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With advances in medicine and healthcare systems, the average life expectancy of human beings has increased to more than 80 yrs.
As a result, the demographic old-age dependency ratio (people aged 65 or above relative to those aged 15-64) is expected to
increase, by 2060, from ~28% to ~50% in the European Union and from ~33% to ~45% in Asia (Ageing Report European
Economy, 2015). Therefore, the percentage of people who need additional care is also expected to increase. For instance, per
studies conducted by the National Program for Health Care of the Elderly (NPHCE), elderly population in India will increase to
12% of the national population by 2025 with 8%-10% requiring utmost care. Geriatric healthcare has gained a lot of prominence in
recent years, with specific focus on fall detection systems (FDSs) because of their impact on public lives. According to a World
Health Organization report, the frequency of falls increases with increase in age and frailty. Older people living in nursing homes
fall more often than those living in the community and 40% of them experience recurrent falls (World Health Organization, 2007).
Machine learning (ML) has found its application in geriatric healthcare systems, especially in FDSs. In this paper, we examine the
requirements of a typical FDS. Then we present a survey of the recent work in the area of fall detection systems, with focus on the
application of machine learning. We also analyze the challenges in FDS systems based on the literature survey.

1. Introduction

Intelligent IoT-based ambient assisted living systems
(AALS) for the elderly have been a major research focus area
in recent times. According to the studies conducted by
National Program for Health Care of the Elderly (NPHCE),
elderly population in India will increase to 12% of the na-
tional population by 2025 with 8%-10% requiring utmost
care. Application of machine learning in areas of AALS such
as fall detection, therefore, has the potential to have a huge
public impact. Much work has been done in the area of fall
detection systems and the application of machine learning to
such systems to enable fall classification, detection, and
prediction. We have been working on the development of an
FDS which applies the biological profile of a subject to
classify him into a risk category pertaining to his fall
probability. The three categories we have defined are high
risk, medium risk, and low risk. The categorization thus
derived, along with parameters from a wearable sensor, is

then applied to ML algorithms to detect falls. The objective
of this paper is to bring out an extensive literature survey of
the recent work in the area of fall detection systems, with
focus on the application of machine learning to wearable
sensor-based approaches.

The rest of the paper is organized as follows. First, we
examine the desirable requirements of a wearable fall de-
tection system. Then we present an overview of FDSs based
on environmental sensors, vision-based systems, and
wearable sensors. Subsequently, we dwell a little deeper into
the recent advances in FDS based on wearable devices. In
this, we present a literature survey on threshold-based
mechanisms and machine learning-based algorithms in fall
classification and detection. It was observed that different
papers examined different performance parameters of ML
algorithms, and we present a summary of the results here.
Lastly, existing literature shows that various biological,
physiological, and environmental parameters affect a sub-
ject’s risk of falling. We present results from our study on the
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various biological factors that impact the probability of fall
in elderly persons. We conclude our paper with the chal-
lenges we observed in the existing fall detection solutions.

2. Requirements for Fall Detection Systems

The purpose of FDSs is automatic detection of falls and
enabling of assistance by caregivers when required. FDSs
primarily find its application in geriatric care because falls
are more frequent and severe in the elderly. Because such
systems would be used by the elderly, it is important for the
manner in which falls are detected to be nonintrusive. For
example, a wearable sensor that is heavy or causes incon-
venience to the subject may not be a popular solution.

Power consumption of the apparatus should be mini-
mized because there is a possibility of the subject forgetting
to charge it. This entails that the sensors and the network
design of the system have to be optimized for power
consumption.

An FDS should not restrict the subjects’ mobility, and
they should be free to move around the area they want to.
Camera-based or infrared- (IR-) based systems [3] may
restrict the subject to be within a certain region of interest
(ROI), while wearable sensor-based systems do provide
more mobility to the subjects. An IR- or camera-based
system may employ multiple techniques to increase the
coverage, such as sweep coverage-based deployments, but
this would mean increasing the cost of the system.

Another important requirement of an FDS is that it
should be able to distinguish between falls and activities of
daily life (ADLs) or near-fall conditions. This is to prevent
triggering of premature action in the case of false positives
and adequate care not being provided in the case of false
negatives. Therefore, the accuracy of detection is an im-
portant factor.

The manner in which triggers are generated on fall
detection is also important. Caregivers may be located re-
motely, and an FDS should support providing notifications
to remote personnel. The notification could be a short in-
dication like a message or could be a descriptive account
from the ROI, by way of images captured by a camera. The
former is easier to implement, while the latter has the ad-
vantage that it can provide a clear picture of the impact to the
observer before deciding a course of action.

Latency is another factor that should be considered in
the design of FDSs. Delay in the detection of falls and that
between the detection of falls and notification of the care-
giver should be minimized for the FDS to be effective. This
implies that techniques used for fall detection should be
delay-sensitive. It also implies that the network design
should provide high quality of service for data packets that
are generated as a result of fall detection, in comparison with
messages for keepalive or periodic reporting of sensor
readings.

It is also desirable for an FDS to keep track of a subject’s
biological parameters and fall history so as to have the
capability of predicting falls before their occurrence. This
would involve reporting of the biological parameters by the
sensor nodes periodically and application of data analytics
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and machine learning techniques on the data collected over a
period of time.

3. Fall Detection Systems: An Overview

The current research on the wearable system design for a
geriatric healthcare monitoring system for detecting falls can
be broadly classified as follows:

(i) Environmental sensing-based systems
(ii) Wearable sensor-based systems
(iii) Vision-based systems

Environmental sensing-based systems work on input
from sensors placed in the environment. Some examples of
such systems are infrared sensor and acoustic and passive
infrared (PIR) motion detector-based systems. Infrared
sensor-based systems sense certain characteristics of an ROI
to detect a fall, either by emitting or detecting infrared
radiation or by measuring the heat being emitted by an
object and detecting motion. Microphone-based FDSs use
acoustic signals to detect sound in a room, locate the source,
and classify it as a fall or a nonfall condition. Motion de-
tector-based systems identify falls based on detection of
motion within an ROIL As an example of environmental
sensing-based systems, Taramasco et al. [4] explain one
which uses very-low-resolution thermal sensors located on
two horizontal planes along the floor, for classifying falls.
The algorithms compared were three recurrent neural
networks (RNN)—long short-term memory (LSTM), gated
recurrent unit, and Bi-LSTM, with Bi-LSTM giving an ac-
curacy of 93%. In [5], the authors rely on the existing
wireless infrastructure for detecting falls. The channel state
information (CSI) from WiFi deployments in a given area
was used for this purpose. Support vector machines (SVMs)
and Random Forest algorithms were applied to CSI matrix
for device-free fall detection. The experiments were con-
ducted in controlled environments with falls simulated by
one subject at a time. The advantages of this system are that it
is nonintrusive, which means it does not expect the subjects
being monitored to be wearing or carrying any device.
However, it may be high on false positives because of the
impact of ambient parameters such as heat; for example,
since the system relies on thermal sensors, its accuracy is
affected by the presence of other exothermic devices such as
heaters. This study also observed that when multiple people
are in the region under experimentation, their combined
movements influenced the accuracy of the outcome. Also, in
this paper, false positives, though at acceptable levels, were
high, because of the small dataset used for training and
testing. Ciabattoni et al. [6] describe a system consisting of a
low-cost mobile robot and an RGB camera, deployed in a
room, that produces real-time video stream. The robot
employs deep learning techniques for user detection, po-
sition estimation to detect a fall, photo and video capture,
and interfacing with a Bot telegram. The accuracy reported
for fall detection was 93%.

Vision-based systems do not perform any parameter
monitoring of the subjects; instead, they rely on image
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processing techniques on the video frames or images cap-
tured by cameras around the ROI. ML algorithms may be
applied over image processing techniques to enable more
accurate fall detection. In [7], convolutional neural networks
(CNNs) are trained on different datasets of optical flow
images. This helps the network to detect different actions.
Transfer learning is then applied from action recognition to
fall detection. The experiment was conducted on 3 different
datasets and reported an accuracy of above 95% in all cases.
However, one stated drawback of this approach is that it is
susceptible to inaccuracies resulting from ambient lighting
changes. Zerrouki et al. [8] detail a comparative study of ML
algorithms for fall detection with video sequences during
different daily and fall activities as input. They compared
Naive-Bayes, k-nearest neighbors (kNN), neural network,
and SVM algorithms and concluded that SVM performed
best among these, with respect to accuracy, sensitivity,
specificity, precision, recall, F-measure, and area under the
curve (AUC). Anishchenko [9] applies deep learning and
transfer learning techniques on data generated by surveil-
lance cameras under realistic conditions, to detect falls. The
objective was to overcome the setbacks of simulated datasets
collected under controlled environments. Bhandari et al.
[10] analyze video frames for fall detection in 3 step-
s—finding out interest points using Shi-Tomasi algorithm,
calculating the distance between interest points from optical
flow calculation with Lucas-Kanade algorithm, and esti-
mating the speed and direction of motion to conclude
whether a fall has taken place or not. The method is another
example of application of unsupervised learning in fall
detection. The accuracy reported is 95% for nonfall activities
and 96.67% for fall activities. In [11], data were collected
using a Kinect camera and a triaxial accelerometer. The
video input was used to classify the accelerometer data into
falls or nonfalls, in the training phase. Time and frequency
domain analysis was performed on the data—the former
using SVM and the latter using lifting wavelet transform. It is
reported that the frequency-based analysis exhibited an
accuracy of 100% in detecting falls, while the SVM-based
time domain analysis reported 98.31%. Yanfei et al. [12]
analyze feeds from a Kinect camera and processes point cloud
images to detect falls and reduce false positives. More recently,
the application of deep learning techniques to fall detection
has become an active area of research. Lu et al. [13] use video
feeds from ambient data and applies CNN and LSTM for
feature extraction. The use of 3D CNN enables extraction of
motion features from temporal sequence, in addition to
spatial information, while LSTM-based visual attention
mechanism is used to locate the regions of interest. The
authors note that this approach works well on small datasets
and that analysis of long motion sequences using this scheme
will increase the computational costs of the system. While
vision-based systems provide accurate details of abnormal
conditions to a remote caregiver via images or video feeds,
they tend to be more expensive and computationally intensive
and require higher processing time, in addition to being a
subtle intrusion to the privacy of the subjects.

In wearable device-based FDSs, the sensors used for fall
detection are embedded within a wearable device worn by

the subject, such as a wrist band. The parameters monitored
by such systems include the following: heart rate variability
(HRV), electrocardiogram (ECG), pulse oximetry (SPO,),
and kinematic attributes measured by accelerometers, gy-
roscope, and magnetometer. The data reported by wearable
sensors are fed as inputs to a threshold-based system or as
feature sets to a machine learning-based system to classify
and detect falls. Wearable sensor-based systems are less
expensive, have low power consumption which reduces the
overheard on charging the system, and are usually in the
form of a band that can be worn around the wrist or thigh,
which is less susceptible to being separated from the subjects.
Kaewkannate and Kim [14] provide a summary of com-
parison between four wearable wrist-band style devices
currently available on the market with respect to their
features and cost. The power consumption of wearable
devices is dependent on the device configuration, type of
sensors, and communication technologies used. Oletic and
Bilas [15] give an analysis of total power consumptions for
different operating scenarios, for certain configurations of
wearable devices. There are also systems where the sensors
are worn not on the wrist but on other parts of the body, or
are embedded within a smartphone. Smartphone-based
systems expect the subject to charge their device as required
and carry it with them to enable fall detection, which are not
good prerequisites for geriatric healthcare systems.

There have been some papers that propose an end-to-
end IoT-based system for fall detection. An example of such
a system in indoor environments is presented in [16]. This
design makes use of low-power wireless sensor networks,
smart devices, big data, and cloud computing. A 3D-axis
accelerometer embedded into a 6LowPAN device wearable
collects movement information and applies decision tree
algorithms to detect falls.

4. Relevance of Machine Learning in
Fall Detection

Machine learning is a technique that applies mathematical
models on datasets to analyze, classify, and discover new
meanings from them, to enable the system to learn auto-
matically from the training it received. A model trained on a
given dataset is capable of interpreting new input data and
predicting outcome variables. Machine learning helps
achieve certain amount of task and decision automation for
various domains. There are 3 types of machine learning
approaches—supervised machine learning, unsupervised
machine learning, and reinforcement learning. In supervised
machine learning, the training is done based on labelled
input data. For every input data, there is a corresponding
outcome variable. Therefore, the input data is classified a
priori, and when there is a new data point, it can be mapped
to one of the defined classes. There are two approaches to
supervised machine learning—regression and classification.
Unsupervised learning is when the algorithm itself tries to
find a pattern within a given dataset. Reinforcement learning
allows the system to adapt its behaviour based on feedback
or rewards from the environment [17]. In each of the cat-
egories of machine learning approaches, there are multiple



algorithms. A simplified taxonomy of machine learning
algorithms is given in Figure 1.

Due to the advances in the field of medicine and changes
in population demographics, geriatric healthcare has gained
a lot of significance. In the recent years, there has been
widespread application of technology in the healthcare
domain. Some applications of machine learning in geriatric
healthcare include monitoring of vitals, analysis of sleep
patterns, behavioural studies, and fall detection—the fun-
damental objective of these applications being to detect and/
or predict abnormalities. Machine learning in fall detection
helps in intelligently detecting falls based on a subject’s
activity patterns. It may be easy for a fall detection system to
raise an alarm whenever a change in activity pattern is
observed; however, this would result in excessive alarms
being triggered falsely. If the fall detection system is designed
to be conservative in raising alarms, then it may not raise
alarms when actual falls occur. Hence, it becomes important
that false positives and false negatives in a fall detection
system are minimized, and the self-learning capability of
machine learning algorithms plays a vital role here. Other
performance parameters of machine learning algorithms
include specificity, sensitivity, and recall. Algorithms for fall
detection work on datasets generated by camera, environ-
mental sensors, or wearable sensors, and the objective of
research in this area is to improve the performance pa-
rameters of the algorithms when applied to fall detection.

In the context of fall detection, the outcome variables of
machine learning algorithms for binary classification would
be falls or ADLs. ADLs include various postures such as
sitting, standing, lying down, and slow or fast transitions
between these activities. In order to ensure that the outcome
variables predicted by a machine learning system are correct,
data cleaning and preprocessing are performed on the fall
dataset. Subsequently, feature extraction is performed so as
to shortlist the right set of features that will characterize the
dataset, and this set of features is used for creating a trained
model (see Figure 2). For research in machine learning-
based fall detection systems, new datasets for falls and ADLs
are created by experimentations in controlled environments,
or publicly available datasets are used for analyses. Apart
from the direct application of machine learning algorithms
to such datasets to detect a fall or an ADL, existing literature
also shows various techniques for feature extraction and
nullifying the errors induced by external factors such as
misplacement of sensors.

5. Fall Detection Using Wearable Sensors

There are two approaches to fall detection using wearable
sensors—threshold-based systems and machine learning-
based systems.

5.1. Threshold-Based Wearable Fall Detection Systems.
Threshold-based systems have been a widely researched
area. The focus of such research has been on multiple as-
pects, such as ability to detect falls and classify falls from
ADLs and near-fall conditions and sensor fusion of readings
from multiple sensor nodes.
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In [18], an algorithm based on first differences and first
derivatives of sum of accelerometer readings along X, Y, and
Z directions is described. This algorithm is real-time and
reliable and was capable of distinguishing jerky movements
from falls. Wu et al. [19] build a system with triaxial ac-
celerometer and proposes an algorithm based on thresholds
of sum acceleration and rotation angle information. This
combines threshold values of acceleration with quaternion
rotation, to conclude whether a fall has taken place or not.
The sensitivity and specificity of this algorithm are reported
to be better than pure threshold-based systems.

In systems where only accelerometer is used, the ac-
curacy of threshold-based fall detection may not hold true in
all conditions. Sensor fusion techniques have been experi-
mented in some cases, where sensors other than acceler-
ometers have been applied. For example, in [20], the author
makes use of an accelerometer combined with an HRV
sensor. The signals from the accelerometer are analyzed for
abnormalities in movements. The signals from HRV sensor
are analyzed for abnormalities in heart rates induced by
anxiety at the time of fall. Both the analyses are threshold-
based and performed independently, and a fall is concluded
to have occurred if both report the occurrence of a fall. The
accuracy of the ability to distinguish falls from identical
activities in this study was reported to be between 96% and
100%. In [21], a three-step algorithm is proposed based on
activity intensity analysis, posture analysis, and transition
analysis, with signals reported by accelerometer and gyro-
scope. Results show sensitivity of 91% and specificity of 92%,
in being able to separate falls from ADLs and near-fall
conditions. In addition to the application of ML algorithms
to multiple wearable sensor node readings, there have also
been experiments on building context around the sensor
readings from the surroundings. In [22], the authors con-
sider acceleration, pulse, and oxygen saturation of the
subject via an Android phone, combined with context
awareness being incorporated by PIR motion, door contact,
pressure mats, and power usage detectors. Sensor fusion
among these disparate sources is achieved by Bayesian
networks to perform fall detection.

Chen et al. [23] use microelectromechanical system
(MEMS) accelerometers for fall detection. It says that in the
experiments that the authors conducted, setting thresholds
separately for the 3 axes did not work well. Hence, the norm of
the 3 axes was taken, and a threshold was set for the norm. The
authors note that there is scope for improvement in perfor-
mance if the design is customized, since the acceleration
profiles vary from person to person depending on his physique.

Tsinganos Skodras [24] compiles various sensor fusion
techniques applied for fall detection and also summarizes
their performance results in the context of fall detection. In
most cases highlighted in this study, the sensors used were
accelerometers and gyroscopes. In our research too, we find
that although there are cases where multiple sensors are
used, most of the research studies use only IMU-based
sensors. The lack of application of threshold-based mech-
anisms with sensor fusion techniques could be because of the
limited capabilities that a pure threshold-based system
presents in decision making under dynamic uncertainties.
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FiGURE 1: Taxonomy of machine learning algorithms.

algorithms

Threshold-based algorithms are typically designed to
minimize computational overhead. However, the threshold
values may vary with the placement of sensors and indi-
vidual activity patterns. In [25], the authors state that the
thresholds and positioning of sensors impact the accuracy of
fall detection. They conducted experiments by placing the
sensors on the shoulder, waist, and foot of the subjects. A
series of observations were made by adjusting both the
thresholds of acceleration for fall detection and the place-
ment of sensors for improving the performance of the
system. Sensor placement on the waist resulted in lesser false
positives than that on the shoulder and foot.

In order not to rely only on numerical thresholds set on
acceleration, Kostopoulos et al. [26] consider the subject’s
rebound and residual movements in the postfall phase for
fall detection, in addition to a threshold-based analysis of
accelerometer data. The maximum and minimum thresholds
of acceleration over a short duration of time are used to
determine occurrence of a fall. The rebound is calculated as
the difference between this max and min thresholds. The
classification of fall is done subsequently, again based on the
acceleration values. The postfall analysis is used to determine
the impact of the fall, which in turn decides whether an
alarm raised to the caretaker has to be cancelled or not.

There are also systems that have been proposed which
work based on sensors embedded in mobile phones. A
disadvantage with such systems is that the subject should
remember to charge and carry mobile phones as a pre-
requisite for the system to detect falls. Another drawback is
that not all mobile phones may come equipped with the
required sensors. There is also the possibility of false posi-
tives caused by mobile phone drops. Chaitep and Chawachat
[27] proposed a threshold-based detection method which
makes use of G-force values derived from accelerometer
readings to identify falls and smartphone drops. The algo-
rithm consists of 3 phases—checking for a smartphone drop,
detecting a fall, and fall confirmation.

A snapshot of recent research on fall detection using
threshold-based wearable systems is presented in Table 1. In
threshold-based systems, a maximum value for the param-
eters read by sensors such as an accelerometer or gyroscope is
predefined. A measured value beyond this threshold is an
indicator of an abnormal event. Such systems are simple to

implement and are computationally less intensive. However,
there are some drawbacks in such system, as detailed above.
Setting a wrong threshold may lead to lower accuracies in fall
detection. Also, the thresholds themselves may be different
across subjects because of differences in their ADL patterns.
The alternative machine learning-based approaches use
supervised or unsupervised algorithms on large datasets to
train classifiers and thus build the ability to recognize a fall.
The model thus trained can be used to detect falls for other
input data. This is described below.

5.2. Machine Learning-Based Wearable Systems for Fall
Detection. While threshold-based systems have been pop-
ular because of its low computational overhead, it could be
prone to more false positives and false negatives, given that
the thresholds themselves may be affected by various factors.
As a result, machine learning algorithms for fall detection
have been a much researched area. There has been extensive
research into the efficiencies of various machine learning
techniques for fall detection. For example, de Quadros et al.
[28] compare threshold-based mechanism and machine
learning-based mechanisms for fall detection applied on
data generated by accelerometer, gyroscope, and magne-
tometer. The paper concludes that the machine learning-
based mechanism yielded much better results than the
threshold-based solutions.

Machine learning-based techniques differ from each
other in multiple factors—the feature set used, sensors
employed, placement of sensors, algorithms applied, dataset
used, performance parameters monitored, and so on. There
are studies that focus primarily on the application of su-
pervised learning suited to fall detection using wearable
sensors with good performance results. Ozdemir and Bar-
shan [29] take into account features of acceleration, rate of
turn, and the strength of the Earth’s magnetic field along
three perpendicular axes to detect a fall. The algorithm used
distinguishes falls from ADLs using six machine learning
techniques: kNN, least squares method (LSM), SVM,
Bayesian decision making (BDM), dynamic time warping
(DTW), and artificial neural networks (ANNs). The factors
monitored for performance comparison are sensitivity,
specificity, accuracy, true positives, true negatives, false
positives, and false negatives. The observation was that KNN
and LSM methods do not miss any falls and hence were
concluded as reliable classifiers. Choi et al. [30] compare ML
algorithms for fall detection using a single node and two
nodes. The results reported an accuracy of 99.4% for clas-
sification, with single node consisting of a 3-axis acceler-
ometer and a 2-axis gyroscope, worn at the chest level. With
2 nodes, a second node with a 3-axis accelerometer and a 1-
axis gyroscope was worn on the thigh, in addition to the first
node worn at the chest. The accuracy in this case was 99.8%.
Naive-Bayes classifier gave the best results in both cases. In
[31], the dataset used was generated from accelerometer and
gyroscope, placed at the waist level. Feature extraction was
performed using windowing technique, feature selection
using rank-based system, and classification using Naive-
Bayes, LSM, ANN, SVM, and kNN algorithms. kNN, ANN,
and SVM had the best performance results compared to
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FiGUure 2: Flow diagram for machine learning-based model building.

TaBLE 1: Threshold-based systems for fall detection using wearable devices.

Reference Year Dataset used Sensors used

Sensor placement

Methodology Observed performance

Generated

Three-step algorithm
based on activity
intensity analysis,

. o0
[21] 2009 from Accelerometer, Chest, thigh posture analy51.s, and Sens%tlv‘lty 91 0A>
experiments gyroscope transition analysis, based Specificity = 92%
P on signals reported by
accelerometer and
gyroscope
Algorithm based on first
Generated differences and first
. derivatives of sum of Algorithm is reliable,
[18] 2011 from 3D accelerometer Not specified . . .
experiments accelerometer readings simple, and real time
P along X, Y, and Z
directions
Generated Quaternion algorithm Better sensitivity and
. . . specificity than
[19] 2015 from Accelerometer Waist using sum acceleration
. . . threshold-based
experiments and angle information .
algorithms
Analysis of signals from
Generated Accelerometer. HRV accelerometer for Accuracy =96% to 100%
[20] 2015 from sensor ’ Not specified movement detection and (depending on the type
experiments HRYV sensor for stress of movement)
detection
Threshold-based Accuracy =100%
Generated  3-Axis accelerometer, 3- method, applied to Specificity =91.1%
. ’ Shoulder, waist, and  acceleration and Euler’s (shoulder), 100% (waist),
[25] 2017 from axis gyroscope, 3-axes . o
experiments magnetometer foot angle (yaw, pitch, and 78.5% (foot)
roll), run on a mobile  Sensitivity = 100% (for
phone all three placements)
PSP
3-Phase detection based Specificity =72% when
Generated on thresholds to identify compared to the
[27] 2017 from G-force sensor Smartphone specificity of 31% with 2-
. falls and smartphone
experiments phase threshold-based
drops .
algorithm
Generated MEMS accelerometers Waist + network of  Signal analysis based on
[23] 2017 from RE sionals > fixed motes within the threshold-based Not specified
experiments & home methods

LSM and Naive-Bayes. Results show an accuracy of 87.5%,
sensitivity of 90.70%, and specificity of 83.78%, for kNN.
Jefiza et al. [32] use backpropagation neural network
(BPNN) for fall detection, with data collected from 3-axis
accelerometer and gyroscope, and reported an accuracy of
98.182%, precision of 98.33%, sensitivity of 95.161%, and
specificity of 99.367%. Hossain et al. [33] also attempt to
distinguish falls from ADLs and compares SVM, kNN, and
complex tree algorithms applied on data generated by ac-
celerometers. The paper compared the performance of these
algorithms with respect to accuracy, precision, and recall, on
ADLs and four types of falls (forward, backward, right, and
left). It was observed that the accuracy and precision of SVM
were the highest, while complex tree performed better in

terms of recall analysis. Machine learning algorithms, much
like threshold-based techniques, have also been applied to
sensors integrated with mobile phones. In [34], a method for
fall detection an classification by machine learning using
mobile phones is proposed; the features used were acceler-
ation and the algorithms compared were SVM, sparse mul-
tinomial logistic regression (SMLR), kNN, decision trees, and
Naive-Bayes. Results showed that both SVM and SMLR were
able to identify a fall with 98% accuracy and classify the type of
fall with 99% accuracy.

Despite supervised learning techniques finding more
application in fall detection, as detailed above, the appli-
cation of unsupervised learning is also not uncommon. In
fact, Lee et al. [35] claim that supervised learning has
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deficiencies in terms of abnormality detection and activity
classification. The authors hence experimented with unsu-
pervised learning for fall detection. Their algorithm creates
an activity probability model of a subject’s past activity
information from accelerometer readings. This model is
then used to determine whether an activity is abnormal or
not. The advantage of this approach is that it achieves a
certain level of personalization in fall detection since the
probability density function which is central to activity
comparison is developed per subject.

One of the observed drawbacks of wearable sensors is
that the accuracy of fall classification and detection is im-
pacted by the placement of the sensors. In [36], the authors
generated a dataset with accelerometer and gyroscope, worn
around the waist, and applied SVM, boosted and bagged
decision trees, kNN, k-mean, and hidden Markov model
(HMM). It was observed that fine kNN produced an ac-
curacy of 99.4%. Yu et al. [37] attempt to reduce errors
caused by incorrect sensor positions and details an HMM-
based fall detection system for the same. Sensor orientation
calibrations are applied on HMM classifiers to resolve issues
arising out of misplaced sensor (3-axis accelerometer) lo-
cations and misaligned sensor orientations. This paper re-
ports sensitivity of 99.2% on an experimental dataset, 100%
for a real-world fall dataset.

Guvensan et al. [38] focus on energy efficiency in fall
detection. A combination of threshold-based method and
ML-based algorithms—K-Star, Naive-Bayes, and J48—was
applied to data generated from a 3D accelerometer attached
to a smartphone. The algorithm employed three tiers—a pre-
elimination tier to apply initial filtering, a double thresh-
olding tier to detect harsh falls and physical activities oc-
curring at a slow pace, and a machine learning tier to
recognize slow falls and fall-like events using ML techniques.
Energy saving was reported to be 62% compared with ML-
only techniques, while the accuracy with the hybrid model
was 93%. The hybrid approach was superior with respect to
sensitivity and performed comparable to the threshold-
based and ML-based approaches in terms of specificity.

There have also been various techniques to improve the
performance of the algorithms used for fall detection, by
optimizing preprocessing of data, influencing the feature
selection/extraction, and applying ensembles to fall detection.

In [39], an example of a system that applies intelligent
preprocessing to the data before applying machine learning
for fall detection is given. In this, the authors apply a
windowing technique to divide the sensor signals into
windows or time segments. Classification algorithms were
then applied to each window, to determine whether the
activity in that window corresponded to a fall. In this, two
Sun SPOT sensors attached to the chest and thigh were used,
and it was observed that Naive-Bayes classifier gave 100%
accuracy and 87.5% sensitivity. Other algorithms used were
SVM, OneR, C4.5 (J48), and neural networks. The objective
of [40] was to distinguish falls from ADLs. In this study, the
wearable fall detection system comprises a wearable motion
sensor and a smartphone. The system works by analyzing not
instantaneous values of acceleration and angular velocities,
but by applying sliding windows to analyze streams of data.

It applies Kalman filter to preprocess the raw data for noise
reduction and Bayes network classifier for fall detection. The
algorithm presented an ability to distinguish simulated falls
from ADLs with an accuracy of 95.67%, sensitivity of 99.0%,
and specificity of 95.0%. Zhao et al. [41] also apply a win-
dowing technique to real-time data obtained from a triaxial
gyroscope. The data were divided into a set of consecutive
and partially overlapping windows. Three time domain
features (resultant angle change, maximum resultant an-
gular acceleration, and fluctuation frequency) were extracted
from the data windows. Decision tree classifier was then
used to classify each window as a fall or a nonfall event. The
detection algorithm gave accuracy of 99.52%, precision of
99.3%, and recall of 99.5%. Another recent research [42]
compares the performance of 4 algorithms—ANN, kNN,
quadratic SVM, and ensemble bagged tree—in two steps.
First, only acceleration and angular velocity data are used.
Then, new features that improve the performance of the
classifier are extracted from the power spectral density of the
acceleration. The accuracy of the algorithms is observed to
have increased after applying feature extraction techniques.

The objective of [43] was to test the impact of optimal
feature selection on the accuracy of fall detection. The
features of accelerations in different parts of the body are
collected through wearable devices. Bayesian framework was
applied to select the optimal features from the data generated
by the wearable devices, and the weight of each feature was
calculated, after which training was done based on the
optimal feature set. It was observed that improved classi-
fication led to better accuracy, sensitivity, and specificity
when compared to Naive-Bayes and C4.5 classifications.
Tsinganos and Skodras [44] analyze accelerometer data to
extract a set of 14 features across time domain, statistical
measures, and continuous wavelet transform. ENN was
applied to remove outliers and then trained using kNN
classifier to distinguish falls from ADLs. To negate indi-
vidual-specific patterns, personalization was applied by
appending the features of ADLs to the training dataset. The
other models used for comparison were ANN, SVM, and J48
decision tree. The performance of kNN was the highest.

In [45], the authors propose EvenT-ML, in which a fall
event was aligned with three stages of falls (preimpact,
impact, and postimpact) using a finite state machine. The
experimentation was based on data generated by acceler-
ometers, and features were extracted from each phase.
Classification and regression tree (CART), kNN, logistic
regression (LR), and SVM were used to train the classifiers.
The authors observe better results for EvenT-ML than the
commonly used data segmentation techniques of fixed-size
nonoverlapping sliding window (FNSW) or fixed-size
overlapping sliding window (FOSW), where feature ex-
traction is performed on all data segments. The finite state
machine ensures that feature extraction gets executed only
when the subject is in the active state, and this reduces the
computational complexity of this method.

Recent research has also focused on the application of
ensembles to fall detection. Hsieh et al. [46] use a combi-
nation of threshold-based and knowledge-based approach
based on SVM, on data from a triaxial accelerometer, to



detect a fall event. Absolute falls and ADLs are detected
using thresholds on acceleration. In order to distinguish falls
from ADLs in cases where the peak values of acceleration
overlap, a knowledge-based approach is applied. Using this
approach, sensitivity, specificity, precision, and accuracy
were over 99%. Genoud et al. [47] propose a system for soft
fall detection using ML in wearable devices. The feature sets
used were linear acceleration and gyroscope readings, and
the algorithms compared were decision tree, decision tree
ensemble, kNN, and multilayer perceptrons (MLP). The
experiments showed that decision tree ensemble out-
performed the results obtained by the other algorithms. In
[48], a comparison of Naive-Bayes classifier, decision trees,
random forests, random committee, and lazy learning (IBk)
algorithms for activity detection was done. This used data
generated by motion, acceleration, or inertial sensors em-
bedded in a smartphone worn by the subjects. Naive-Bayes
classifier performed reasonably well for a large dataset, with
79% accuracy, and it was also the fastest in terms of building
the model taking only 5.76 seconds. Random forest was
better in terms of both accuracy and model building time,
with 96.3% accuracy and 14.65 seconds model building time.
k-Means clustering performed poorly with 60% classifica-
tion accuracy and 582 seconds model building time. Kao
et al. [49] use an ensemble of spectrum analysis, with GA-
SVM, SVM, and C4.5 classifiers. The sensor readings were
from 3-axis accelerometers. The best results were given by
GA-SVM, with an accuracy of 94.1%, sensitivity of 94.6%,
and specificity of 93.6%. Jahanjoo et al. [50] propose a fall
detection algorithm based on data from 3-axis accelerom-
eters, using PCA for dimension analysis and a multilevel
fuzzy (MLF) min-max neural network, and compared the
performance with MLP, kNN, and SVM. Using only 5 di-
mensions of features, MLF performed better than the other
algorithms in terms of sensitivity, while the specificity was
comparable for all four algorithms.

Hussain et al. [51] apply kNN, SVM, and Random Forest
algorithms to not just detect falls, but also to identify the
falling pattern and identify the activity that may have caused
the fall. It is reported that the fall detection accuracy was
highest for KNN, while the accuracy for recognizing different
activities was highest for random forest. Yet another re-
search [52] attempts to find a correlation between sampling
rate and performance accuracy of machine learning models.
In this paper, the authors compare the performance of SVM,
Naive-Bayes, kNN, and decision trees with various sampling
rates of sensors. It is concluded that with sampling rates of
11.6Hz and 5.8Hz, SVM and radial basis function gives
accuracies of 98% and 97%, respectively. The research
suggests that a sampling rate of 22 Hz is sufficient for most
machine learning models to provide an accuracy of 97%.

Hakim et al. [53] propose a hybrid approach between
threshold and ML-based fall detection algorithms. In this, a
threshold-based algorithm is implemented to detect falls
while a supervised machine learning algorithm is used to
classify ADL. Data were collected from IMU sensors in a
smartphone. Four different classification algorithms were
used for detection and classification: SVM, decision trees,
kNN, and discriminant analysis.
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Our approach using SVM is also supported by the results
which show that activity recognition can be increased with
the accuracy level as high as 99%, when the combination of
acceleration, angular velocity, and orientation parameters
are utilized compared to using them separately.

The application of deep learning techniques for fall de-
tection using wearable devices has been an area of recent
interest. Musci et al. [54] describe an RNN model with LSTM
blocks on data generated by 3D accelerometers for fall de-
tection. The paper observes that though it is difficult to
distinguish high dynamic activities from falls, the approach
described achieves a better overall classification. Fakhrulddin
et al. [55] apply CNN to streaming time series accelerometer
data, collected from body sensor networks (BSN), for fall and
nonfall situations. In [56], a method of applying CNNs with 3
convolutional layers on data generated by accelerometers is
described. The activation function in each layer is rectified
linear unit (ReLU). However, the study indicates that scarcity
of public datasets based on accelerometer and gyroscope
makes it challenging to develop deep learning solutions for
this kind of data. Also, deep learning techniques require high
computational processors, which may not be well suited to the
constrained nature of wearable devices. Torti et al. [57] detail
the implementation of RNN architectures for constrained
embedded devices on a microcontroller unit (MCU), for fall
detection with triaxial accelerometers. The work also provides
an abstraction of formulas for memory, computing power,
and power consumption for the embedding of a generic RNN
architecture on an MCU.

Li et al. [58] describe fusion of data from a triaxial ac-
celerometer, a micro-Doppler radar, and a depth camera.
The paper analyses the impact of sensor fusion on the
performance of classifiers. The classification accuracy
attained by means of this fusion approach improves by
11.2% compared to radar-only use and by 16.9% compared
to the accelerometer. It was also observed that fusing in-
formation from three sensors increases the classification
accuracy to 86.9% with the quadratic-kernel SVM classifier,
and up to 91.3% using an ensemble classifier. Some studies
have applied sensor fusion in combination with deep
learning techniques for fall detection. For example, Dawar
and Kehtarnavaz [59] use CNN-based sensor fusion system
to detect falls and ADLs. Signals from depth camera and
wearable sensors (acceleration and angular velocity) are fed
as inputs into separate CNNs. The algorithm then fuses the
scores generated by these two CNNs to produce a classifi-
cation. Zhou et al. [60] also describe an approach of using 2
CNNs for initial processing of two types of inputs and
subsequent merging of the results of the two CNNs to
produce the final detection results. In this, the inputs are
obtained from radar signals to detect velocities, acceleration
of human body parts, and images from optical camera.
Other works along similar lines include references [61, 62].

Table 2 shows a snapshot of the recent research in the
application of machine learning to fall detection using
wearable systems. All experiments in the presented literature
are based on analysis of public datasets or falls simulated
under controlled environments. The table qualitatively
compares different algorithms for fall detection and
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TaBLE 2: Machine learning-based systems for fall detection using wearable systems.

Reference Year

Dataset used

Sensors/dataset used

Sensor placement (if
wearable system)

Methodology

Observed performance

(30]

3-Axes accelerometer,
2-axis gyroscope

Chest, thigh

Comparison of ML
algorithms for fall
detection using single
node and two nodes

Accuracy of
classification = 99.8%,
with 2 nodes—one on
the waist and one on
the knee
Naive-Bayes classifier
gave best results

[34]

Accelerometer

Mobile phone

Comparison of SVM,
SMLR, Naive Bayes,
decision trees, kNN,
and regularized logistic
regression for fall
detection

Support vector
machines and
regularized logistic
regression were able to
identify a fall with 98%
accuracy and classify
the type of fall (trips,
left lateral, slips, right
lateral) with 99%
accuracy. Naive-Bayes
reported least accuracy

(29]

Accelerometer,
gyroscope,
magnetometer

6 different positions on
the body

Comparison of k-NN
classifier, LSM, SVM,
BDM, DTW, and
ANNGs algorithms

k-NN classifier and
LSM gave above 99%
for sensitivity,
specificity, and
accuracy

(22]

2011 UCI dataset
2012 Generat'ed from
experiments
2014 Generat.ed from
experiments
2014 Generated from

experiments

Accelerometer

Mobile phone

Accelerometer data
from wearable sensors
to generate alarms for

falls, combined with

context recognition
using sensors in an
apartment, for
inferring regular
ADLs, using Bayesian
networks

Provides statistical
information regarding
the fall risk probability

for a subject

(48]

Publicly available

2015 activity recognition

dataset

Accelerometer,
gyroscope

Smartphone

Comparison of Naive
Bayes classifier,
decision trees, random
forests, classifiers
based on ensemble
learning (random
committee), and lazy
learning (IBk)
algorithms for activity
detection

Naive Bayes classifier
performs reasonably
well for a large dataset,
with 79% accuracy, and
it is fastest in terms of
building the model
taking only.5.76 seconds
Random forests are
better in terms of both
accuracy and model
building time, with
96.3% accuracy and
14.65 seconds model
building time. k-Means
clustering performs
poorly with 60%
classification accuracy
and 582 seconds model
building time

Generated from

2016 .
experiments

3-Axes accelerometer

Not specified

Comparison of
decision tree, decision
tree ensemble, kNN,
neural networks, MLP
algorithms for soft fall
detection

Decision tree ensemble
was able to detect soft
falls at more than
0.9AUC
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Reference Year

Dataset used

Sensors/dataset used

Sensor placement (if
wearable system)

Methodology

Observed performance

k-NN, ANN, SVM had

. . the best
Comparison of Naive- accuracy—results for
[31] 2016  MobiFall dataset Accelerometer, User’s trouser pocket Bayes, LSM, AI.\TN’ kNN:
gyroscope SVM, kNN algorithms B
for fall detection Accuracy =87.5
Sensitivity = 90.70
Specificity = 83.78
[26] 2016 Genera'Fed from 3-Axis accelerometer Smartwatch Thr.eshold—based. Accuracy =96.01%
experiments analysis of acceleration
o, e With Kalman filtr
[40] 2017 Genera'Fed from Accelerometer, Vest window, and Bayes Accu}‘a}cy:95.67%,
experiments gyroscope . Sensitivity = 99.0%
network classifier for Specificity = 95.0%
fall detection pecticty i
Energy saving =62%
compared with ML-
only techniques
Sensitivity = 77%
(thresholding only),
Combination of 82% (ML only), 86%
Generated from threshold-based and (hybrid)
[38] 2017 experiments 3D accelerometer Smartphone ML-based Specificity = 99.8%
algorithms—K-Star,  (thresholding only),
Naive Bayes, J48 98% (ML only), 99.5%
(hybrid)
Accuracy =88.4%
(thresholding only),
90% (ML only), 92.75%
(hybrid)
Combination of Using a knowledge-
threshold-based and based algorithm:
Generated from . knowledge-based Sensitivity = 99.79%
[46] 2017 experiments 3-Axes accelerometer Waist approachgbased on Speciﬁcit;, =98.74%
SVM to detect a fall Precision =99.05%
event Accuracy =99.33%
. GA-SVM gave best
Spect.rum apalyms, results with
[49] 2017 Generat.ed from 3-Axes accelerometer Smartwatch combined with GA- Accuracy =94.1%
experiments SVM, SVM, and C4.5 Sensitivity = N
classifiers ensmv?ty =94.6%
Specificity = 93.6%
Comparison of Multilevel fuzzy min-
multilevel fuzzy min-  max neural network
[50] 2017  MobiFall dataset  3-Axes accelerometer Not specified max neural network,  gave best results with
MLP, KNN, SVM, Sensitivity = 97.29%
PCA for fall detection  Specificity = 98.70%
Sensor orientation
calibration algorithm
5 locations on the  toresolve issues arising  Sensitivity = 99.2%
FARSEEING upper body - neck, out of misplaced (experimental dataset),
[37] 2017 dataset 3-Axes accelerometer cheIZE waist,yright side, sensor locatiI:)ns and lOg% (real-world fall
and left side misaligned sensor dataset)
orientations, HMM
classifiers
LWT-based frequency
Generated from domain analysis and Accuracy =100%
[11] 2017 3-Axes accelerometer Chest SVM-based time Sensitivity = 100%

experiments

domain analysis of
RMS of acceleration

Specificity = 100%
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Sensor placement (if

Reference Year Dataset used Sensors/dataset used Methodology Observed performance
wearable system)
Backpropagation Accuracy =98.182%
32] 2017 Generated from 3-Axis accelerometer, Waist neural network Precision = 98.33%
experiments 3-axis gyroscope (BPNN) for fall Sensitivity = 95.161%
detection Specificity = 99.367%
Generated from Naive-Bayes, SVM, Nalve_Bfez;(ﬁltiave et
[39] 2010 . Accelerometer Chest, thigh OneR, C4.5 (J48), 0
experiments neural networks Accuracy =100%
Sensitivity = 87.5%
Bavesian framework Better accuracy with
Generated from Different parts of the Y . improved classification
[43] 2016 . Accelerometer for feature selection, -
experiments body . than Naive-Bayes and
Naive-Bayes, C4.5
C4.5
SVM, KNN, complex Accuracy and precision
Generated from tree algorithms applied of SVM were the
[33] 2016 . 3D accelerometer Chest highest
experiments on data generated by .
Recall was highest for
accelerometers
complex tree
ENN + kNN (where For ENN + kNN:
Generated from Accelerometer . ENN was applied to Sensitivity = 95.52%
[44] 2017 experiments (MobiAct dataset) Not applicable remove outliers), Specificity = 97.07%
ANN, SVM, and J48 Precision =91.83%
Generated from Accuracy =99.52%
[41] 2018 experiments Triaxial gyroscope Waist Decision tree Precision =99.3%
P Recall =99.5%
3D if)csilsr?-rgéezni]) Event-ML, Better precision and F-
Covent dataset gy dalj[)aset & classification and scores with Event-ML
[45] 2018 Si ngall datase t, Accelerometer Chest, waist regression tree than FOSW and
R (CART), kNN, logistic FNSW-based
gyroscope-SisFall . h
dataset regression, SVM approaches
Extraction of new
features from
Accelerometer ANN, kNN, QSVM, aailcetljarlitiglloiir':d
[42] 2019  Public datasets ’ Chest, thigh ensemble bagged tree . 5 Y
gyroscope (EBT) improved the accuracy
of all 4 classifiers.
Accuracy of EBT was
highest (97.7%)
Accuracy for fall
detection was the
highest for kNN
[
[51] 2019 SisFall dataset Accelerometer, Waist kNN, SVM, random  (99.8%). A.c'curacy for
gyroscope forest recognizing fall
activities was the
highest for random
forest (96.82%)
Accuracy and
SisFall dataset, . sensitivity of SVM were
[52] 2018  generated from Accelerometer Chest/thigh, waist SVM, kNN’. Naive- the highest (97.6% and
. Bayes, decision tree o .
experiments 98.3%, respectively) for
both datasets
Without risk
1 M . V)
Accelerometer, Wrist, waist, chest kNN, Naive-Bayes, Categ?ifelcziz?o(iln.titb for
[63] 2018 UMA dataset gyroscope, ? ? ’ SVM, ANN, decision L
ankle With risk
magnetometer tree

categorization: 85% for
decision tree
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Reference Year

Dataset used

Sensors/dataset used

Sensor placement (if
wearable system)

Methodology

Observed performance

CNN-based models for

Highest accuracy

[56] 2019 Public datasets Accelerometer Not specified feature extraction reported = 99.86%
Highest accuracy
reported for fall

SisFall dataset- detection: 83.68%

[57] 2018 original and Accelerometer Not specified RNN (before manual

manually labelled labelling), 98.33%
(after manual
labelling)
Generated from Accelerometer,

[36] 2018 experiments gyroscope, Near the waist kNN Accuracy =99.4%

magnetometer

[16] 2018 Generat.ed from Accelerometer Waist Decision tree Accqrflcy: 91.67%

experiments Precision =93.75%
Highest accuracy (after
[54] 2018 SisFall dataset Accelerometer Waist RNN with LSTM hyperparameter
optimization) = 97.16%
Generated from Accelerometgr, . Right, left, and front SVM, de':cisi‘on' tree, Highest
[53] 2017 . gyroscope, proximity kNN, discriminant accuracy =99% for
experiments pockets .
Sensor, compass analysis SVM
Generated from Depth camera, . Accuracy of fall
(591 2018 experiments accelerometer Waist CNN detectior? =100%
CNN-based analysis
[55] 2017 Public datasets Accelerometer Not specified on time series Accuracy =92.3%
accelerometer data
converted to images
Overall accuracy of
ensemble classifier was
the highest, after fusion
of radar,
Ensemble subspace accelerometer, and
(58] 2017 Generated from Accelerometer, radar, Wrist discriminant, linear camera=91.3%. This is
experiments depth camera discriminant, kNN, an improvement of
SVM 11.2% compared to
radar-only and 16.9%
compared to
accelerometer-only
results
Without sensor
fusion:
Accelerometer
Accelerometer precision =86.23%
[62] 2018 Generated from gyroscope , Hip SVM, random forest Accelerometer
experiments ) ’ recall =87.46%
magnetometer

With sensor fusion:
precision = 94.78%,
recall =94.37%, with
random forest

summarizes their performance parameters such as accuracy,

sensitivity, and specificity where available.

6. Biological Risk Factors on Falls

The risk of fall exhibited by a subject could be influenced by
multiple factors such as age, biological and physiological
health profile, and environmental conditions. We did a

survey on the factors that impact fall in the elderly. Existing

literature shows that the risk of fall based on various factors
is presented in the form of odds ratio, based on actual
observations. OR is the ratio of the probability of an event of
interest occurring to the probability of that event not oc-

curring. It helps in estimating the relationship between two
binary variables. Andrade [64] explains the significance of
OR in the medical field, especially in cases where logistic
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regression analyses are applied, to find out the impact of a
risk factor on an outcome variable.

Bird et al. [65] study the impact of decrease in postural
stability over short time frame on fall rates and observes that
fall rates increase when postural stability decreases, despite
maintaining leg strength. Environmental factors also play a
role in a subject’s fall rate. In some of the experiments that
we had performed, we observed that the accuracy of fall
detection increased with the addition of health profile as a
feature set. We present a survey on the biological risk factors
on falls.

Current research indicates the correlation between a
person’s biological health and the risk of his/her falling.
Kronfol [66] details results from comprehensive studies
conducted on falls and cites causes of falls to be primarily
environment-related, gait disorders, vertigo, drop attack,
confusion, postural hypotension, and visual disorders. The
study also specifies the odds ratio of various risk factors such
as weakness, balance and gait deficits, mobility, and cog-
nitive impairments, on the risk of falling. The impact of
behavioural risk factors such as ADL characteristics and
environment on falls is also explained. In [67], the authors
performed experiments on 163 elderly men and women aged
60-95 years and found that history of falls, poor vision, use
of multiple medications, chronic diseases, use of walking
aids, vertigo, and balance problems were associated with falls
among the elderly population living in long-term care
homes. Graafmans et al. [68] constructed a risk profile for
recurrent falls that included five risk factors: mobility im-
pairment, dizziness upon standing, history of stroke, poor
mental state, and postural hypotension and found out the
probability of recurrent falls on people exhibiting one or
more of these risk factors. In [69], a method based on
performing chi-square tests to compare fall risk and overall
injury risk with various demographic, behavioural, and
health-related variables is proposed. Odds ratios for the
association of each risk factor with the outcome were es-
timated using bivariate analyses and multivariate logistic
regression models.

There have also been studies on risk factors of falls on
subjects with specific conditions. For example, Stanmore
etal. [70] observe that, in subjects with rheumatoid arthritis,
risk factors include swollen joints, use of psychotropic
medications and steroids, poor balance, and VAS fatigue
score. This study did not uncover any relation between
gender or age and risk of falling, which may be indicative of
the fact that risks arising from rheumatoid arthritis override
those specific to age or gender.

According to Li et al. [71], the major risk factors resulting
in fall-related injuries are intrinsic and not situational or
environment-related. Vertigo, weakness of the legs, and
history of cancer were found to be risk factors. Cattelani et al.
[72] propose a system for fall risk estimation in the elderly.
This study leverages the already existing analysis of fall risk
and deduces a fall probability for a subject based on sta-
tistical methods.

A study on the impact of gender on the probability of fall
was inconclusive. Chang and Do [73] study the implications
of gender on risk factors for falls among seniors. The factors
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having high impact in men were different from those in
women. For example, in men, history of stroke presented an
OR of 1.91, while in women, it was 1.51, and the OR for
arthritis was 1.27 in men and 1.36 in women. The study
highlights the differences between men and women in the
associations between falls and various biological and medical
factors. However, due to various limitations, further re-
search is required to better understand these gender dif-
ferences and their implications for risk assessment. Gale
et al. [74] report that there are certain gender-specific risk
factors, such as incontinence (OR=148) and frailty
(OR = 1.69) in women, and older age (OR = 1.02), high levels
of depressive symptoms (OR =1.33), and being unable to
perform a standing balance test (OR=3.32) in men. The
authors suggest that although some homogeneity between
the genders in the risk factors that were associated with falls
were observed, gender should be taken into account in
designing fall-prevention strategies because of the existence
of several gender-specific risk factors. Table 3 summarizes
the various biological factors that impact a subject’s prob-
ability of falling.

7. Challenges in the Design of Fall
Detection Systems

From our analysis, an observation is that machine learning
algorithms applied to various datasets in the literature survey
produce varying degrees of accuracy. This indicates that the
performance of the algorithms is dependent on various
factors such as the type and placement of the sensors, the fall
pattern, related thresholds if any, the characteristics of the
dataset, and possibly the preprocessing that has been applied
to it. Most literature on wearable sensor-based methods
indicates that the performance of the algorithms varied with
the position of the sensors. The thresholds are dependent on
the subject’s physical parameters, and hence, the perfor-
mance of threshold-based methods depends on the cus-
tomizations set according to features of the experimentation
environments.

The lack of datasets that support research in this do-
main is also to be noted. Some research depends on public
datasets—while these are useful to perform initial com-
parative studies, the fact that no more information than
what is provided by the dataset would be available is a
hindrance in proceeding further with research using such
datasets. Most research has been done on datasets gener-
ated via experimentations. For obvious reasons, the ex-
periments for simulating falls in all these cases were
conducted in controlled environments, which may not
reflect real-life situations accurately. Again, for obvious
reasons, real datasets on fall patterns of the elderly are not
available.

8. Conclusions and Future Directions

In this paper, we performed a brief comparison of fall de-
tection systems that rely on environmental sensor-based,
vision-based, and wearable sensor-based techniques. We
then did a comprehensive survey of application of machine
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TaBLE 3: Biological risk factors on falls.

Reference Year Population demographics

Relevant parameters [odds ratio]

[69] 2012 years and older

Adults 65 years and older, with focus on adults 85

Activity limitation due to health problems [1.13]; use
of assistive devices [2.18]; diabetes [1.2]; history of
stroke [1.32]

[70] 2013 Adults 18-88 years with RA

Swollen or tender lower extremity joints [2.0]; history

of stroke or Parkinson’s disease [1.8]; history of >2

falls in previous 12 months [4.3]; symptoms of feeling
dizzy or unsteady [1.8]

[66] 2007 Older adults

Weakness [8]; balance deficit [5]; gait deficit [5];
visual deficit [9]; mobility limitation [8]; cognitive
impairment [5]; impaired functional status [4];
postural hypotension [5]

[67] 2016 Adults aged 60-95 years

Visual deficit [1.851]; chronic conditions [1.633];
vertigo [2.237]; imbalance [3.105]; fear of falling
[3.227]; history of previous falls [5.661]; postural
hypotension [0.804]; use of assistive devices [2.139];
hearing impairment [1.543]

[68] 1996

Adults 70 years or older living in homes for elderly

Mobility impairment [5.0]; dizziness upon standing
[2.3]; history of stroke [3.4]; postural hypotension
[2.0]; urinary incontinence [2.6]; use of walking aid
[3.2]; visual deficit [1.7]; history of falls [3.5]

[71] 2016

Medical records of elderly hospitalized patients

Cancer [2.71]; vertigo [4.35]; weakness of lower legs
[2.15]

learning in wearable sensor-based FDSs. The survey
was done by taking into account the type of sensors
used, their positioning, the dataset used for analysis, the
machine learning algorithms employed, and their perfor-
mance summary results. We also presented a survey of
biological factors affecting a person’s probability of fall.
Our findings indicate that wearable systems for fall de-
tection have the advantage of being less intrusive, especially
for elderly people, and ML techniques have the ability to
detect falls to a reasonable accuracy level. However, a
wearable system consisting of a device such as a wrist band
alone is insufficient to meet the requirements of a com-
prehensive FDS.

From our study, we have observed that systems capable
of generating alerts on detecting falls have been designed,
but they fall short in the ability to activate adequate alerts,
while minimizing the cost and power requirements. For
example, there are vision-based systems which work based
on videos/images captured by a camera. Such systems may
be expensive and have higher power and bandwidth re-
quirements. Also, parameters such as pulse, heart rate,
temperature, SPO,, and electrodermal activity, which
would increase the accuracy of the fall detection algo-
rithm, are not taken into account in such systems because
they rely solely on image processing mechanisms. Non-
vision-based systems (e.g., wearable systems) detect falls,
but they are decoupled from video/image inputs such as
those generated by a camera. The flip side is that false
positives and false negatives may tend to be ignored; for
example, a false positive would trigger unnecessary action
from the caregivers, and a false negative may not get the
attention it deserves, leading to potentially dangerous
situations. We observe that there is scope for develop-
ing systems that combine sensor readings with image

inputs—for example, those that support activation of
cameras to take pictures in the event of detection of a fall,
to assist a remote caregiver.

The literature survey does not show any indication of
having considered a person’s biological parameters or health
history into a fall detection algorithm. We observe that while
there has been considerable research into finding out the
correlation between a person’s health profile and his
probability of fall (as indicated by the odds ratio), not much
has been explored in evaluating the impact of this odds ratio
on the performance parameters of various ML algorithms
for fall detection.

We also note that there is no integrated system that
considers the fall risk to detect falls and generate alerts and
camera-assisted observations. In addition, while the
existing systems focus extensively on fall detection, there is
scope for building an FDS that implements a closed-loop
feedback—one that learns from a subject’s fall patterns/
history and change in physiological parameters at the time
of fall and trains the fall detection algorithm based on these
factors, to enable accurate profiling.

Our team is working on building a fall detection system
that applies machine learning techniques for fall detection of
the elderly. Our work on the comparison of the performance
of various machine learning algorithms on a public dataset
for fall detection is given in [63]. As next steps, we plan to
work on data generated by a combination of IMU and vital
signs sensors which are designed to be integrated into a wrist
band. These wrist bands would be worn by elderly people
staying in old-age care homes, where the end-to-end system
is meant to be deployed. The system is also being designed to
have the capability to generate alerts accurately and in a
timely manner, in the event of an abnormality. The mod-
erately mobile environment that the deployment pattern
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presents has an impact on the network design to support the
end-to-end functionality.
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