dopaminergic neurotransmission.8 On the contrary, it was 
stated that treatment with BUP damaged brain tissue and 
decreased number of neurons.9  

 

 The METH exposure resulted in mitochondrial 
oxidative damage.10 Nuclear factor erythroid 2-related 
factor 2 (Nrf2) is a crucial regulator of cellular resistance to 
oxidants.11 Its protective activities are not only restricted 
to antioxidative transactivation and it plays a critical role 
in encountering different physiological and pathological 
stresses.12 Furthermore, the latest studies emphasized the 
association between oxidative stress and anxiety or the 
possible causal relationship between them.13,14  

 Besides, long-term METH exposure induces eminent 
activation of glial fibrillary acidic protein (Gfap)15 as an 
astrogliosis marker in the cortex and hippocampus.16 
Studies have shown that the activated microglia and 
astrocytes, through the creation of pro-inflammatory 
cytokines, are associated with METH-induced 
inflammation and neurodegeneration.17 It is generally 
believed that METH induces oxidative stress, which in 
turn can increase pro-inflammatory cytokines.10 It was 
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reported that chronic inflammation in the central nervous 
system could regulate anxiety.18 

The METH-related anxiety is a complex disease which 
its underlying molecular pathway is poorly understood. 
No studies have been found to evaluate the effects of 
METH on anxiety through Gfap and Nrf2 mRNA 
expression. In addition, there are paradoxical reports on 
the impact of different doses of METH on the nervous 
system3 or additional effects of BUP on anxiety.19 
Therefore, the present research evaluated the effects of 
BUP on anxiety-like behavior in METH-treated rats based 
on the results of Gfap and Nrf2 expression. 

 
Materials and Methods 
 

 Animals. Twenty-eight adult male Wistar rats (220 ± 
30.00 g) were obtained from the Tehran Institute, Iran. 
The animals were kept in a room with a controlled 
temperature under a 12:12 hr light/dark cycle (lights on 
7:00 a.m. to 7:00 p.m.). The rats were given ad libitum 
access to food and water. They were adapted to the 
research environment for at least one week prior to the 
tests. Animal protocols were approved by the Ethics 
Committee of Shahrekord University of Medical Sciences 
(IR.SKUMS.REC.1398.194). All procedures for the main-
tenance and use of the experimental animals were 
conducted in accordance with the guide for the care and 
use of the laboratory animals (NIH Guide for Care and Use 
of Laboratory Animals, 8th ed., 2011). 

Drugs. The METH was purchased from Sigma-Aldrich 
(St. Louis, USA) and dissolved in normal saline (Shahid 
Ghazi, Tabriz, Iran). The BUP was prepared from Faran 
Shimi (Tehran, Iran) and dissolved in normal saline. 

Study groups. Twenty-eight rats were randomly 
assigned to four groups (n = 7) and intraperitoneal 
injections including the control (normal saline; 1.00 mL 
kg-1), METH (10.00 mg kg-1),20 BUP (10.00 mg kg-1),21 and 
combination of BUP (10.00 mg kg-1) and METH (10.00 mg 
kg-1) groups and treated for five days.12 After treatments, 
the animals were subjected to the elevated plus-maze 
(EPM) task for behavioral changes. 

Elevated plus-maze (EPM) test. The EPM device 
was composed of two open and two closed arms 
(length: 51.00 and width: 10.00 cm) passing in the 
middle and perpendicular to each other forming a plus 
shape. The maze was elevated 50.00 cm above the 
ground. Each rat was put in the center of the maze and 
allowed to explore all arms freely and the behavior was 
controlled for 5 min over the maze using a digital 
camera. The device was cleaned with 10.00% ethanol 
after each experiment to remove any odors. The time 
spent in the open arms as well as the number of entries 
into the open arms was calculated. The total number of 
entries into the open and close arms represented the 
distance traveled by animals.22 

 Real time-polymerase chain reaction (RT-PCR) 
technique. The rats were rapidly decapitated 24 h after 
the behavioral experiments and the cerebral cortex was 
removed and frozen in liquid nitrogen instantly. Using 
the YTzol Pure RNA buffer (Yekta Tajhiz, Tehran, Iran), 
total RNAs were extracted from the cerebral cortex 
samples. Then, their concentration and purity were 
detected by the NanoDrop instrument. Finally, using the 
reverse transcription kit (Bioneer, Daejeon, South 
Korea), the RNA was exposed to reverse transcription. 
Triple reactions were used to measure mRNA 
expression levels of Gfap and Nrf2 in cDNA samples via 
the gene-specific primers (Gfap: forward 5'-
GAGCCAAGGAGCCCACCAAAC-3' and reverse 5'-GATTGT 
CCCTCTCCACCTCCA-3'; Nrf2: forward 5'-GTGGCTTACA 
ACGGACATGGA-3' and reverse 5'-GGAGTTGCTCTTGT 
CTCTCCT-3'; Gapdh: forward 5'- CTCTCTGCTCCTCCCTG 
TTCT -3' and reverse 5'- CGTCCTTCCCCCCATTCCTAA-3'). 
The relative expression of the genes was then assessed. 
In the next step, RT-PCR was done by the SYBR Green 
PCR Master Mix (Takara Bio USA, Inc., San Jose, USA). 
Ultimately, quantitative real-time PCR was done using 
the comparative ΔΔCT Method, and also, an arithmetic 
formula was employed to measure the relative 
expression of the target mRNAs in relation to the 
reference values.23 

Statistical analysis. Data were presented as mean ± 
SEM and analyzed by SPSS Software (version 21.0; IBM 
Corp., Armonk, USA). One-way ANOVA and Tukey’s post-
hoc test were applied to analyze the behavioral 
experiment (EPM) results or determine the expression 
levels of Gfap and Nrf2 for intergroup comparisons. A p < 
0.05 was considered statistically significant. 
 
Results 
 

Effects of METH and BUP administration on 
animals in the elevated plus-maze test. Figure 1 shows 
the effect of treatments on animals in the EPM test. The 
results of one-way ANOVA showed a significant 
difference in the number of entries into the open arms 
between groups [F (3, 24) = 15.01, p < 0.001]. Also, there 
was a significant difference in the time spent on the open 
arms between groups [F (3, 24) = 14.72, p < 0.001]. The 
rats in the METH group showed a significant reduction 
in the number of open arms entries (1.14 ± 0.55;  
p < 0.01) and time spent (21.71 ± 4.96; p < 0.001) in the 
open arms compared to the number of entries (7.28 ± 
0.74) and spent time in the open arms (50.85 ± 2.89) in 
the control group. In the BUP group, the open arm entries 
(11.71 ± 2.01) and time spent in these arms (55.85 ± 
3.05) were not significantly different compared to the 
control rats, however, they showed a significant 
increase in the open arm entries compared to the METH 
group (p < 0.001).  
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Compared to the METH group, the number of entries 
into the arms and time spent in open arms in the 
BUP+METH group were changed. BUP+METH co-
administration led to a significant increase in the number 
of entries into the open arms (8.28 ± 0.81) and time spent 
in these arms (42.28 ± 4.38) compared to the number of 
entries (1.14 ± 0.55; p < 0.001) and time spent in open 
arms (21.71 ± 4.96; p < 0.01) in the METH group (Fig. 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Effects of intraperitoneal methamphetamine (METH), 
buprenorphine (BUP) injection, and their co-administration 
(BUP+METH) on A) number of entries into open arms and B) 
time spent in the open arms in the elevated plus-maze (EPM) test. 
** p < 0.01 and *** p < 0.001 compared to the control group and  
†† p < 0.01 and †††p < 0.001 compared to METH-treated group. 
Data are represented as mean ± SEM. 

 
Figure 2 shows the finding of total traveled distance in 

the EPM. The One-way ANOVA results showed that there 
was no significant difference in the total number of entries 
into the open and close arms among the experimental 
groups [F (3, 24) = 1.83, p = 0.17]. 

  
 
 
 
 
 
 
 

 
 
 

Fig. 2. The effects of intraperitoneal methamphetamine (METH) 
and buprenorphine injection (BUP) and their co-administration 
(BUP+METH) on traveled distance in the elevated plus maze 
(EPM). Total activity, the mean total number of entries into the 
open and close arms, was measured. The groups did not exhibit 
any differences (p > 0.05). Data are represented as mean ± SEM. 

 

 The expression level of Nrf2 and Gfap in 
response to METH and BUP administration. Effects of 
BUP on the cerebral cortex Gfap and Nrf2 mRNA levels 
following the administration of METH and BUP were 
tested by RT-PCR. According to the results, the Nrf2 
mRNA expression levels was significantly decreased in 
the METH group compared to control rats (p < 0.01), 
whereas, Nrf2 gene expression showed a significant 
increase in the BUP group compared to the METH group 
(p < 0.001). The BUP+METH group showed a significant 
increase in the expression levels of Nrf2 than the METH 
group (p < 0.05) [Nrf2 mRNA levels: METH: 0.03 ± 0.00 
BUP: 0.18 ± 0.17; METH + BUP: 0.11 ± 0.38; and control: 
0.14 ± 0.00; Fig. 3).  

 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3. The effects of intraperitoneal methamphetamine (METH) 
and buprenorphine (BUP) injection and their co-administration 
(BUP+METH) on the cerebral cortex Nrf2 mRNA levels.  
** p < 0.01 compared to the control group and † p < 0.05 and 
 ††† p < 0.001 compared to the METH-treated group. Data are 
represented as mean ± SEM. 

 

Also, the METH group exhibited a significant decrease 
in Gfap mRNA levels than controls (p < 0.001). The 
BUP+METH (p < 0.001) and BUP (p < 0.001) groups 
showed a significant increase in the Gfap mRNA levels 
compared to METH rats. The Gfap mRNA levels were as 
follow. METH: 10.99 ± 0.18; BUP: 16.28 ± 0.29; METH + 
BUP: 17.03 ± 1.13; and Control: 15.85 ± 0.14, (Fig. 4). 

 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4. The effects of intraperitoneal methamphetamine (METH) 
and buprenorphine (BUP) injection, and their co-administration 
(BUP+METH) on the cerebral cortex Gfap mRNA levels.  
*** p < 0.001 compared to the control group and ††† p < 0.001 
compared to the METH-treated group. Data are represented 
as mean ± SEM.  
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Discussion 
 

This study evaluated the effect of a 5-day co-
administration of BUP plus METH on anxiety behavior and 
alteration in the expression levels of Nrf2 and Gfap in the 
METH-treated rats. The main findings were as follow:  
1) Treatment of rats with METH considerably reduced the 
number of entries into the arms as well as the time spent 
in open arms compared to the control group in EPM,  
2) These parameters significantly were increased after the 
administration of METH + BUP (10.00 mg kg-1) in 
comparison with the METH group, and 3) There was a 
correlation between anxiety and alterations in the 
expression levels of Nrf2 and Gfap. 

Previous studies showed that different doses of psycho-
stimulants had diverse effects on the responses to 
behavioral parameters24 and the levels of brain neuro-
trophic factors which were associated with the applied 
concentration, injection type and duration of treatment.3,25 
The present research, for the first time, evaluated the 
effect of high-dose METH using EPM in which a 5-day 
injection of METH decreased the number of entries into 
the open arms and the time spent in the open arms in the 
studied subjects. Some studies have shown that treatment 
with METH-induced severe self-injurious behavior with-
out affecting locomotor activity.26 It has also been revealed 
that administration of low doses of METH to the METH-
sensitized rats caused a reduction or an increase in the 
time spent in open arms and open arm entries at 30 or 120 
min after injection compared to the control group, 
respectively.27,28 Also, the significant reduction in the level 
of norepinephrine metabolite was associated with anxiety-
related behavior observed in the EPM.29  

Our findings demonstrated that the administration of 
BUP increased the number of open arm entries and the 
time spent compared to MTEH rats. Therefore, BUP at 
10.00 mg kg-1 caused anxiolytic effects in rats. The BUP is 
used to treat anxiety-related behaviors.30,31 The findings of 
another study demonstrated that the anxiety-like 
behaviors caused by BUP were due to its antagonist 
properties that interfered with the δ opioid receptor and 
due to lack of agonist activity on kappa (κ)-opioid 
receptor.31 On the other hand, U-50 488H, a κ-opioid-
receptor agonist had anxiolytic-like effects.32 Accordingly, 
BUP has strong and permanent antidepressants effects 
and also affects anxiety, as well. 

Administration of BUP to METH-treated rats resulted 
in anxiolytic effects because the rats showed a significant 
increase in open arm exploration compared to the METH 
group in the EPM. This finding was not in agreement with 
that reported by Etaee et al.,33 who suggested co-
administration of METH and BUB increased anxiety.30 
These conflicting results are likely due to differences 
between the protocols of the administration as well as and 
the doses of METH and BUP used in the experiments. 

 Our result showed that exposure to METH significantly 
decreased Nrf2 expression compared to the other groups. 
Injection of METH was found to cause oxidative stress 
which was correlated with changes in the levels of Nrf2 as 
a main regulator of redox homeostasis in anti-oxidative 
responses.11 In work of others, administration of low doses 
of METH increased Nrf2 gene expression in astrocytes, 
whereas, it did not affect the number of neurons, which 
was not consistent with our results.34 Another report 
showed that the role of Nrf2 gene deletion in METH-
induced oxidative stress could be partially compensated 
by other mechanisms in which Nrf2 was not involved.35 

Previous animal studies showed a robust activation of 
both astrocytes and microglia after exposure to a neuro-
toxic regimen of METH 15,36,37 and another investigation 
demonstrated reactive microglia and increased density of 
Gfap-positive astrocytes in the brains of human METH 
abusers.15,38 Inconsistently, animal studies revealed that a 
single dose METH administration at 10.00 or 20.00 mg kg-1 
did not significantly increase Gfap, while, METH 
administration at 30.00 and 40.00 mg kg-1 increased Gfap 
dose-dependently.39 The reason for this difference could 
be due to the protocols of the administration, duration of 
addiction and METH dosage in the experiments. 

Consistent with the mentioned mechanisms, glial 
activation potentiated by Nrf2 deficiency has been 
reported one day following METH administration by 
enhanced striatal expression of astroglia markers (Gfap).40 
To the best of our knowledge, there are no studies on the 
effect of BUP on the alterations in the expression of the 
Nrf2 gene and Gfap which indicates the novelty of our 
research. Our findings exhibited that co-administration of 
BUB plus METH significantly increased the Gfap gene 
expression in comparison with the METH treatment. 
Several studies have reported a strong activation of 
astrocytes36 and microglia37 following exposure of animals 
to a single injection of METH. However, other findings 
showed that animals resistant to neurotoxicity caused by 
the acute injection of METH showed no significant 
microglial activation after the re-exposure which was 
similar to the results where the animals were exposed to 
the acute toxicity.15,37  

In summary, the present study showed that co-
administration of BUP and METH could decrease anxiety 
behavior through the increased activity of the antioxidant 
system and it might have therapeutic potential for 
preventing anxiety in METH users. Additional histological 
experiments are needed in the future to elucidate the 
involved mechanisms. 
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