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and Xin Gao1,2,11,*

SUMMARY

Diagnosis of primary brain tumors relies heavily on histopathology. Although
various computational pathology methods have been developed for automated
diagnosis of primary brain tumors, they usually require neuropathologists’ anno-
tation of region of interests or selection of image patches on whole-slide images
(WSI). We developed an end-to-end Vision Transformer (ViT) – based deep
learning architecture for brain tumor WSI analysis, yielding a highly interpretable
deep-learning model, ViT-WSI. Based on the principle of weakly supervised ma-
chine learning, ViT-WSI accomplishes the task of major primary brain tumor
type and subtype classification. Using a systematic gradient-based attribution
analysis procedure, ViT-WSI can discover diagnostic histopathological features
for primary brain tumors. Furthermore, we demonstrated that ViT-WSI has high
predictive power of inferring the status of three diagnostic glioma molecular
markers, IDH1 mutation, p53 mutation, and MGMT methylation, directly from
H&E-stained histopathological images, with patient level AUC scores of 0.960,
0.874, and 0.845, respectively.

INTRODUCTION

Definitive diagnosis of primary brain tumor almost always requires histopathology. Histopathological diagnosis

of tumors usually requires pathologists with years of experience to manually examine histological details at

various levels of magnification and is inherently laborious. This is further complicated by the diversity of brain

tumor histological subtypes and the subtlety to differentiate among them. In this way, pathologists aremet with

complicated criteria for diagnosis, and subjectivity becomes unavoidable. Therefore, significant interobserver

variability has been observed retrospectively in brain tumor diagnosis, especially among gliomas and menin-

giomas.1,2 In recent years, because of the improved understanding of tumorigenesis and advances inmolecular

biology experimental techniques,molecular biology assays are having amore important role in the brain tumor

diagnosis workflow. As specified in the 2016WHO classification of tumors of the central nervous system (CNS)3,

somemolecular biomarkers, such as somatic mutations in isocitrate dehydrogenase (IDH) and 1p/19q co-dele-

tion, have become essential in the diagnosis of certain subtypes of glioma. Compared to histopathological

analysis, molecular biology assays, although much more objective and reliable, are often costly and may

have less availability to economically underdeveloped regions.4

In recent years, significant advances in digital pathology hardware have pushed the field of histopathology into

the ‘big data’ era. More and more healthcare institutes worldwide have adopted the usage of high-throughput

microscopic slide scanners in their daily workflow, in which histopathology slides are digitalized into whole-slide

images (WSIs) for reliable long-term data storage.5 Correspondingly, on the software side, new computational

methods have begun to emerge for automatic and objective histopathology image analysis.

With the advance of deep learning-based computer vision algorithms, much research has been conducted

to automate pathologists’ diagnosis from different aspects, from the early works on tumor segmentation6

to histopathological subtyping,7 grading,8 and prognosis.9 More recently, deep learning-based methods
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have been shown to ‘see the unseen’ from H&E-stained histopathology slides, in which they are shown to

have predictive power over the presence of underlying biomarkers, such as somatic mutations,10 microsat-

ellite instability,11 and tumor mutational burden.12 In this way, the computational methods can serve as a

low-cost alternative or secondary verification of the costly molecular biology assays.

From the algorithmic point of view, early works on computational pathology are mainly based on super-

vised learning algorithms.10,13 They usually require pathologists’ annotation of region of interests (ROIs)

or selection of image patches on WSIs. The selected ROIs or image patches are then used to train a super-

vised machine learning algorithm for inference tasks on histopathology images. Owing to the requirement

of supervision from pathologists, such methods have limitations in real-world applications because accu-

rate annotations from pathologists are difficult to obtain. In light of the weaknesses of such methods, a lot

of the so-called ‘weakly supervised learning algorithms’ have been developed in recent years. Instead of

requiring pathologists’ detailed annotation at patch-level or ROI-level, such algorithms only require one

annotation per slide, which can be easily obtained directly from the patients’ electronic health records

(EHRs). Such methods have already had successful applications in tumor detection,14 histopathological

subtyping,15 and tumor origin prediction.16

The development of computational pathology methods on primary brain tumors has been lagging consid-

erably behind other tumor types. This is in part because of the difficulty in obtaining large annotated pa-

thology datasets for brain tumors. The incidence of brain tumors and other CNS tumors is generally lower

than tumors of other origins.17 There is also a lack of publicly available high-quality brain tumor histopathol-

ogy datasets, with the exception of several glioma subtypes in The Cancer Genome Atlas (TCGA).18 There-

fore, existing works have mainly focused on the classification tasks in a few primary brain tumor subtypes,

mostly only within glioma subtypes.19,20 Despite the demonstrated success in other brain tumor imaging

modalities,21,22 there is a lack of systematic investigation of applying weakly supervised learning algorithms

on primary brain tumor H&E histopathology.

To fill the gap in brain tumor computational pathology, we here propose ViT-WSI, a highly interpretable

and weakly supervised model, leveraging the state-of-the-art Vision Transformer architecture in an end-

to-end manner, for brain tumor WSI analysis. ViT-WSI achieves the task of weakly supervised learning

through the self-attention mechanism23 and a constructed patch-level graph of the WSI, which benefits

ViT-WSI by modeling the relationship between WSI patches in a context-aware fashion. Importantly, we

demonstrate how a weakly supervised ViT-WSI, learned from H&E WSI and labels purely extracted from

electronic health records (EHRs) and without any additional pathologist supervision, accomplishes the

task of major primary brain tumor type and subtype classification. We develop a systematic procedure

to interpret the ViT-WSI model and show how ViT-WSI automatically discovers diagnostic histopatholog-

ical features directly from WSI. Finally, the ViT-WSI model fine-tuned on additional evidence from Immu-

nohistochemistry (IHC) and molecular biology assays, can ‘see the unseen’ from H&E histopathology

and precisely predict the status of three diagnostic glioma molecular markers.

RESULTS

Vision transformer (ViT)–based weakly supervised whole-slide image analysis model (ViT-

WSI)

To leverage the strong performance of visual recognition of Vision Transformers,24 we designed the ViT-

WSI model for weakly-supervised histopathology image analysis (Figure 1). ViT-WSI can be trained in a

weakly-supervised fashion to perform various brain tumor classification tasks. ViT-WSI first segments a gig-

apixel WSI into 102431024megapixel patches (Figure 1). The first part of ViT-WSI, the Pretrained Patch Em-

bedder (Figure 1), extracts image features of each megapixel patch and embeds them into a

1024-dimensional vector. The Pretrained Patch Embedder is a ViT-L-16 model pretrained on the

ImageNet-21k dataset.25 Each embedded megapixel patch is then sent to the second part of ViT-WSI,

the Vision Transformer Aggregator (Figure 1), which performs whole-slide aggregation for the weakly su-

pervised learning task. Vision Transformer Aggregator is also designed as a transformer architecture, aim-

ing to better utilize the extracted features from the Pretrained Patch Embedder. During this aggregation

phase, the self-attentionmechanism of the Vision Transformer Aggregator models the interaction and rela-

tionship among patches. Feature similarity and closeness of physical locations between the patches are

also taken into consideration by constructing a nearest neighbor graph of the patches and are input to

the Vision Transformer Aggregator via embedding and attention computation (Figure 1). In this way, the
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self-attention mechanism in the Vision Transformer Aggregator is able to aggregate the patch-level infor-

mation in a context-aware manner. Finally, the classification scores corresponding to each class can be

outputted from the classification head, and the output from the penultimate layer under the classification

head is used as the whole-slide representation vector (WSRV) of the WSI. Detailed model configurations,

design principles, and training protocol are discussed in STAR Methods.

Acquisition of the primary brain tumor histopathology WSI dataset

To overcome the lack of publicly available primary brain tumor datasets, we retrieved 6,173 primary brain

tumor H&E slides from The First Hospital of Harbin Medical University (Figure 1). The slides were formalin-

fixed paraffin-embedded (FFPE) and prepared between April 2017 and April 2020. They were scanned with

Figure 1. An overview of the primary brain tumor dataset, analysis pipeline, and architecture of ViT-WSI

Left: A total number of 6,173 H&E slides of surgical specimens from1,387 patients were retrieved from inventory for scanning. TheH&E slides were scannedwith an

SQS-1000 high-throughput scanner which can handle 510 slides per round. Anonymized patient metadata (slide identifiers, primary diagnosis, age, sex, etc.), type

and subtype information, and molecular marker status were exported and extracted from the patients’ EHR data. The digitalized H&E slides and extracted

information were used for model training and evaluation. Right: After a WSI’s tissue region is segmented into patches, the analysis pipeline of the ViT-WSI model

(the ‘ViT-WSI model’ box) can be divided into two stages: The first stage utilizes a Pretrained Patch Embedder that is responsible for transforming theWSI patches

(‘Input Megapixel Patches’) into token embeddings that will be used in the second stage. Internally, it divides the patches into kilopixel patches. A Patch Graph

Constructor constructs a nearest-neighbor graph of the patches based on their physical closeness (white edges) and feature similarity (pink edges). In the second

stage, a Vision Transformer Aggregator aggregates the information across the WSI patches and summarizes them into a single, slide-level prediction. Both the

Pretrained Patch Embedder and Vision Transformer Aggregator consist of multiple stacked Transformer Encoders (see STAR Methods). The multi-head self-

attention in the Vision Transformer Aggregator, together with the Graph Constructor, aggregate patch-level information from WSIs in a context-aware fashion.

Classification output is produced by the classification head attached to the last layer of the network and is used for the slide-level prediction tasks (summarized in

the ‘Model output’ box). Finally, various intermediate quantities (e.g., the classification score, dimensions of WSI representation, and PC projections) are used for

downstream interpretation of themodel (the ‘Attribution analysis and feature discovery’ box). A gradient-based attribution algorithm is run through themodel in a

backward pass and assigns attribution scores to the input megapixel patches. Histological image feature discovery can be performed by inspecting the patches

with high positive/negative attribution scores.
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a high-throughput slide scanner, SQS-1000, developed by Shenzhen ShengQiang Technology Co., Ltd

(https://www.sqray.com/), and then the digitalized H&E slides were converted to public file format (the

‘svs’ format) for downstream processing (Figure 1, STAR Methods). Our in-house dataset covers a total

of eight brain tumor types, including glioma, meningioma, pituitary adenoma, ependymoma, craniophar-

yngioma, CNS lymphoma, chordoma, and germ cell tumor (Figure S1). Table 1 summarizes multiple statis-

tics of this in-house cohort. We retrieved the corresponding EHRs of the patients which contain the diag-

nosis of the patient by the department of pathology of The Affiliated First Hospital of Harbin Medical

University. All cases were carefully reviewed by a panel of seasoned neuropathologists at the hospital

and the diagnosis was the one on which subsequent treatment was based. We kept only the slides that

could be matched to their patient metadata and whose brain tumor type could be determined from the

EHRs (Table 1, Figure S1). In total, we assembled a cohort of 5,216 slides from 1,211 patients spanning

the eight brain tumor types (Table 1, Figure S1). The consent forms of the patients were waived before

this research was carried out under the retrospective research protocol of the institution. Information on

eleven glioma and meningioma subtypes and glioma molecular biomarkers were further extracted from

the EHR for a subset of 597 patients (Table 1, Figure S1). The eleven subtypes span five glioma subtypes

(Diffusive Astrocytoma (DA), Anaplastic Astrocytoma (AA), Oligodendroglioma (O), Anaplastic Oligoden-

droglioma (AO), Glioblastoma (GBM)) and six meningioma subtypes (Fibrous, Meningothelial, Transitional,

Angiomatous, Atypical, Anaplastic). The hierarchy of the brain tumor types and subtypes is shown in Fig-

ure S2. Consistent with prior knowledge, the glioma subset contains more male patients (55.21%) than fe-

male patients (44.78%), whereas the meningioma subset contains more female patients (74.30%) than male

patients (25.69%) (Table 1). For the training and evaluation of ViT-WSI, we subsequently refer to the clas-

sification of 8-class brain tumor types as the ‘8-class top-level type classification task’, and the classification

of 11-class meningioma and glioma subtypes as the ‘11-class subtyping task’ (statistics shown in Table 1).

Previous work in lung adenocarcinoma suggests a general possibility of predicting molecular biomarkers

directly from the H&E histopathology.10 In glioma, three molecular biomarkers are of particular interest to

pathologists: Isocitrate dehydrogenase (IDH), Tumor suppressor p53 (TP53), and O6-methylguanine DNA

methyltransferase (MGMT). Of the mutations in IDH, the most common one is the R132H mutation in the

IDH1 allele and is a frequent somatic mutation event in multiple astrocytic and oligodendroglial subtypes

that imply better prognosis.3TP53 is the tumor suppressor gene that frequently mutates in high-grade gli-

omas that are associated with higher malignancy and poorer prognosis.26 Methylation at the promoter re-

gion ofMGMT, a gene crucial in DNA repair pathways, silences its expression and makes tumor cells more

sensitive to alkylating agents used in chemotherapy.27 Recent work showed that patch-level classifiers

trained on glioma histopathology images could predict IDH mutation with decent accuracy.28,29 Glioma

MRI images are also shown to have certain predictive power of MGMT methylation.30 These suggest the

possibility of phenotype-to-genotype inference in glioma subtypes. To investigate the possibility of ViT-

WSI to make such an inference from histopathology slides, we further extracted the status of molecular bio-

markers from the glioma patients’ EHR data (statistics shown in Table 2). A total of 304 cases presented with

their IDH1mutation status determined either by IHC (108 positive cases, 196 negative cases, with positivity

indicating mutation in the IDH1 gene) or Sanger sequencing (13 cases with mutation and 13 cases without

mutation). 219 cases presented with their TP53mutation status, either by IHC (104 positive cases, 115 nega-

tive cases, with positivity indicating mutation in the TP53 gene) or Sanger sequencing (showing 3 cases

without TP53mutation). 71 cases presented withMGMT promoter methylation status, either by IHC (46 pos-

itive cases, 25 negative cases, with negativity suggesting MGMT promoter methylation) or Methylation

Specific PCR31 (MSP) (11 cases with methylation and 7 cases without methylation). These cases and their

associated slides are then used to train and evaluate ViT-WSI for the molecular biomarker prediction

task. As there are much more patients with IHC testing than Sanger sequencing or MSP, we use the status

of the molecular biomarker determined from IHC for training and performance evaluation, and additionally

validate them using the status of the biomarker reported by other methods.

We further retrieved 1,703 glioma FFPE slides of 879 patients from the subdirectories TCGA-GBM (for glio-

blastoma cases) and TCGA-LGG (for lower grade glioma cases) of The Cancer Genome Atlas (TCGA) as an

independent data source (statistics shown in Table 1). Excluding the ambiguous subtype ‘mixed glioma’,

the slides from the other subtypes (AA, AO, DA, GBM, and O) are assembled into a 5-class classification

task dataset, hereafter referred to as the ‘TCGA glioma subtyping task’. To get the patients’ somatic mu-

tation status in IDH1 and TP53, we used somatic mutations that are independently called by four methods,

MuSE,32 MuTect2,33 SomaticSniper,34 and Varscan235 on their associated whole exome sequencing data.
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Table 1. Statistics of histopathology datasets used in this study

Patient level summary Slide level summary

In-house primary brain tumor dataset statistics:

Slide Scan Statistics:

Retrieved from Inventory 1387 6173

Scanned WSI w/EHR Found 1247 5502

Scanned WSI w/Good Visual Quality 1221 5297

Primary Brain TumorType Statistics (8-class top-level type classification task):

Scanned WSI w/Primary Brain TumorType

Information

1211 5216

Glioma 326 (26.92%) 1683 (32.27%)

Meningioma 471 (38.89%) 2691 (51.59%)

Pituitary Adenoma 263 (21.71%) 424 (8.13%)

Ependymoma 38 (3.14%) 155 (2.97%)

Craniopharyngioma 69 (5.70%) 144 (2.76%)

CNS Lymphoma 14 (1.15%) 52 (1.00%)

Chordoma 18 (1.49%) 39 (0.75%)

Germ Cell Tumor 12 (0.991%) 28 (0.54%)

Used in the ‘8-class top-level type

classification task’

1211 (100%) 5216 (100%)

Patient Statistics

Sex:

Female 698 (57.64%)

Male 504 (41.62%)

Not Available 9 (0.74%)

Age: 51.62 G 13.13 years

Glioma Subtype Statistics (11-class subtyping task):

All Scanned Gliomas 326 1683

Anaplastic Astrocytoma (AA) 10 (3.06%) 43 (2.55%)

Anaplastic Oligodendroglioma (AO) 28 (8.58%) 138 (8.19%)

Diffuse astrocytoma (DA) 29 (8.89%) 187 (11.11%)

Glioblastoma (GBM) 137 (42.02%) 650 (38.62%)

Oligodendroglioma (O) 27 (8.28%) 89 (5.28%)

Used in the ‘11-class subtyping task’ 231 (70.85%) 1107 (65.77%)

Others/Not Available 95 (29.14%) 576 (34.22%)

Patient Statistics:

Sex:

Female 146 (44.78%)

Male 180 (55.21%)

Age:

<20 years 5 (1.53%)

20–30 years 14 (4.29%)

30–40 years 54 (16.56%)

40–50 years 90 (27.6%)

50–60 years 88 (26.99%)

60–70 years 63 (19.32%)

>70 years 12 (3.68%)

(Continued on next page)
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Table 1. Continued

Patient level summary Slide level summary

Meningioma Subtype Statistics (11-class subtyping task):

All Scanned Meningiomas 471 2691

Meningothelial Meningioma 74 (15.71%) 295 (10.96%)

Fibrous Meningioma 94 (19.95%) 410 (15.23%)

Transitional Meningioma 87 (18.47%) 330 (12.26%)

Angiomatous Meningioma 31 (6.58%) 94 (3.49%)

Atypical Meningioma 56 (11.88%) 462 (17.16%)

Anaplastic Meningioma 24 (5.09%) 56 (2.08%)

Used in the ‘11-class subtyping task’ 366 (77.7%) 1647 (61.2%)

Others/Not Available 105 (22.29%) 1044 (38.79%)

Patient Statistics:

Sex:

Female 350 (74.30%)

Male 121 (25.69%)

Age

<20 years 1 (0.21%)

20–30 years 11 (2.33%)

30–40 years 32 (6.79%)

40–50 years 98 (20.80%)

50–60 years 177 (37.57%)

60–70 years 131 (27.81%)

>70 years 21 (4.45%)

TCGA Glioma Dataset Statistics:

All TCGA Gliomas (with FPPE slides) 879 1703

TCGA-GBM

Glioblastoma (GBM) 389 (42.45%) 860 (50.49%)

TCGA-LGG

Anaplastic Astrocytoma (AA) 122 (13.88%) 164 (9.63%)

Anaplastic Oligodendroglioma (AO) 72 (8.19%) 155 (9.10%)

Diffuse astrocytoma (DA) 59 (6.71%) 104 (6.11%)

Oligodendroglioma (O) 107 (12.17%) 204 (11.97%)

Mixed Glioma 130 (14.78%) 216 (12.68%)

Used in the ‘TCGA glioma subtyping task’ 749 (85.21%) 1487 (87.31%)

Patient Statistics:

Sex:

Female 367 (41.75%)

Male 512 (58.24%)

Age 50:54G15:54 years

<20 years 10 (1.14%)

20–30 years 78 (8.87%)

30–40 years 180 (20.48%)

40–50 years 157 (17.86%)

50–60 years 197 (22.41%)

60–70 years 160 (18.20%)

>70 years 96 (10.92%)

Not Available 1 (0.11%)
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Only when all four methods detected (or do not detect) mutation(s) in a gene, did we regard the case as

unambiguous and keep it. All other ambiguous cases were discarded. For the MGMT status, we adopted

the labels as having been used in30 based on the Infinium methylation assay.36 The statistics of the three

molecular biomarkers of the TCGA cases are summarized in Table 2.

For all three tasks, we randomly make ten independent splits with a train/test ratio of 7:3 for 10-fold cross-

validation. The performance statistics are reported as the average of the ten trained models on the ten

splits. We also make one more independent split, on which we will perform downstream analysis and

case study of the model. The patient level and slide level statistics of the splits are provided in Table S1.

Attribution analysis of ViT-WSI

After a ViT-WSI model is trained, we systematically interpreted the trained model with the gradient-based

attribution analysis algorithms (Figure 1). We aim to investigate whether ViT-WSI is able to discover histo-

logical meaningful features using such procedures. Attribution analysis aims to quantitatively evaluate the

Table 2. Statistics of available molecular biomarkers in glioma datasets

Glioma Cases Among In-house Primary Brain Tumor Dataset Statistics:

IDH1 TP53 MGMT

IHC Sanger IHC Sanger IHC MSP

Anaplastic Astrocytoma (AA) + (4)

- (6)

+ (7) + (2)

Anaplastic Oligodendroglioma (AO) + (21) + (3) + (1)

- (7) - (13) - (3)

Diffuse astrocytoma (DA) + (22) mut (7) + (12) - (1) w/met (1)

- (7) - (9)

Glioblastoma (GBM) + (12) mut (2) + (57) wt (2) + (36) w/met (6)

- (117) wt (9) - (33) - (17) w/o met (5)

Oligodendroglioma (O) + (9) mut (1) - (13) wt (1) + (1)

- (7)

Others + (38) mut (3) + (25) + (6) w/met (5)

- (54) wt (4) - (45) - (4) w/o met (1)

Total + (106) mut (13) + (104) wt (3) + (46) w/met (11)

- (198) wt (13) - (115) - (25) w/o met (7)

TCGA Glioma datasets statistics:

IDH1 TP53 MGMT

Anaplastic Astrocytoma (AA) mut (70) mut (56) w/met (21)

wt (48) wt (50) w/o met (11)

Anaplastic Oligodendroglioma (AO) mut (54) mut (14) w/met (17)

wt (15) wt (55) w/o met (2)

Diffuse astrocytoma (DA) mut (46) mut (32) w/met (8)

wt (9) wt (13) w/o met (7)

Glioblastoma (GBM) mut (14) mut (56) w/met (23)

wt (227) wt (166) w/o met (25)

Oligodendroglioma (O) mut (81) mut (21) w/met (35)

wt (16) wt (78) w/o met (3)

Others mut (99) mut (60) w/met (28)

wt (22) wt (57) w/o met (5)

Total mut (364) mut (239) w/met (133)

wt (337) wt (419) w/o met (53)
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contribution of a particular input to an output of a deep learning model, and it serves as a cornerstone for

interpretable machine learning.37 A large family of attribution analysis algorithms achieves this goal by

comparing what the network outputs from a given input to what it outputs from a ‘baseline’ input (which

is usually chosen to be an all-zero input or a random input) and assigning attribution scores to the elements

of the given input according to their contribution to the difference.38 These attribution algorithms have

been widely used to interpret Transformer-based models.39 We applied one of the above-mentioned attri-

bution analysis methods, Integrated Gradients (IG),40 to the ViT-WSI aggregator. Suppose that the input to

the ViT-WSI aggregator (represented as function F) is XðinpÞ = ½XðinpÞ
1 ;X

ðinpÞ
2 ;.;X

ðinpÞ
n � (where n is the number

of megapixel patches) and the output is a scalar FðXðinpÞÞ. IG computes the attribution of the kth input

element as follows:

IGk

�
XðinpÞ

�
: =

�
X
ðinpÞ
k � XðbaselineÞ

k

�Z 1

a = 0

F 0
k

�
XðbaselineÞ + a

�
XðinpÞ � XðbaselineÞ

��
da

where F 0
k is the partial derivative of the network F w.r.t. the kth input element,XðbaselineÞ is the above-mentioned

baseline input and a is the interpolating factor which varies from 0 to 1. This guarantees that the sum of the

attribution of each input element equals the total output difference, which can be expressed as:

F
�
XðinpÞ

�
� F

�
XðbaselineÞ

�
=

X
k

IGk

�
XðinpÞ

�

We computed the contribution of the input patches to various network output quantities, including the classi-

fication score of a particular class (the ‘class attribution’), specific dimensions of the WSRV (the ‘WSRV attribu-

tion’), as well as on the projections ofWSRV on its specific principal components PC (the ‘PC attribution’). In this

way, we hope to discover subtype-specific histological features, as well as histological patterns that are

managed by specific dimensions of the WSRV, or certain linear combinations of them. The result of the attri-

bution analysis is plotted in a heatmap that highlights regions with positive/negative contributions. The histo-

logical features in those regions are then reviewed by two pathologists with ten years of experience (YC and

XC). Details of the formulation of attribution analysis are discussed in STAR Methods.

Performance evaluation of the ViT-WSI model

Table 3 summarizes the performance of ViT-WSI on the 8-class top-level type classification task, the 11-class

subtyping task, as well as the TCGA glioma subtyping task. We compared the performance of ViT-WSI [ViT

(ViT-L-16) + ViT-WSI aggregator] with various other weakly supervised methods including Max Pooling14 and

CLAM-MB.15 We used various pretrained patch embedders for performance evaluation, including ResNet50,

Inception v3 used by Coudray et al.,10 and the GNN network used by Jaume et al.41 As previous methods

were developed without the presence of pretrained Vision Transformers, to make the comparison fair, we

also evaluated the performance of other methods using both ViT-L-16 as the pretrained patch embedder. We

also evaluated the patch embedder performance of the ViT-S-16 and ViT-L-16models when they are self-super-

vised by DINO42 instead of pretrained on the ImageNet as used in Chen and Krishnan.43 We further compared

the performance of the above weakly supervised methods with non-weakly supervised methods by training a

patch-level version of the patch embedders directly for classification using the slide-level labels as ground truth.

In terms of the area under curve of the one versus rest receiver operating characteristics macro-averaged

across each class (Macro AUC) and the Matthews’ correlation coefficient (MCC), ViT-WSI with patch graph

information (ViT-WSI + Graph) achieves the highest performance (Macro AUC 0.9408, 0.8867 and 0.9313,

MCC 0.8757, 0.5628 and 0.8344, under 10-fold cross-validation) on all three tasks compared to other aggre-

gators that use ViT-L-16 as the pretrained patch embedder. Compared to the weakly-supervised learning

methods (MIL,44 CLAM_MB,15 ViT-WSI, ViT-WSI + Graph), using the slide-level label to train patch-level

classifiers achieves the worst performance on the three tasks. There is a larger performance gap between

this non-weakly-supervised method and other weakly supervised methods in the more difficult 11-class

subtyping task than the 8-class top-level type classification task and the TCGA glioma subtyping task,

showing the greater advantage of developing weakly-supervised methods on more fine-grained tumor

classification tasks. Adding patch-level graph information to the ViT-WSI model (ViT-WSI + Graph) im-

proves the performance compared to the counterpart that is without (ViT-WSI). Using ViT-WSI-based ag-

gregation performs better than the other methods regardless of the pretrained patch embedder that is

used. Consistent with the previous observation,43 only on the relatively easier tasks, i.e., the 8-class top-

level type classification task and TCGA-glioma subtyping task, there are further improvements by using

the vision transformers ViT-S-16 or ViT-L-16 self-supervised by DINO as the patch embedders, although
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Table 3. Performance of ViT-WSI and comparing methods on three brain tumor type and subtype classification tasks

Dataset Method Reference Macro AUC (mean G std)

Matthew’s correlation

coefficient (MCC)

(mean G std)

Pretrained Patch Embedder Aggregator

8-class top-level type classification ResNet50 (non-weakly-supervised) N/A 0.867 G 0.036 0.758 G 0.032

ResNet50 CLAM-MB Lu et al.15 0.910 G 0.020 0.835 G 0.016

ResNet50 ViT-WSI aggregator w/graph 0.934* G0.018 0.864* G 0.009

ViT (ViT-L-16, non-weakly-

supervised)

N/A 0.875 G 0.054 0.804 G 0.068

ViT (ViT-L-16) Max Pooling 0.899 G 0.018 0.826 G 0.026

ViT (ViT-L-16) CLAM-MB 0.930 G 0.020 0.860 G 0.026

ViT (ViT-L-16) ViT-WSI aggregator w/graph 0.941* G0.022 0.876* G 0.024

Inception v3 (non-weakly-

supervised)

N/A Coudray et al.10 0.860* G0.023 0.745* G 0.024

GNN (non-weakly-supervised) N/A Jaume et al.41 0.832 G 0.027 0.723 G 0.025

ViT (ViT-S-16, DINO) ViT-WSI aggregator w/graph Chen and Krishnan43 0.940 G 0.004 0.870 G 0.012

ViT (ViT-L-16, DINO) ViT-WSI aggregator w/graph 0.942* G0.027 0.872 G 0.031

Human Performance: Macro FPR = 0.0901 G 0.078, Macro TPR = 0.9557 G 0.042

11-class subtyping ResNet50 (non-weakly-supervised) N/A 0.745 G 0.022 0.414 G 0.029

ResNet50 CLAM-MB Lu et al.15 0.845 G 0.021 0.536 G 0.027

ResNet50 ViT-WSI aggregator w/graph 0.873* G0.017 0.556* G 0.031

ViT (ViT-L-16, non-weakly-

supervised)

N/A 0.753 G 0.027 0.425 G 0.045

ViT (ViT-L-16) Max Pooling 0.837 G 0.019 0.480 G 0.031

ViT (ViT-L-16) CLAM-MB 0.860 G 0.022 0.551 G 0.041

ViT (ViT-L-16) ViT-WSI aggregator w/graph 0.887* G0.024 0.563* G 0.030

Inception v3 (non-weakly-

supervised)

N/A Coudray et al.10 0.695* G0.020 0.373 G 0.029

GNN (non-weakly-supervised) N/A Jaume et al.41 0.672 G 0.019 0.399 G 0.028

ViT (ViT-S-16, DINO) ViT-WSI aggregator w/graph Chen and Krishnan43 0.866 G 0.017 0.558 G 0.028

ViT (ViT-L-16, DINO) ViT-WSI aggregator w/graph 0.880* G0.018 0.560 G 0.026

(Continued on next page)
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Table 3. Continued

Dataset Method Reference Macro AUC (mean G std)

Matthew’s correlation

coefficient (MCC)

(mean G std)

Human Performance: Macro FPR = 0.0509 G 0.042, Macro TPR = 0.9309 G 0.074

TCGA-glioma subtyping ViT (ViT-L-16, non-weakly-

supervised)

N/A 0.845 G 0.021 0.755 G 0.033

ViT (ViT-L-16) Max Pooling 0.875 G 0.021 0.824 G 0.031

ViT (ViT-L-16) CLAM-MB 0.916 G 0.018 0.826 G 0.030

ViT (ViT-L-16) ViT-WSI aggregator w/graph 0.931* G0.019 0.834* G 0.030

Inception v3 (non-weakly-

supervised)

N/A Coudray et al.10 0.804* G0.020 0.723* G 0.027

GNN (non-weakly-supervised) N/A Jaume et al.41 0.762 G 0.018 0.693 G 0.030

ViT (ViT-S-16, DINO) ViT-WSI aggregator w/graph Chen and Krishnan43 0.932 G 0.017 0.843* G 0.031

ViT (ViT-L-16, DINO) ViT-WSI aggregator w/graph 0.930 G 0.020 0.830 G 0.029

Human Performance: Macro FPR = 0.066 G 0.065, Macro TPR = 0.936 G 0.045

The performance of the full-fledged ViT-WSI model is ‘ViT (ViT-L-16)’ as the pretrained patch embedder and ‘ViT-WSI aggregator w/graph’ as the aggregator. We used various pretrained patch embedders for

performance evaluation, including ResNet50, ViT (ViT-L-16), Inception v3 used by Coudray et al.,10 the GNN network used by Jaume et al.,41 the ViT-S-16 and ViT-L-16 self-supervised by DINO42 used in Chen

and Krishnan.43 We also compared the performance of various aggregators for weakly supervised learning on histopathology images, including Max Pooling, CLAM-MB,15 the ViT-WSI aggregator with or

without patch graph information. We also compared the weakly supervised algorithms’ performance against the non-weakly-supervised patch-level classifier. Bold face indicates the highest performance.

Underline indicates the highest performance within each group. * indicates statistically significant (p<0.05) performance improvement over the second highest-performing method in the group (Wilcoxon

signed-rank test across the 10-folds). Full results are available in Tables S2–S4.
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not statistically significant (p = 0.15 for the 8-class top-level type classification task and p = 0.32 for the

TCGA-glioma subtyping task, by Wilcoxon signed-rank test). Because of this and to be consistent with pre-

vious weakly supervised learning methods, the rest of the analyses are still performed using the ViT-WSI

model with ViT-L-16 pretrained on ImageNet as the patch embedder.

We next analyzed the per-class performance of the ViT-WSI + Graph model on the three tasks (Figures 2A–2G).

As an additional reference, we sampled 100 slides fromeach of the three tasks and asked one pathologist (C.W.)

toperformabrief and independent pass through them.Weevaluated the performance (Macro-averageFPR and

TPR) of the pathologist by comparing the pathologist’s classification to the original diagnosis in the EHRs which

Figure 2. Per-class performance of ViT-WSI

Per-class performanceof ViT-WSI on the 8-class top-level type classification task. (A andB), the 11-class subtyping task (C–E), and

the TCGA glioma subtyping task (F–G): (1) the per-class one vs. rest receiver operating characteristics and human performance

on sampled slides (A, C, D, and F), and (2) confusion matrix on the left-out test set (B, E, and G). For the confusion matrix, the

diagonal represents correct predictions, each row represents a ground truth class, and each column represents a predicted class.
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was based on the consensus of a group of pathologists and used this as the ‘human performance’ of the task

(Table 3, Figures 2C,2D, and 2F). Because of class imbalance of the dataset, the model generally has a lower

performance on classes that are under-represented (e.g., ependymoma, germ cell tumor). For the 8-class

top-level type classification task, there is a very low misclassification rate among the three major primary brain

tumor types (glioma, meningioma, and pituitary adenoma) and they are on par with human-level performance

(Figures 2A and 2B). However, there is a larger misclassification rate between glioma and ependymoma (Fig-

ure 2B). This is because ependymomas, arising from ependymal cells, are also a type of glial cells, and ependy-

momas can often be considered gliomas in a broad sense.45 A higher misclassification rate indicates their sim-

ilarity in histopathology. For the 11-class subtyping task, misclassification is rare between the glioma subtypes

and the meningioma subtypes, with one exception (several atypical meningioma slides misclassified as several

glioma subtypes) (Figure 2E). This is probably because both tumor subtypes have a higher level ofmalignancy. In

both the 11-class subtyping task (Figure 2E) and the TCGAglioma subtyping task (Figure 2G), misclassification is

in general within glioma or within meningioma subtypes, especially between oligodendroglioma (O) and

anaplastic oligodendroglioma (AO), as well as atypical and anaplastic meningiomas, which shows the difficulty

of classifying tumors of similar origin and cell type but with only slightly different levels of malignancy. There is in

general more gap between the model performance and human performance on the more difficult 11-class sub-

typing task and TCGA glioma subtyping task than on the 8-class top-level type classification task.

The whole representation vectors (WSRV) extracted from the penultimate layer of the ViT-WSI model are

visualized in 2D using t-distributed stochastic neighbor embedding (t-SNE)46 (Figures S3A and S3B, Sup-

plementary Notes Section S1). For the 8-class top-level type classification task (Figure S3A), one can

observe a Clear clustering of the glioma, meningioma, pituitary adenoma, and craniopharyngioma slides

in the t-SNE space. Ependymoma slides are observed to be closer to the glioma slides which agrees well

with their higher misclassification rate and their histopathological similarity. For the 11-class subtyping task,

there is a clear separation of all glioma subtypes and meningioma subtypes (Figure S3B). However, a large

overlap is observed for meningioma subtype pairs with higher histological similarities like fibrous and tran-

sitional, as well as atypical and anaplastic.

ViT-WSI distinguishes itself from other methods by incorporating the self-attention mechanism for whole-

slide aggregation. The self-attention mechanism models the relationships between different patches in a

WSI. It discovers semantically similar regions (Figure S4, Supplementary Notes Section S2), and has a

greater diversity and coverage than other attention-based methods (Figure S5), which results in its greater

prediction confidence (Figure S6).

ViT-WSI automatically discovers diagnostic histopathological features

We systematically interpreted the ViT-WSI model trained on the ‘11-class subtyping task’ using gradient-

based attribution algorithms. As an example, we first performed attribution analysis of two meningioma

slides reported by pathologists as having histological features of multiple subtypes. The first is a mixed

type of fibrous and transitional meningioma (Figure 3A). Attribution to the ‘fibrous’ class (based on the

‘class attribution’ method, STAR Methods) highlights the regions in the upper part of the slide with cells

having typical narrow, rod-shaped histopathological features.47 Attribution to the ‘transitional’ class

(based on the ‘class attribution’ method) highlights the typical whorl structures of transitional meningi-

oma.47 In some parts of the slide where the ‘transitional’ whorl features are scattered, the attribution heat-

map is even more capable of highlighting them individually (Figure 3A, zoom-in view). The second is a me-

ningothelial slide showing features of angiomatous meningioma (Figure 3B). Individual attribution maps

for the ‘meningothelial’ and ‘angiomatous’ classes (based on the ‘class attribution’ method) again ‘pick

out’ histological structures of their corresponding subtypes.

Motivated by the effectiveness of the above analysis, we further extended the attribution procedure to

various other network outputs. Instead of performing attribution analysis on the network’s final layer (the

classification output probabilities), we moved our focus to the penultimate layer, which outputs the

WSRV that has been visualized in Figure S3. From here, we wished to find what histopathological features

are being attended to by the different dimensions of theWSRV. To achieve this goal, we could exhaustively

perform the analysis on each dimension of the representation vector one by one and observe their corre-

lation with some histopathological-meaningful patterns. However, this approach is inefficient and unin-

formed because the dimension of the representation vector is large (1,024 dimensions), and some dimen-

sions may have overlapping or repetitive semantics.
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We thus used a principal component (PC)-guided attribution procedure to interpret the trained ViT-WSI

model (the ‘PC attribution’ method, STAR Methods). Without performing attribution analysis on each indi-

vidual dimension, we instead performed on theWSRV’s projections to their PCs. The principal components

are computed using all the representation vectors of the slides in the test set of the independent split of the

‘11-class subtyping task’ and ordered in their amount of explained variance (Figure S7).

The PC-projected whole slide representation vectors are plotted for each slide in the ‘11-class subtyping

task’ test set, separately for the first six PCs (PC1-6, Figure 3C) and the next eight PCs (PC7-14, Figure 3G).

The slides are hierarchically clustered using the ‘average linkage’ method on their first 20 PCs. One can

observe a high-level agreement between the clustering result and their true histopathological subtypes,

with all the subtypes almost exclusively clustered together and the glioma slides consistently clustered

on the top, and the meningioma slides at the bottom.We further dropped the anaplastic meningioma sub-

type in the subsequent analyses because of its limited number of slides in the test set (n = 9) and its largely

overlapping clustering semantics as the atypical meningioma subtype.

For the first six components, there is a general trend that projections are highly activated for a specific sub-

type or a few subtypes (Figure 3C, summarized in the first half of Table 4). As an example, PC1 is highly acti-

vated in the glioma subtypes and specifically in the glioblastoma subtype (Figure 3D). On the contrary, it is

mostly negative among the meningioma subtypes and specifically in the meningothelial subtype (Fig-

ure 3D). Attribution of PC1’s activation to a GBM slide’s input patches shows strong positive attribution

to most slide locations (Figure 3E), with one tissue piece possessing the highest density of malignant cells

showing the most (Figure 3E, black arrow pointed). Attribution of PC1’s activation to a meningothelial

slide’s input patches shows general negative attribution to most slide locations (Figure 3F).

Next, PC2, with high activation in fibrous meningioma (Figures 3C and S8D), also has high attribution to

most regions on fibrous meningioma slides (Figures S8B and S8C). PC2 has the highest-loaded dimension

#261 (Figures S8A and S8E) attributed to tumor cells with rod-shaped nuclei (Figures S8G and S8I). PC3 is

also highly activated in glioma populations, but unlike PC1, PC3 is mainly activated in low-grade gliomas

like diffusive astrocytoma and oligodendroglioma (Figures 3C and S9B). Projections on PC3 can be mostly

attributed to typical astrocytoma lesions (Figure S9C) and oligodendroglioma’s ‘fried-egg-shaped’ glial

cells (Figure S9D). Some of its highest-loaded dimensions, e.g., #838, are responsible for astrocytoma com-

ponents (Figures S9E and S9G), whereas others, e.g., #335, are responsible for oligodendroglioma compo-

nents (Figures S9F and S9H). Attribution of these dimensions on the slide with the ‘wrong’ subtype is more

negative (attribution of #838 on the oligodendroglioma slide, Figure S9I) or less consistent with the full PC3

attribution (attribution of #335 on the astrocytoma slide, comparing Figures S9H and S9C).

Figure 3. Attribution analysis automatically discovers histological features

(A) Class attribution to a slide with mixed histology types of fibrous and transitional meningioma. Attribution to the ‘fibrous’ class highlights typical rod-shaped

fibrous meningioma tumor cells. Attribution to the ‘transitional’ class highlights the typical whorl structures of transitional meningioma. In some parts of the slide

where the transitional whorl features are scattered, the attribution heatmap is even more capable of highlighting them individually (black arrows pointed).

(B) Class attribution to a meningothelial slide showing features of angiomatous meningioma. Attribution to the ‘meningothelial’ class highlights the syncytial

cell structures (black arrow pointed). Attribution to the ‘angiomatous’ class highlights the abundant blood vessels present in the tissue slice (black arrows

pointed).

(C) Clustered heatmap for the first six PCs for test set slides that are confidently and correctly predicted by ViT-WSI in the ’11-class subtyping task’. The

cluster dendrogram and identity color bar show the subtypes with similar histology clustered together. For example, all glioma subtypes are clustered at the

top, whereas all meningioma subtypes are clustered at the bottom. Most oligodendroglioma (O) and anaplastic oligodendroglioma (AO) are under a same

subcluster, and so are fibrous and transitional meningiomas. The heatmap shows the activation of the first six components that are mostly subtype-specific.

(D) Violin plot showing the activation of PC1 being very different among subtypes (Kruskal-Wallis H Test: p = 6.0 3 10-64) mainly among glioma subtypes

(Mann-Whitney U Test: p = 1.5 3 10-62) and especially in glioblastoma. **** for p<0.0001.

(E) PC1 attribution to a glioblastoma slide’s input patches shows strong positive attribution (red) to most slide locations, with one tissue piece having the

highest density of malignant cells showing the most (black arrows pointed).

(F) PC1 projection to a meningothelial slide’s input patches shows general negative attribution (green) to most slide locations.

(G) The heatmap shows the activation of the PC7-PC14 is gradually distributed more diversely among subtypes.

(H) Violin plot showing the activation of PC7 is slightly higher in fibrous, transitional, and atypical meningiomas but has a much higher activation in

angiomatous subtypes (Mann-Whitney U Test: p = 1.8 3 10-7 (angiomatous meningioma versus rest)). Its distribution is more diverse than previous PCs

(Kruskal Wallis H Test: p = 6.2 3 10–14, which is less significant than the same test for PC1, PC2, and PC3). **** for p<0.0001 by Mann-Whitney U Test.

(I) Attribution analysis of PC7 attributes its activation to blood vessel structures (arrow pointed) in angiomatous meningioma.

(J) Attribution analysis of PC7 attributes its activation also to angiomatous characteristics (arrow pointed) within atypical meningioma slides (as reported in

the EHR by pathologists).
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Figure 4. Diagnostic molecular biomarkers prediction of ViT-WSI in glioma

(A) ROC curves at the slide-level for the prediction of IDH1 somatic mutation, TP53 somatic mutation, and MGMT promoter methylation.

(B) ROC curves at the patient level.

(C–E) Performance evaluation of ViT-WSI in terms of the accuracy and AUC-ROC per each glioma subtype for IDH1 (C), TP53 (D), and MGMT (E).

(F–H) Comparison of molecular biomarker status predicted by ViT-WSI, status reported by IHC, and status reported by molecular biology assays of in-house

patients. Each dot represents a patient whose fill color (green for negative and brown for positive) is determined by the biomarker status reported by IHC,

and edge color (green for wild type or w/o methylation and brown for mutant or w/methylation) is determined by the biomarker status reported bymolecular

biology assays (Sanger sequencing for IDH1 and TP53 and MSP for MGMT). An edgeless point means molecular biology assay is unavailable, while a point

without fill color means the IHC result is unavailable. The patients are grouped (along the xaxis) by the final diagnosis for a biomarker, which is determined

from the IHC report or the molecular biology assay report, whichever is available. Whenever there is a disagreement between the two methods, molecular

biology assay takes precedence. The yaxis indicates ViT-WSI’s predicted probability of each patient for the positive class (somatic mutation in IDH1 and TP53

or methylation in MGMT), for which 0.5 is used as a prediction cutoff threshold (indicated by the gray dashed line). ViT-WSI’s prediction agrees with 23 of the

26 cases with Sanger sequencing of IDH1 (F), all 3 cases with Sanger sequencing of TP53 (G), and 16 of the 18 cases with MSP of MGMT (H). ViT-WSI’s

prediction agrees with the 4 cases (2 cases in IDH1 and 2 cases in MGMT) whose molecular biological diagnosis disagrees with IHC assays (F, H). **** for

p<0.0001 by Mann-Whitney U Test.

ll
OPEN ACCESS

iScience 26, 105872, January 20, 2023 15

iScience
Article



Projections on components on the next eight PCs (PC7-14, Figure 3G, summarized in the second half of

Table 4) are generally lower in magnitude but are distributed more diversely among subtypes and tend

to be activated by histopathological features that are shared across the subtypes. PC7, for example, has

a slightly higher activation in fibrous, transitional, and atypical meningiomas but has a much higher activa-

tion in the angiomatous meningioma subtype (Figure 3H). Attribution analysis on this component shows

that it attends not only to blood vessel structures in angiomatous meningioma (Figure 3I) but also to atyp-

ical meningioma slides with angiomatous characteristics (Figure 3J). PC10, also being less specific to a

particular subtype (Figure S10A), attends to blood cells in hemorrhage that are less structured than those

in the blood vessels among several different glioma andmeningioma subtypes (Figures S10B–S10E). PC11,

still non-specific to a subtype (Figure S11A), has its attribution map that almost exclusively covers the calci-

fication regions, representing a common histological feature in various meningioma subtypes

(Figures S11B–S11D).47,48 Similarly, PC13 has been found to attend to various necrosis regions in glioblas-

toma, diffusive astrocytoma, and atypical meningioma (Figures S12B–S12D). The activation of PC13, being

slightly higher in glioblastoma and atypical meningioma, suggests that tumors in these two subtypes more

frequently display necrosis (Figure S12A), indicating their higher malignancy.

ViT-WSI predicts diagnostic molecular markers directly from H&E histopathology slides

We next investigated whether ViT-WSI, trained in a weakly-supervised fashion, can predict common diag-

nostic molecular markers from glioma H&E slides. We further assessed if ViT-WSI can be either used clin-

ically as a secondary check or as a low-cost surrogate for real molecular biology experiments.

We systematically explored the potential of ViT-WSI for inferring the aforementionedmolecular biomarkers in

a weakly supervised setting. A ViT-WSI model was fine-tuned from the trained 11-class subtyping model for

each of the three binary classification tasks (somatic mutation versus wild type for IDH1 and TP53, with

methylation versus without methylation for MGMT) under a 10-fold cross-validation scheme using the com-

bineddataset from the in-house and TCGAglioma slides that are identifiedwith the threebiomarkers. Overall,

at the slide level, on the combined cohort of the in-house data and TCGA, ViT-WSI achieves accuracy scores of

0.8127 (ROC-AUC= 0.8637), 0.6609 (ROC-AUC= 0.6763), and 0.6906 (ROC-AUC= 0.6981), respectively for the

three tasks (Figure 4A). However, once the result is aggregated by averaging the prediction across multiple

slides of a patient, ViT-WSI achieves patient-level accuracy scores of 0.8975 (ROC-AUC = 0.9600), 0.8175

(ROC-AUC = 0.8738), and 0.7916 (ROC-AUC = 0.8451), respectively for the three tasks (Figure 4B). As the

most frequent subtype, the performance on glioblastoma among the three tasks is generally closer to the

overall performance than the other subtypes (Figures 4C–4E). In contrast, diffuse astrocytoma, being the

most under-represented subtype for TP53 andMGMT prediction, has a much lower performance. Some sub-

types, such as oligodendroglioma inMGMT prediction, are observed with a much higher accuracy score than

their ROC-AUC score because of the severe class imbalance within the particular subtype.

In the in-house dataset, there are 29 cases whose somatic mutation is validated by Sanger sequencing in

addition to IHC staining (26 cases for IDH1, Figure 4F, and 3 cases for TP53, Figure 4G). There are also 18

Table 4. List of histological features discovered by the gradient-based attribution analysis of ViT-WSI

Histological features Active subtypes Relevant figures

Histological features in specific subtypes

PC 1 Glioma specific features Multiple glioma subtypes, especially in

glioblastoma

Figures 3B–3D

PC 2 Fibrous meningioma features Fibrous meningioma Figure S8

PC 3 Low-grade glioma features Diffuse astrocytoma, oligodendroglioma Figure S9

Histological features shared across subtypes

PC 7 Blood vessels Multiple meningioma subtypes, especially

in angiomatous meningioma subtype

Figures 3E–3H

PC 10 Hemorrhage Various glioma and meningioma subtypes Figure S10

PC 11 Calcification regions Various meningioma subtypes Figure S11

PC 13 Necrosis regions Glioblastoma and atypical meningioma Figure S12

We list the primary histological features and the particular subtype(s) that result in high activation of a specific PC of theWSRV.
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cases whose MGMT methylation status is also validated by methylation-specific PCR (MSP)31(Figure 4H).

Despite the higher costs, these molecular biological diagnostic methods have shown higher sensitivity

and specificity than the IHC-based diagnosis.49,50 ViT-WSI’s predictions agree with 23 of the 26 cases

with Sanger sequencing of IDH1 (Figure 4F), all 3 cases with Sanger sequencing of TP53 (Figure 4G), and

16 of the 18 cases with MSP of MGMT (Figure 4H). Notably, ViT-WSI’s predictions agree with the 4 cases

(2 cases in IDH1 and 2 cases in MGMT) whose molecular biological diagnosis disagrees with IHC assays

(Figures 4F and 4H).

For IDH1 and TP53, attribution analysis of ViT-WSI’s output probability for the ‘somatic mutation’ class pri-

oritizes out regions having typical malignancy in two anaplastic astrocytoma examples (Figures S13A–

S13H). For MGMT, attribution analysis of ViT-WSI’s output probability for the ‘without methylation’ class

(which implies MGMT expression) shows different attribution levels on different tissue patches of the

same slide (Figures S13I–S13L). Alongside the attribution heatmap, we illustrated the IHC-stained slide

of an adjacent tissue section that is sliced out from the same specimen as the H&E slide used by ViT-

WSI (Figures S13C, S13G, S13K, S13D, S13H, and S13L). Because of the adjacency of the H&E and the

IHC tissue sections, the two slides show similarly shaped tissue boundaries and tissue components. A

strong agreement can be observed between the attribution heatmap and the IHC-stained positive regions,

indicating that the regions that strongly contributed to ViT-WSI’s decision-making indeed presented the

underlying molecular mechanism.

DISCUSSION

We have developed a Vision Transformer-based deep learning architecture, termed ViT-WSI, for weakly

supervised histopathology WSI analysis in brain tumors. We showed how ViT-WSI achieved superior

performance in brain tumor type and subtype classification compared to the currently available methods.

We also showed how a fully differentiable ViT-WSI aggregator is amenable to attribution-based interpre-

tation and how it automatically discovers diagnostic histopathological features.We finally showed how ViT-

WSI, in a completely weakly-supervised fashion, predicts diagnostic molecular markers with decent

accuracy directly from H&E images.

As a two-stage framework, the pretrained patch embedder of ViT-WSI leverages the state-of-the-art Vision

Transformer for feature extraction. The ViT-WSI aggregator, also being a Vision Transformer itself, allows better

utilization of the extracted features and easier optimization because it simply contains additional Transformer

layers on top of the patch embedder, and optimization of deep transformer models has proven to be success-

ful.51,52 In contrast to many previous WSI weakly supervised learning algorithms, within ViT-WSI we aggregate

patches in a context-aware way using self-attention and a nearest-neighbor graph that takes into account patch

feature similarity and closeness of their physical locations. In this way, the model is capable of discovering

semantically similar regions in the WSIs at its information processing stage (Figure S4). The model’s attention

region is generally more diverse and greater in size, and its prediction is more confident than aggregation

methods that deal with patches independently (Figures S5 and S6).

Misclassification of ViT-WSI between oligodendroglioma (O) and anaplastic oligodendroglioma (AO), as

well as atypical and anaplastic meningiomas, suggested a general difficulty in classifying tumors of similar

origin and cell type but with only different levels of malignancy. The latest 2021 WHO Classification of

Tumors of the CNS dropped the usage of ‘anaplastic’ in gliomas completely and considered them

only as a grading difference from their non-anaplastic counterparts, acknowledging the subtlety of histo-

logical difference between them.53 In this study, we still adhered to the 2016 WHO classification system,

as the 2021 WHO classification system is still too new to be adopted by most healthcare institutions

worldwide.

Having a bulkier input, interpreting weakly supervised deep learning models on gigapixel WSIs is even

more challenging than interpreting common computer vision models on megapixel images. We showed

how ViT-WSI is amenable to attribution analysis that interprets ViT-WSI with attribution scores assigned

to input patches. We performed attribution analysis on multiple types of network outputs. Attribution anal-

ysis on class probability output highlights regions onWSI belonging to a particular subtype (Figures 3A and

3B) or regions presenting a particular molecular mechanism (Figures S13C, S13G, and S13K). Attribution on

principal components highlights different histopathological features enriched within a particular subtype

(Figures 3, S8, and S9) or shared between different subtypes (Figures S10–S12).
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Earlier work has shown the penultimate layer output of a vision network (VGG19 54), trained on brain tumor

histopathology image at the patch level, highly preserves image semantics.55 Hierarchical clustering on the

penultimate layer output, which is a high-dimensional representation vector for one histopathology image

patch, automatically re-discovered a large proportion of brain tumor ontological relationships. The penul-

timate layer of ViT-WSI also outputs a high-dimensional representation vector, i.e., the WSRV. However, it

represents a gigapixel WSI instead of just one image patch. Hierarchical clustering of the ViT-WSI’s WSRV

also re-discovered similar ontological relations among the meningioma and glioma subtypes that are

consistent with prior knowledge (Figure 3C). When interpreting the high-dimensional representation vec-

tor, Faust et al. selected the dimensions of the feature vector with different activation distributions among

subtypes and exhaustively visually examined them to find out possible correlations with known histopath-

ological features.55 In ViT-WSI, we instead employed a more informative PC-guided approach for feature

interpretation. In this way, each PC summarizes a particular histopathological feature, whose loadings

display the contribution of each dimension to the PC, and as such, important dimensions can be readily

identified according to the magnitude of their loadings.

Without spatial profiling,56 training H&E WSI-based predictive models of molecular biomarkers is inher-

ently a weakly supervised learning problem. Previous works with machine learning models trained at the

patch level have shown predictive power of H&E images over common somatic mutations such as lung tu-

mor,10 liver tumor,57 and microsatellite instability in gastrointestinal tumor.58 In this work, our proposed

ViT-WSI method, weakly supervised at the slide level, also showed promising potential to ‘see the unseen’

from the histopathological images and predicted the three highly informative molecular biomarkers in gli-

oma, and especially somatic mutation in IDH1, with decent accuracy.

Limitations of the study

A limitation of ViT-WSI concerns its large memory consumption, typical for Transformer-based models.

Although this problem is generally manageable during model training and evaluation, it may arise during

attribution analysis that quickly depletes GPUmemory. This is especially the case when being used in com-

bination with gradient-based attribution algorithms such as Integrated Gradients,40 as it requires multiple

iterations through the network. We, therefore, had to perform all the attribution analysis by running the

attribution algorithm purely with CPU on large-memory (�512 GB) computational nodes. This also limits

the resolution of attribution analysis. Currently, only the ViT-WSI aggregator participated in the attribution

analysis, and only one attribution score is assigned to eachWSI patch. Applying attribution analysis to both

the pretrained patch embedder and aggregator as a whole and attributing to each pixel of the WSI is

currently not feasible with ordinary computational infrastructure. Future work that involves experimenta-

tion with more memory-efficient Transformer models and attribution methods should be encouraged

and appreciated.
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Nelkin, B.D., and Baylin, S.B. (1996).
Methylation-specific PCR: a novel PCR assay
for methylation status of CpG islands. Proc.
Natl. Acad. Sci. USA 93, 9821–9826.

32. Fan, Y., Xi, L., Hughes, D.S.T., Zhang, J.,
Zhang, J., Futreal, P.A., Wheeler, D.A., and
Wang, W. (2016). MuSE: accounting for tumor
heterogeneity using a sample-specific error
model improves sensitivity and specificity in
mutation calling from sequencing data.
Genome Biol. 17, 178. https://doi.org/10.
1186/s13059-016-1029-6.

33. Benjamin, D., Sato, T., Cibulskis, K., Getz, G.,
Stewart, C., and Lichtenstein, L. (2019).
Calling somatic SNVs and indels with
mutect2. Preprint at bioRxiv. https://doi.org/
10.1101/861054.

34. Larson, D.E., Harris, C.C., Chen, K., Koboldt,
D.C., Abbott, T.E., Dooling, D.J., Ley, T.J.,
Mardis, E.R., Wilson, R.K., and Ding, L. (2012).
SomaticSniper: identification of somatic
point mutations in whole genome
sequencing data. Bioinformatics 28, 311–317.

35. Koboldt, D.C., Zhang, Q., Larson, D.E., Shen,
D., McLellan, M.D., Lin, L., Miller, C.A.,
Mardis, E.R., Ding, L., andWilson, R.K. (2012).
VarScan 2: somatic mutation and copy
number alteration discovery in cancer by
exome sequencing. Genome Res. 22,
568–576.

36. Bibikova, M., Le, J., Barnes, B., Saedinia-
Melnyk, S., Zhou, L., Shen, R., andGunderson,
K.L. (2009). Genome-wide DNA methylation
profiling using Infinium� assay. Epigenomics
1, 177–200.

37. Du, M., Liu, N., and Hu, X. (2019). Techniques
for interpretable machine learning. Commun.
ACM 63, 68–77.

38. Ancona, M., Ceolini, E., Öztireli, C., and
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact: Xin Gao (xin.gao@kaust.edu.sa).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Histopathology Data from TCGA used in this study are available from the Genomic Data Commons Por-

tal of the National Cancer Institute (https://gdc.cancer.gov/). In-house data from the First Affiliated Hos-

pital of Harbin Medical University is deposited at Zenodo and is available from the lead contact upon

reasonable request. The accession numbers are listed in the key resources table.

d The source code used in this study is available at https://github.com/lzx325/ViT-WSI-repo.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

To overcome the lack of publicly available primary brain tumor datasets, we retrieved 6,173 primary brain

tumor H&E slides from The First Hospital of HarbinMedical University (Figure 1, Table 1). The consent forms

of the patients were waived before this research was carried out under the retrospective research protocol

of the institution. Our in-house dataset covers a total of 8 brain tumor types, including glioma, meningioma,

pituitary adenoma, ependymoma, craniopharyngioma, CNS lymphoma, chordoma, and germ cell tumor.

We retrieved the corresponding EHRs of the patients and kept only the slides that can be matched to their

patient metadata and whose brain tumor type can be determined from the EHRs. In total, we assembled a

cohort of 5,216 slides from 1,211 patients spanning the eight brain tumor types (Figure S1, Table 1). Sum-

mary statistics including sex and age of the studies patients are available in Table 1. Information of the sub-

types andmolecular biomarkers for some tumor types are further extracted from the EHR for a subset of the

above-mentioned patients (Tables 1 and 2).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Cancer Genome Atlas (TCGA) National Cancer Institute https://portal.gdc.cancer.gov/

In-house Primary Brain Tumor Dataset This Paper https://doi.org/10.5281/zenodo.7392203

Software and algorithms

Numpy Harris et al.85 https://numpy.org/

Scipy Virtanen et al.83 https://scipy.org/

Pytorch Paszke et al.75 https://pytorch.org/

PyTorch Image Models Wightmann, R.84 https://github.com/rwightman/pytorch-

image-models

ViT-WSI This paper https://github.com/lzx325/ViT-WSI-repo

Other

NVIDIA A100 GPU KAUST Ibex HPC Cluster https://www.hpc.kaust.edu.sa/ibex

SQS-1000 Shenzhen Shengqiang Technology Co. https://www.sqray.com/
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METHOD DETAILS

Data preparation and preprocessing

Preliminary format conversion, clean-up, and quality control are performed on the in-house brain tumor dataset.

The dataset generated by the SQS-1000 scanner is in its proprietary sdpc format. They are first converted to the

standardAperio format (svs)59 using the proprietary tool ‘sdpc2svs’60 providedby the scannermanufacturer. The

converted svs format has compression type ‘JPEG’ with compression quality 80 and tile size of 6723 672: The

slide identifier of each slide is extracted from the ‘slide identifier label image’ associated with each WSI and

is subsequently used to query the EHRs of the patients to match against their diagnostic information. We

then further discarded slides whose identifier is unclear/missing or not found in the EHRs (resulting in 1,247 pa-

tients and 5,502 slides, Figure S1) and whose scanning quality is poor after a brief manual inspection (resulting in

1,221 patients and 5,297 slides). Tumortype information was successfully extracted from their respective EHRs

associated with each slide for a total of 1,211 patients and 5,216 slides, with their per-type statistics shown in Fig-

ure S1. These slides subsequently served as the ‘8-class top-level type classification’ task (statistics in Table 1).

Furthermore, meningioma and glioma subtype information was successfully extracted for 597 patients. The me-

ningioma and glioma subtypes cover five glioma subtypes (anaplastic astrocytoma, anaplastic oligodendro-

glioma, diffuse astrocytoma, glioblastoma, and oligodendroglioma) and six meningioma subtypes (meningo-

thelial, fibrous, transitional, angiomatous, atypical, and anaplastic). These slides subsequently served as the

‘11-class subtyping task’ (statistics in Table 1). The hierarchy showing the relationship between the type and sub-

types is shown in Figure S2. IDH1 immunohistochemistry (IHC) tests status for 304 glioma patients (106 positives,

198 negatives, with positivity indicatingmutation in the IDH1 gene), TP53 immunohistochemistry (IHC) tests sta-

tus for 219 glioma patients (104 positives, 115 negatives, with positivity indicating mutation in TP53 gene), and

MGMT immunohistochemistry (IHC) tests status for 71 gliomapatients (49 positives, 29 negatives, with negativity

suggestingmethylation), respectively (Figure 1). They are subsequently used for themolecularmarker prediction

tasks. For the TCGA slides, there is no need for format conversion because they are already in standardWSI for-

mats (tiff or svs). All slides canbe readily read programmatically with theOpenSlidewhole slide imaging library.61

The WSIs were then segmented for tissue regions from the empty slide background. At a 323 down-sampled

level of eachWSI, the down-sampled image was converted from the RGBA space to the HSV space. The image

was then converted to a binary mask using Otsu’s thresholding method on the Gaussian blurred version of the

saturation channel. Small artifacts such as holes and isolated pointswere further removed in order to carve out a

representative connected component which covers themain tissue area. Subsequently, using a slidingwindow-

based approach, the carved-out tissue area is completely covered with a number of image patches that are

102431024 in size, which serve as units for subsequentWSI analysis (Figure 1). This is becauseWSIs are typically

gigapixel images that are too large to fit into the CPU/GPU memory when they are analyzed as a whole.

Because the patches are created from theWSI directly and are approximately thousands by thousands of pixels

in size, we will hereafter refer to them as ‘WSI patches’ or ‘megapixel patches’.

Vision transformer (ViT)–based weakly-supervised whole-slide image analysis model (ViT-

WSI)

For a given WSI (Wi), after the proper tissue segmentation and patching steps described in the previous

section, they can now be represented as a list of patches, i.e., Wi = ½Xij�nj = 1, where Xij is a particular patch

in the segmented WSI, and n is the total number of patches that the WSI has. In a fully-supervised setting,

each of the patches is associated with a ground truth label Yij. In a weakly-supervised setting, however, one

WSI is only associated with a single slide-level label, Yi. A model’s goal is to infer the slide-level label given

the patches ½Xij�nj = 1 . There is a trivial solution to the weakly-supervised problem, which is to assign a patch-

level label Yij for each patch to be the same as the slide-level label Yi , as has been done in the previous

works.58,62 However, this solution could over-simplify the problem and assign incorrect labels to too

many patches, which will confuse and lead to biased training of the model.

Transformers23 are attention-based deep learning architectures that are originally designed for natural lan-

guage processing (NLP) and have since achieved state-of-the-art performance on many NLP tasks.51,63

More recently, Transformers have begun revolutionizing the computer vision field, where it achieves supe-

rior performance on several computer vision benchmark tasks. The Vision Transformer (ViT)24 achieves

state-of-the-art performance by supervised pretraining on a large, labeled dataset (e.g., JFT64) and then

transfers the knowledge to the dataset of the task (e.g., the ImageNet 2012 dataset65). ViT processes im-

ages by splitting them into a number of patches (e.g., 16x16 patches) and treats the patches as if they were
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tokens in an NLP task. As in the traditional Transformers, ViT produces representations of each patch (to-

ken), one layer after another, based on the attention mechanism. The prediction of the whole image is then

aggregated at the last layer of the network.

The high performance of ViT on image recognition tasks demonstrates that Transformers’ outstanding rep-

resentation learning ability is generally applicable to computer vision tasks. Inspired by the success of ViT

on natural image recognition and the similarity of its image processing procedure to the WSI processing

procedure, i.e., by first dividing a large image into small patches, we are particularly interested in investi-

gating whether a Transformer-based architecture can be useful for histopathological image analysis.

Specifically, we designed a Transformer-based model, termed ViT-WSI, to address the above weakly-su-

pervised learning task. Suppose that we have an input WSI, Wi = ½Xij�nj = 1: The ViT-WSI architecture is

composed of the ‘Encoder Layers,’which are based on the original Transformer encoder architecture

used in BERT.63 For a specific layer l ð1 % l % LÞ, it takes in n representations from the one layer below

and outputs n representations as the current layer’s output:

h
X ðlÞ
i1 ;X

ðlÞ
i2 ;.;X ðlÞ

in

i
= EncoderLayer

�h
X ðl� 1Þ
i1 ;X ðl� 1Þ

i2 ;.;X ðl� 1Þ
in

i
;QðlÞ

�

where each of the n input representations (½X ðl� 1Þ
i1 ; X

ðl� 1Þ
i2 ; .; X

ðl� 1Þ
in �) and n output representations

(½X ðlÞ
i1 ;X

ðlÞ
i2 ;.;X

ðlÞ
in � corresponds to a specific patch in the input. QðlÞ contains the learnable layer parameters

for the lth layer. Each Encoder Layer is made up of:

� A multi-head self-attention layer

X0 = MultiHeadSelfAttentionðXÞ = ½head1;.;headH�WO where

headh = Attention
�
XWQ

h ;XW
K
h ;XW

V
h

�

AttentionðK;Q;VÞ =
SoftmaxðQKuÞffiffiffi

d
p V

� A position-wise feed-forward layer

X0 = MLP
�
X;WMLP

�

� Layer Normalization66 layers following the above two layers

X0 = LayerNormðXÞ
In each of the above equations, X serves as a shorthand notation for the layer’s input, which is formed by

row-wise-stacking up the internal intermediate representations of each patch from its preceding layer, and

X0 as the notation for its output. QðlÞ, the learnable layer parameters of the layer l, is a collection of the pa-

rameters above fWO;WQ
h ;W

K
h ;W

V
h ;W

MLPg, whiled is the embedding dimension used throughout the two

parts of the model.

The pipeline of ViT-WSI can be divided into two stages: The first stage consists of a pretrained patch em-

bedder (Figure 1) that is responsible for transforming the WSI patches into token embeddings that will be

used in the second stage. In the second stage, a Vision Transformer aggregator (Figure 1) aggregates the

information across theWSI patches and summarizes them into a single, slide-level prediction. Both the pre-

trained patch embedder and the aggregator consist of the Encoder Layers as described above. For the
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pretrained patch embedder, the parameters of its Encoder Layers are extracted from the ViT-L-16 model

that is pretrained on the full Image21k dataset.65 It is, therefore, able to produce high-level embedding for

a specific WSI patch. As for the aggregator, it contains much fewer Encoder Layers compared to the patch

embedder, with randomly initialized parameters.

A WSI is first segmented and split into megapixel patches as described in the previous section. Then, each

patch is sent out to the patch embedder for its embedding computation. Inside the patch embedder, each

patch is further split into even smaller patches, which are referred to as ‘kilopixel patches’ (Figure 1), as they

are usually tens of pixels by tens of pixels in size. Inside the pretrained patch embedder, each kilopixel

patch is a token. After being embedded with a linear embedder layer which is also pretrained,24 they

are sent to the Encoder Layers of the pretrained patch embedder for feature extraction. The output of

the patch embedder is a patch embedding that holds the extracted features for one megapixel patch,

which serves as one token in the aggregator. When the embeddings of all the megapixel patches of the

WSI are computed and generated, they are input together to the aggregator for aggregation and

prediction. The aggregator’s Encoder Layers then process the patch embeddings layer by layer and finally

summarize the representation of all megapixel patches of the WSI with a global average pooling (GAP)

operation. The resulting vector serves as a whole slide representation vector (WSRV) and is attached to

an MLP classification head for generating the final classification outcome.

The advantages of developing ViT-WSI to solve the weakly-supervised WSI classification tasks are three-

fold. Firstly, the aggregator serves as a learnable aggregation function of the WSI megapixel patches.

This is in contrast to the multiple instance learning (MIL)–based solution44,67 of the weakly-supervised

learning problem. In the latter, a fixed operation, typically a MAX operation, selects the prediction score

from a single patch in a WSI image as the whole slide-level prediction. This can be inefficient for model

training, as back-propagation is performed using only one patch and is also ineffective for making the pre-

diction, as only one patch is actually used for the whole-slide prediction.14 Most importantly, a fixed aggre-

gation operation rules out the opportunity of the aggregator to learn a complex aggregation function over

the WSI patches in a data-driven approach. On the contrary, our aggregator is not only a learned network

but also makes full use of all patches within a WSI. The aggregator function is also fully differentiable,

thereby making it more amenable to gradient-based interpretability analysis. Secondly, the ViT

encoder-based aggregator fits nicely into the aggregation procedure of the WSI weakly-supervised

learning problem, as (i) it naturally allows each input example to have a variable number (up to a certain

memory limit) of tokens (i.e., WSI patches) and (ii) its inference procedure respects the pairwise relationship

between patches by modeling them using self-attention. This context-aware approach is in contrast to the

majority of previous works on WSI weakly-supervised learning, which aggregate patches by weighting

them with attention scores that are calculated independently.14,68 Based on the self-attention between

patches, the ViT-WSI model’s attention generally covers a greater area and has greater diversity than

the aggregation methods that deal with patches independently (Figures S5 and S6); Thirdly, the ViT-based

pretrained patch embedder is more powerful in performance than previous vision networks (e.g., VGG,54

Inception,69 and ResNet70), which are mostly based on convolutional neural networks (CNN). Moreover,

designing the aggregator to be in a similar architecture as the pretrained patch embedder offers the

advantage of introducing more compatibility between the parts, as demonstrated by a lot of network

design cases with repeated blocks.70–72

To further improve the utilization of the topological structure of the WSI patches in the aggregation step,

we built a WSI patch graph based on the patches’ embedding similarity and inter-patch distances within

the original WSI image. Then, the computation in each of the ViT encoder layers is modified to incorporate

this graph information. Specifically, a nearest-neighbor graph Gi = ðVi;EiÞ is constructed with a WSI, Wi.

Vi = fX1;X2;.;Xng contains the WSI patches. And for each vertex, the k-nearest neighbors (kNN) in terms

of location (coordinates) in the original WSI and the cosine similarity of the patch embeddings are con-

nected with edges. Inspired by the recent Graphormer work,73 the topological information in the graph

Gi can be added to the aggregator as follows:

� The first layer’s input of the aggregator is added with a node degree centrality embedding,74 zdegðXiÞ,
i.e.
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X ð0Þ
i

0
= X ð0Þ

i + zdegðXiÞ

where zdegðXiÞ is a learned embedding, which is shared across the nodes that have the same degree central-

ity. Its dimension is the same as the embedding dimension of the patch embedder.

� The computation of self-attention is added with a bias term that depends on the shortest distance

between the two nodes calculated by the Floyd-Warshall algorithm 74. Concretely, the attention be-

tween patch Xk and Xl can be calculated as:

AttentionðXk ;XlÞ =
QðXkÞ,KðXlÞffiffiffi

d
p +b4ðXk ;XlÞ

where QðXkÞ and KðXlÞ are the query vector and key vector used for the attention computation, respectively,

whileb4ðXk ;XlÞ is the learned scalar bias term that is sharedby the nodepairs with the same shortest pathdistance.

Training and evaluation of ViT-WSI

For each of the prediction tasks, whether the 8-class top-level type classification task, the 11-class subtyp-

ing task, the TCGAglioma subtype classification task or themolecular biomarker prediction tasks, the data-

sets are randomly partitioned into ten folds for cross-validation and fine-tuning of hyperparameters. The

performance is reported as the averaged performance over the ten folds. Another independent train-

test split with a ratio of 7:3 is done on each task dataset. The model trained on this separate split is

used for WSRV generation and downstream attribution analysis. Slides are carefully managed in the split-

ting process to ensure that all folds or splits have slides from distinct sets of patients. In all cases, the

network is trained with the adaptive moment estimation (Adam) optimizer.74 Each sample is weighted in

the cross-entropy loss to overcome the class imbalance issue. We construct the network using the Py-

Torch75 deep learning framework and utilize NVIDIA A100 Tensor Core GPU as the hardware platform.

Whole-slide representation vector (WSRV) produced by ViT-WSI

The whole representation vector (WSRV) is the network value extracted from the penultimate layer (before

the classification head) of ViT-WSI. The WSRVs of the slides from the test set the type and subtype classi-

fication tasks are visualized in 2D using t-distributed stochastic neighbor embedding (t-SNE)46 (Figures S3A

and S3B). For the 8-class top-level type classification task (Figure S3A), one can observe a clear clustering of

the glioma, meningioma, pituitary adenoma, and craniopharyngioma slides in the t-SNE space. Ependy-

moma slides are observed to be closer to the glioma slides, which agrees well with their higher misclassi-

fication rate and their histopathological similarity. For the 11-class subtyping task, there is a clear separa-

tion of all glioma subtypes and meningioma subtypes.

Closeness in the t-SNE space between oligodendroglioma (O) and anaplastic oligodendroglioma (AO), as well

as atypical and anaplastic meningiomas, suggested a general difficulty in classifying tumors of similar origin

and cell type but with only different levels of malignancy. The latest 2021 WHO Classification of Tumors of

the Central Nervous System dropped the usage of ‘anaplastic’ in gliomas completely and considered them

only as a grading difference from their non-anaplastic counterparts, acknowledging the subtlety of histological

difference between them.53 In this study, we still adhered to the 2016 WHO classification system, as the 2021

WHO classification system is still too new to be adopted by most healthcare institutions worldwide.

Self-attention visualization of ViT-WSI

One of the distinctive features of ViT-WSI lies in its Vision Transformer-based aggregator. It aggregates

patch-level embeddings using the multi-head self-attention. The multi-head attention aggregates patches

through several independent heads, creating an ‘ensemble effect’ that is beneficial to the model’s perfor-

mance and generalizability. The self-attention mechanism models the interdependence between patches,

in contrast to most previous weakly-supervised WSI learning algorithms that process each WSI patch

independently.14,15

The multi-head self-attention of ViT-WSI is illustrated with three examples, including one glioblastoma

(GBM) example (Figure S4A), one transitional meningioma example (Figure S4B), and one craniopharyng-

ioma example (Figure S4C). For each slide, we observed high agreement between the aggregated
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attention map across different heads (Figure S4, the third column, ‘Aggregated Attention Map’) with at

least one of the pathologist-annotated lesions (Figure S4, the first column). Different regions of the slide

are attended to differently by different heads (Figure S4, the second column, ‘Per-head Self-Attention

Map’). When attention scores from multiple heads are aggregated, some parts cancel out, while others

are reinforced.

Figure S3 also illustrates how the ViT-WSI self-attention mechanism allows the model to discover seman-

tically similar regions in an unsupervised fashion. By visualizing self-attention between a specific query

patch and all other patches in the WSI, semantically similar regions are specifically highlighted (Figure S4,

the second column of the lower panel, ‘Per-patch Self-Attention Map’). Concretely, ‘neuropil structures’

and ‘blood cell scattered betweenmalignant cells’ due to hemorrhage are recognized in glioblastoma76,77;

‘whorl structures’ and ‘arachnoidal hyperplasia’ are recognized in transitional meningioma47,78; ‘calcifica-

tion’ and ‘fibrocyte/fibroblast region’ are recognized in craniopharyngioma.79 The patches which are highly

attended in self-attention are shown to have similar semantics to the query patch in attention computation

(Figure S4, the third column of the lower panel).

Attribution analysis of ViT-WSI

Attribution analysis has been adopted as an important strategy for neural network model explanation and

interpretation. It contains a family of algorithms that achieve this goal by calculating real-valued impor-

tance scores that ‘attribute’ the result of a network output to a network input.37 The importance scores,

which serve as the attribution, form an array that has exactly the same shape as the network input, with

each being the attribution for each input element. There are a variety of attribution algorithms, including

Integrated Gradients,40 DeepLIFT,80 and SHAP.81 All of the above three algorithms can calculate the attri-

bution by comparing what the network outputs from a given input to what it outputs from a ‘baseline’ input

(which is usually chosen to be an all-zero input or a random input) and assign attribution scores to the el-

ements of the given input according to their contribution to the difference. A positive score indicates a pos-

itive contribution while a negative indicates a negative contribution.

In the attribution analysis of ViT-WSI, we use Integrated Gradients (hereafter abbreviated as ‘IG’) to

perform attribution analysis. We will illustrate how ViT-WSI can be amenable to this gradient-based attri-

bution analysis under various configurations. Suppose that the input to the ViT-WSI aggregator (repre-

sented as function F) is XðinpÞ = ½X ðinpÞ
1 ;X

ðinpÞ
2 ;.;X

ðinpÞ
n � (where n is the number of megapixel patches) and

the output is a scalar FðXðinpÞÞ. IG computes the attribution of the kth input element as follows:

IGk

�
XðinpÞ

�
=

�
X
ðinpÞ
k � XðbaselineÞ

k

�Z 1

a = 0

Fk
0
�
XðbaselineÞ + a

�
XðinpÞ � XðbaselineÞ

��
da

where F 0
k is the partial derivative of the network F w.r.t. the kth input element, XðbaselineÞ is the above-

mentioned baseline input and a is the interpolating factor which varies from 0 to 1. This guarantees that

the sum of the attribution of each input element equals the total output difference, which can be

expressed as:

F
�
XðinpÞ

�
� F

�
XðbaselineÞ

�
=

X
k

IGk

�
XðinpÞ

�

Overall, the following three types of outputs are used in the ViT-WSI attribution analysis.

� Class attribution. The classification score of a particular class is used as the network output value in

the attribution analysis. This score quantifies the contribution of the input to the likelihood of a

particular class. Examples are shown in Figures 3A and 3B.

� WSRV attribution. A particular dimension of WSRV is used as the network output value. This assesses

the contribution of the input to a particular dimension in the WSI representation. Examples are illus-

trated in Figures S8G, S8I, S8H, and S8J.

� PC attribution. To systematically interpret the ViT-WSI model, we performed the Principal Compo-

nent Analysis (PCA) on ViT-WSI computed WSI representations of the test set. The percentage of

variance explained by the top PCs is plotted in Figure S7. To distinguish this from another PCA per-

formed on the input to the ViT-WSI aggregator (described later), we termed this as ‘output PCA

ll
OPEN ACCESS

iScience 26, 105872, January 20, 2023 27

iScience
Article



projection.’ Suppose that the PCA-learned components matrix isW
ðoutÞ
comp ˛RNcomp3Ndim and mean vec-

tor b
ðoutÞ
mean ˛RNdim . A WSI representation rðoutÞ ˛RNdim can be projected onto the PCA principal com-

ponents as follows:

r ðoutÞproj = W ðoutÞ
comp

�
r ðoutÞ � bðoutÞ

mean

�

where the ith dimension of r
ðoutÞ
proj , r

ðoutÞ
proj;i , is the column ‘PC i’ shown in Figures 3C and 3G. Its attribution to the

input is computed in the same way as described above. Examples are shown in Figures 3E, 3F, 3I, and 3J.

Due to the large dimension (1024) of the feature vector produced by the ViT-WSI feature extractor, if they

are used as the input as a whole, the IG attribution method will fail to converge under typical memory con-

straints. For all the three above-mentioned attribution analyses, we first precomputed another PCA projec-

tion on the input feature vector to get the ‘projected version’ of each input patch feature as follows:

r ðinÞproj = W ðinÞ
comp

�
r ðinÞ � bðinÞ

mean

�

During network forward propagation, a reconstructed feature vector can be computed from the projection:

r ðinÞreconstruct = W ðinÞ
comp

u
r ðinÞproj +bðinÞ

mean

Attribution is then performed from the three above-mentioned output values to r
ðinÞ
proj. In this study, the attri-

bution to a particular WSI megapixel patch is defined as the averaged attribution on the first 30 PCs. The

whole attribution analysis is implemented in PyTorch with the utilization of the Captum interpretability li-

brary.82 Finally, the attribution heatmap is plotted separately for the positively (red) and negatively (green)

attributed patches with a quantile-normalized color map.

QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t test, Mann-Whitney U Test, Wilcoxon signed-rank test, and Kruskal-Wallis H Test were performed

using the statistical functions from the Scipy package (scipy.stats).83 Statistical significance (p values) was re-

ported in respective figures with * (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001).
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